寿险精算学(一)
- 格式:ppt
- 大小:1.50 MB
- 文档页数:90
《寿险精算学》实验指导书李新统计学院保险教研室山东工商学院目录实验一生存分布与生命表实验二人寿保险趸缴纯保费实验三人寿保险年缴均衡纯保费实验四寿险责任准备金的计算实验一生存分布与生命表实验目的:通过本次实验使学生学会如何利用Excel软件来计算各类死亡概率、生存概率及一些其它的生命表函数。
实验内容:Excel的基本用法;中国人寿保险业经验生命表(1990-1993)非养老金业务(混合表)(CL3)的输入;利用中国人寿保险业经验生命表(1990-1993)非养老金业务(混合表)(CL3)计算整数年龄各种死亡概率、生存概率;利用中国人寿保险业经验生命表(1990-1993)非养老金业务(混合表)(CL3)计算分数年龄各种死亡概率、生存概率;利用中国人寿保险业经验生命表(1990-1993)非养老金业务(混合表)(CL3)计算各类生命表函数。
实验步骤:1、在Excel输入中国人寿保险业经验生命表(1990-1993)非养老金业务(混合表)(CL3);2、利用生命表基础函数计算各整数年龄段的生存概率nx p 和死亡概率nx q 、x m n q 等。
如计算x 岁的人未来5年内死亡的概率,可以用5年内死亡人数比例来近似死亡概率,计算公式应为:55x x x xl l q l +-=。
先计算0岁的人未来5年内死亡的概率50q ,在单元格F2中输入公式“=(C2-C7)/C2”,按回车键得到结果;再拖动F2单元格右下角的填充柄,向下填充,就可以得到F 列所有整数年龄存活人在未来5年内的死亡概率。
结果如下图所示:其它两种死亡概率n x q 、x m n q 的计算方法类似。
3、在死亡均匀分布假设和常数死亡力假设的前提下计算分数年龄死亡率和生存率,,(0,1)t x tx q p t ∈。
比如计算死亡均匀分布假设下0.2x +的个体在未来0.5年内死亡的概率,公式为0.50.20.510.2xx xq q q +=-。