芳香性理论
- 格式:ppt
- 大小:292.00 KB
- 文档页数:17
有机化学基本理论主讲人:史达清3. 芳香性芳香性化合物的特点:(1)较高的碳/氢比例;(2)键长的平均化;(3)分子的共平面性;(4)共轭能;(5)特征光谱(在1H NMR 出现环电流,使环上质子化学位移移向低场);(6)化学性质(结构具有特殊稳定性,易被取代,不易被加成和氧化)。
芳香性的判据休克尔(Hückel)规则:在由sp2杂化碳原子组成的平面单环体系中,含有4n+2 个π 电子的体系将具有与惰性气体相类似的闭壳层结构,从而显示出芳香性。
在具体判断时,不能仅从4n+2 个π电子数进行判断。
一般要同时满足以下三个条件才具有芳香性:(1)闭环共轭体系;(2)成环的所有的原子在同一个平面上(即共平面) ;(3)4n+2 个π 电子举例:(1)环丙烯衍生物(2)环丁二烯衍生物(3)环戊二烯衍生物(4)环庚三烯衍生物(5)环辛四烯衍生物(6)轮烯类化合物其实对于单环共轭多烯,只有当成键轨道或非键轨道完全填充满电子时,才具有闭壳层结构。
如下图所示:(7)稠环芳烃一般,4n+2 规则只适用于平面单环体系,不适用于稠环体系。
对于稠环体系只能用分子轨道法经计算后确定成键轨道、非键轨道和反键轨道数目来看能否形成封闭的π 电子壳层而确定。
对较为简单的多环体系,其中没有三个以上的环所共用的原子,如果π 电子数为4n+2 ,则可以判别该体系是芳香性的。
(8)杂芳环化合物杂芳香性化合物是环上有杂原子取代的具有4n+2 个π 电子并显示芳香特点的化合物,它可以分为两类,一类是利用体系中杂原子上未共享电子对的一些化合物。
例如呋喃、噻吩、吡咯、噻唑、咪唑等。
这些化合物中的氧、氮或硫原子上的未共享电子对和二烯部分的四个π 电子结合得到一个 6 π 电子的4n+2 离域体系。
它们的芳香性大小是:噻吩>吡咯>呋喃。
另外一类是环上杂原子上的未共享电子对并未参与芳香性稳定化作用,例如吡啶、嘧啶等。
此外,还有一些以氮为中心原子的周边共轭体系,例如环[3.2.2]嗪、环[4.4.3]嗪也都是稳定的芳香性化合物。
芳香性的判断1931年,德国化学家休克尔将分子轨道(MO )理论推广到共轭体系的简单有机分子,提出了简单有用的休克尔分子轨道(HMO )理论。
通过HMO 理论计算,推导出著名的(4n+2)规则----休克尔规则。
一、休克尔规则休克尔规则最一般的表述如下:在完全共轭的平面单环体系中,如果环中参与离域的π电子数为(4n+2)个(n=0,1,2,……),则该体系具有芳香性。
例1:下列体系均具有芳香性:1、环丙烯正离子:≡(n=0)2、环丁二烯双正离子:≡3、环丁二烯双负离子:≡4、环戊二烯负离子:≡5、苯:≡6、环庚三烯正离子: ≡7、环辛四烯双正离子: ≡8、环辛四烯双负离子: ≡二、休克尔规则的导出1、休克尔分子轨道理论分子轨道理论是用来解释共价键形成过程的理论之一。
分子轨道理论认为:共价键的形成是成键原子的原子轨道(AO )相互接近、相互作用而重新组成整体的分子轨道(MO )的结果,分子轨道是成键原子的能量相近、对称性相同的原子轨道发生最大重叠而形成的。
分子轨道理论是从分子的整体出发考虑成键过程的,成键电子不再固定在两个成键原子之间,而是分布到整个分子当中,即成键电子不再是定域的,而是离域的。
因此,用分子轨道理论描述离域体系更为恰当。
分子轨道理论描述共价键的形成过程过于复杂,休克尔对此进行了简化。
休+ - - + + + - -克尔认为:在离域体系中,σ键是定域于两个成键原子之间的,但π键是离域的,而化学性质主要与π键有关,这样我们就可以只关注由p 原子轨道组合形成的π分子轨道得到的π键。
这种只考虑π键的分子轨道理论就称为休克尔分子轨道理论(HMO )。
也就是说,HMO 为简化了的MO 。
例如,苯分子形成过程的休克尔分子轨道能级图如下:*6π*4π *5π6个p 轨道(AO ) 2π3π1π基态时,6个p 电子分成3对,分别填入3个能量较低的成键分子轨道1π、2π和3π中,而3个能量较高的反键分子轨道是全空的。
竞赛辅导讲义芳香性及其理论1865年,德国化学家凯库勒提出了著名的苯分子的正六边形环状结构式,并正式引入“芳香性”这一概念来描述苯及与苯有关的化合物的物理、化学性质。
此后芳香化学引起了人们极大的兴趣。
随着测试技术和量子化学的发展,人们对芳香性的认识逐步深化。
有关芳香性理论的研究一直是有机化学家、结构化学家和理论化学家的主要研究课题之一。
一、芳香性的涵义芳香性(aromaticity)是一个理论概念,其涵义随理论的发展而不断深化。
芳香性是有机化学中最难准确表述的概念之一。
一般所谓的芳香性分子具有以下几个特点:1、C/H比例高芳香性分子大多具有较高的C/H原子比。
从C/H原子比来看,芳香性分子属于高度不饱和分子。
例如:苯(C6H6)的C/H原子比为1﹕1;萘(C10H8)的C/H原子比为1.25﹕1;富勒烯(C60、C70)的C/H原子比甚至为∞。
而脂肪族分子,除乙炔(C2H2)、丁二炔(C4H2)等少数几个以外,绝大多数C/H原子比教低。
2、键长均一化芳香性分子中碳碳单键与碳碳双键键长有趋于一致的倾向,极端情况为苯分子。
X-射线衍射测定表明苯分子中碳碳键并无单双键之别,所有的碳碳键长均为0.1395nm,介于普通的碳碳单键键长(0.154nm)和碳碳双键键长(0.135nm)之间。
3、分子平面化芳香性分子的一个显著特征就是芳环上的组成原子都处在一个平面或接近一个平面内。
虽然平面分子不一定就是芳香性分子,但芳香性分子总是要求分子具有一定程度的平面性。
4、化学性质“反常”化不饱和分子的典型化学性质就是容易发生加成反应。
芳香性分子虽然属高度不饱和分子,却表现出“反常”的化学性质,即难以进行加成反应,更发生易取代反应,而后者正是饱和分子的典型化学性质。
5、π电子离域化通过氢化热或燃烧热的测定,芳香性分子的能量比非芳香性分子的能量低得多,即芳香性分子具有特殊的稳定性。
人们引入离域能DE(delocalization energy)或共振能RE(resonance energy)的概念来定量地表示芳香性的强弱:DE=E定域-E离域式中,E定域代表假想的定域的环多烯分子的能量,E离域代表离域的芳香性分子的能量。