国赛数学建模基础
- 格式:pptx
- 大小:215.38 KB
- 文档页数:12
2023年国赛数学建模d题
以下是2023年国赛数学建模d题,供您参考:
1.一个自行车车队计划进行一次长途骑行,总路程为200公里。
每
个队员的骑行速度不同,车队的速度由最慢的队员决定。
假设车队中的队员骑行速度在5-15公里/小时之间均匀分布,请问车队完成整个骑行所需的最短时间是多少?
2.一家快递公司需要在规定时间内将货物送达目的地。
假设快递公
司有n辆卡车,每辆卡车的运输速度不同,且运输速度在v1到v2之间均匀分布。
如果将所有卡车按照其运输速度从慢到快排列,那么最慢的卡车将决定整个运输队伍的速度。
快递公司希望找到一种最优的卡车排列方式,使得整个运输队伍的平均运输速度达到最大。
请设计一个数学模型来解决这个问题。
3.一个公司有n个销售代表,每个销售代表每个月可以完成一定数
量的销售任务,且完成销售任务的数量在区间[a, b]之间均匀分布。
如果将所有销售代表按照其销售能力从低到高排列,那么销售能力最低的销售代表将决定整个销售团队的销售业绩。
公司希望找到一种最优的销售代表排列方式,使得整个销售团队的平均销售业绩达到最大。
请设计一个数学模型来解决这个问题。
4.一个城市有n个居民区,每个居民区的居民数量不同。
居民区之
间的距离也不同,且已知每个居民区到市中心的最短距离。
居民们可以选择不同的交通方式前往市中心,每种交通方式的费用和
时间也不同。
城市管理者希望找到一种最优的交通方式组合,使得所有居民到达市中心的总费用最小。
请设计一个数学模型来解决这个问题。
1. 问题描述:某城市的交通网络由多个路口和道路组成。
每个路口都有一个繁忙程度指标,表示该路口的交通流量。
现在需要选取一个路口作为交通枢纽,使得离该路口最近的其他路口的平均距离最短。
请设计一个数学模型,并找出最佳的交通枢纽路口。
2. 问题描述:某公司有多个产品线,每个产品线的市场需求量不同,并且不断变化。
公司想要确定产量的分配策略,使得总成本最小。
已知每个产品线的生产成本和市场需求,以及各个产品线的最大产能。
请设计一个数学模型,并确定最优的产量分配方案。
3. 问题描述:一家快递公司需要设计一个最优的快递路线,以便在规定时间内完成所有快递的派送任务。
已知快递员的工作时间、快递的数量和派送地点之间的距离。
请建立一个数学模型,确定最佳的快递路线,使得总路程最短。
4. 问题描述:某公司的生产线上有多个工序,每个工序的加工时间和工人数量都不同。
公司想要确定每个工序的工人数量,以保证整个生产线的产量最大。
请设计一个数学模型,并找出最佳的工人分配方案。
5. 问题描述:某城市的垃圾处理中心需要合理安排垃圾运输车辆的路线,以最小化运输成本。
已知垃圾产生的位置、垃圾处理中心的位置、路网的拓扑结构以及各路段的运输成本。
请建立一个数学模型,确定最佳的垃圾运输车辆路线,使得总运输成本最小。
2023数学建模国赛题目大全一、引言数学建模国赛是一个全国性的比赛,旨在鼓励培养学生的创新精神和解决实际问题的能力。
每年都会发布一系列的题目供参赛选手选择,并在规定的时间内完成题目所给出的任务。
本文将为大家介绍2023年数学建模国赛的题目大全,希望能对参赛选手有所帮助。
二、2023数学建模国赛题目大全1. 风险管理中的数学模型应用本题要求参赛选手通过建立数学模型,对风险管理中可能遇到的问题进行分析和预测,提出有效的解决方案。
2. 医疗健康大数据分析选手需要使用数学建模的方法,对医疗健康大数据进行分析,挖掘出其中的有用信息,并提出相应的解决方案。
3. 交通运输优化问题此题要求参赛选手通过数学建模,对城市交通运输系统进行优化设计,以减少拥堵和提高效率。
4. 电子商务评台用户行为分析选手需要使用数学模型的方法,分析电子商务评台用户的行为特征,以改善用户体验,提高评台的转化率。
5. 能源领域的可持续发展分析本题要求选手通过数学建模的方式,分析能源领域的可持续发展问题,提出相应的解决方案,促进能源行业的健康发展。
6. 环境保护中的数学建模应用此题目需要选手运用数学建模的方法,分析环境保护中可能出现的问题,提出有效的环境保护方案,保护生态环境。
7. 金融风险管理中的数学模型应用选手需要针对金融领域中的风险管理问题,建立相应的数学模型,给出有效的风险控制建议。
8. 工业制造中的智能优化问题本题要求参赛选手通过数学建模的方式,分析工业制造中可能出现的智能优化问题,提出相应的解决方案,提高生产效率。
9. 社会舆论分析及舆情预测此题目需要选手运用数学建模的方法,分析社会舆论中的特点和规律,给出舆情预测和应对策略。
10. 教育领域中的数据分析与决策选手需要通过数学建模的方式,对教育领域中的数据进行分析,给出相应的决策建议,促进教育事业的健康发展。
三、结语以上便是2023数学建模国赛的题目大全,每一个题目都涉及到了实际生活中的问题,并需要选手们通过数学建模的方式给出相应的解决方案。
数学建模国赛培训计划方案一、培训目标本次培训的目标是帮助参赛学生更好地掌握数学建模相关知识和技能,提高其解决实际问题的能力和水平,为参加数学建模国赛做好充分准备。
二、培训内容1. 数学建模基础知识的讲解与复习(1)概率统计基础知识(2)微积分基础知识(3)线性代数基础知识(4)动力系统基础知识(5)数理逻辑基础知识(6)数学建模基本方法和解题技巧2. 组队训练(1)学生分组,模拟国赛实际情况,进行团队合作训练(2)模拟真实赛题进行解题训练(3)指导学生在限定时间内解题,并进行中期总结和讲解3. 实际案例分析(1)结合实际案例、行业问题进行分析和讨论(2)指导学生应用数学建模方法解决实际问题(3)进行案例分析实践,提高学生的实际应用能力4. 模拟赛训练(1)组织模拟比赛,提高学生的应试能力和心理素质(2)对模拟比赛结果进行分析和总结,发现问题并进行针对性指导5. 名师讲座(1)邀请数学建模领域的知名专家进行讲座(2)专家传授解题技巧和经验,提高学生的解题能力6. 技术论坛(1)组织学生进行技术论坛,自由讨论解题思路和方法(2)培养学生分析问题和思考的能力(3)增强学生的团队协作意识和交流能力三、培训计划1. 第一阶段时间:5天内容:数学建模基础知识讲解与复习活动安排:第一天:概率统计基础知识讲解第二天:微积分基础知识讲解第三天:线性代数基础知识讲解第四天:动力系统基础知识讲解第五天: 数理逻辑基础知识讲解2. 第二阶段时间:5天内容:组队训练活动安排:第一天:学生分组,进行团队合作训练第二天:模拟真实赛题进行解题训练第三天:指导学生在限定时间内解题,并进行中期总结和讲解第四天:继续进行模拟赛训练第五天:模拟赛总结和规划下一步训练计划3. 第三阶段时间:5天内容:实际案例分析活动安排:第一天:结合实际案例、行业问题进行分析和讨论第二天:指导学生应用数学建模方法解决实际问题第三天:进行案例分析实践,提高学生的实际应用能力第四天:对之前案例分析结果进行总结和归纳第五天:名师讲座,邀请专家进行案例分析和经验分享4. 第四阶段时间:5天内容:模拟赛训练活动安排:第一天:组织模拟比赛,提高学生的应试能力和心理素质第二天:对模拟比赛结果进行分析和总结第三天:对学生的解题能力进行分析,发现问题并进行针对性指导第四天:继续进行模拟赛训练第五天:模拟赛总结和规划下一步训练计划5. 第五阶段时间:5天内容:名师讲座和技术论坛活动安排:第一天:邀请数学建模领域的知名专家进行讲座第二天:专家传授解题技巧和经验第三天:组织学生进行技术论坛,自由讨论解题思路和方法第四天:培养学生分析问题和思考的能力第五天:增强学生的团队协作意识和交流能力四、培训方法1. 理论讲解与实践相结合通过理论讲解和实际案例分析相结合的方式,培养学生的解决实际问题的能力。
数学建模国赛要求
1. 数学建模国赛要求团队合作呀!就像一场足球比赛,大家得齐心协力才能踢好。
想想看,要是每个人都各干各的,那能取得好成绩吗?团队里的每个人都要发挥自己的优势,共同为了目标努力。
2. 国赛可是很重视创新思维的哟!这就好比盖房子,不能老是用老一套方法,得有点新点子来让房子更独特。
你要是没点创新,怎么能在众多队伍中脱颖而出呢?
3. 对问题的深入理解也是国赛的关键要求呢!就像解一道复杂的谜题,不深入探究怎么能找到答案。
难道你只想浮于表面,不去钻研吗?
4. 编程能力在国赛中可不能差呀!好比战士手中的武器,没有好的编程技能怎么去战斗。
如果你编程不行,那不是很吃亏嘛!
5. 清晰的逻辑表达也很重要哇!如同讲一个精彩的故事,得有条有理别人才能听明白。
要是你乱七八糟地讲,谁能懂你的意思呢?
6. 时间管理在国赛里可不是开玩笑的!这就像跑步比赛,要合理分配时间才能跑完全程。
你总不能慢悠悠的,最后时间不够了吧?
7. 严谨的态度也是必须的呀!相当于做精细的手工活,一点差错都不能有。
要是马马虎虎的,那可不行!
8. 保持学习和进步的心更是不能少嘞!就像攀登高峰,要不断向上爬才能看到更美的风景。
你可不能满足于现状呀!总之,要想在数学建模国赛中取得好成绩,这些要求都得认真对待,全力以赴呀!。
数学建模国赛题目一、关于校园生活类- 逻辑:同学们在食堂排队打饭的时候,总是希望能尽快拿到食物。
这里面涉及到食堂窗口的数量、每个窗口打饭的速度(比如打不同菜品的复杂程度、工作人员的熟练程度等)、同学们到达食堂的时间分布等因素。
可以通过建立数学模型,来分析怎样安排窗口的服务或者调整同学们的排队方式,能让整体的排队等待时间最短,就像指挥一场让大家都能快速填饱肚子的战斗。
- 逻辑:在宿舍里,每个舍友用电用水的习惯都不太一样。
有人喜欢长时间开着电脑,有人洗澡特别久,水电费总是一笔糊涂账。
通过收集每个舍友的电器使用时长、用水次数和时长等数据,建立数学模型,来找出到底谁在水电费上贡献最大,就像侦探破案一样,揭开隐藏在宿舍里的“耗能大户”的神秘面纱。
二、环境保护类- 逻辑:城市里种了很多小树苗来美化环境,但是有些树苗活不了多久就夭折了。
这可能和种植的土壤质量、浇水的频率和量、周围的空气污染程度、光照等因素有关。
我们要建立一个数学模型,就像给小树苗当医生一样,找出影响它们存活的关键因素,然后提出提高树苗存活率的最佳方案,让城市里能有更多茁壮成长的绿树。
- 逻辑:城市每天都会产生大量的垃圾,这些垃圾要从各个小区、街道收集起来,然后运到垃圾处理厂。
但是垃圾车的行驶路线、垃圾收集点的分布、不同区域垃圾产量的不同等因素都会影响垃圾处理的效率。
我们要像给垃圾规划一场旅行一样,建立数学模型找到垃圾从产生地到处理厂的最优路径,让垃圾能够高效地被处理,减少对城市环境的污染。
三、经济与商业类- 逻辑:校园小卖部里的商品琳琅满目,但是怎么给这些商品定价可是个大学问。
如果定价太高,同学们就不买了;定价太低,又赚不到钱。
这里面要考虑商品的进价、同学们的消费能力、不同商品的受欢迎程度等因素。
通过建立数学模型,就像寻找宝藏的密码一样,找到能让小卖部利润最大化的定价策略。
- 逻辑:现在有很多网红店,门口总是排着长长的队伍。
这背后可能是因为独特的营销策略、美味的食物或者时尚的装修。
邯郸学院本科毕业论文题目全国大学生数学建模竞赛常用建模方法探讨学生柴云飞指导教师闫峰教授年级2009级本科专业数学与应用数学二级学院数学系(系、部)邯郸学院数学系2013年6月郑重声明本人的毕业论文是在指导教师闫峰的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.论文经“中国知网”论文检测系统检测,总相似比为5.80%.毕业论文作者(签名):年月日全国大学生数学建模竞赛常用建模方法探讨摘要全国大学生数学建模竞赛作为全国高校规模最大的基础性学科竞赛,越来越受到人们的重视,所以建模竞赛的方法也就变得尤为重要.随着竞赛的不断发展,赛题的开放性逐步增大,一道赛题可用多种解法,各种求解的算法有时会相互融合,同时也在向大规模数据处理方向发展,这就对选手的能力提出了更高的要求.由于建模方法种类众多,无法一一介绍,所以本文主要介绍了四种比较常用的数学建模竞赛方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论方法,并结合历年赛题加以说明.关键词:数学建模竞赛统计学方法数学规划图论Commonly Used Modeling Method ofChina Undergraduate Mathematical Contest in ModelingChai yunfei Directed by Professor Yan fengABSTRACTThe China undergraduate mathematical contest in modeling has been attention by more and more people as a basic subject of the largest national college competition. The method of modeling competition has become more and more important. Open questions gradually increased with the development of competition. Most of the games can be solved by lots of solutions. Sometimes these methods can be used together. And there is also a lot of data which puts forward higher requirement on the ability of players. The modeling methods is too numerous to mention, so this article mainly four kinds Commonly used modeling method are introduced that differential and difference equations modeling method, Mathematical programming modeling method, Statistics modeling method, graph theory and interprets with calendar year’s test questions.KEY WORDS:Mathematical contest in modeling Statistics method Mathematical programming Graph theory目录摘要 (I)英文摘要 (II)前言 (1)1微分方程与差分方程建模 (2)1.1微分方程建模 (2)1.1.1微分方程建模的原理和方法 (2)1.1.2微分方程建模应用实例 (3)1.2差分方程建模 (4)1.2.1 差分方程建模的原理和方法 (4)1.2.2 差分方程建模应用实例 (5)2数学规划建模 (5)2.1线性规划建模的一般理论 (6)2.2线性规划建模应用实例 (7)3统计学建模方法 (8)3.1聚类分析 (8)3.1.1 聚类分析的原理和方法 (8)3.1.2 聚类分析应用实例 (8)3.2回归分析 (9)3.2.1 回归分析的原理与方法 (9)3.2.2 回归分析应用实例 (10)4图论建模方法 (10)4.1两种常见图论方法介绍 (11)4.1.1 模拟退火法的基本原理 (11)4.1.2 最短路问题 (11)4.2图论建模应用实例 (12)5小结 (13)参考文献 (13)致谢 (14)前言全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛.参赛者需要根据题目要求,在三天时间内完成一篇包括模型假设、模型建立和求解、计算方法的设计和实现、模型结果的分析和检验、模型的改进等方面的论文.通过参加竞赛的训练和比赛,可以提高学生用数学方法解决实际问题的意识和能力,而且在培养团队精神和撰写科技论文等方面都会得到十分有益的锻炼.竞赛题目的涉及面比较宽,有工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等.竞赛选手不一定预先掌握深入的专业知识,而只需要学过高等数学的相关课程即可,并且题目具有较大的灵活性,便于参赛者发挥其创造能力.近年来,竞赛题目包含的数据较多,手工计算一般不能实现,所以就对参赛者的计算机能力提出了更高的要求,如2003年B题,某些问题的解决需要使用计算机软件;2001年A题,问题的数据读取需要计算机技术,并且对于给出的图像,需要用图像处理的方法获得;再如2004年A题则需要利用数据库数据,数据库方法,统计软件包等等.竞赛题目的总体特点可大致归纳如下:(1)实用性不断加强,问题和数据来自于实际,解决方法需要切合实际,模型和结果可以应用于实际;(2)综合性不断加强,解法多样,方法融合,学科交叉;(3)数据结构越来越复杂,包括数据的真实性,数据的海量性,数据的不完备性,数据的冗余性等;(4)开放性也越来越突出,题意的开放性,思路的开放性,方法多样,结果不唯一等.总体来说,赛题向大规模数据处理方向发展,求解算法和各类现代算法相互融合.纵观历年的赛题,主要用到的建模方法有:初等数学模型、微分与差分方程建模、组合概率、数据处理、统计学建模、计算方法建模、数学规划、图论方法、层次分析、插值与拟合、排队论、模糊数学、随机决策、多目标决策、随机模拟、计算机模拟法、灰色系统理论、时间序列等.本文不一一列举竞赛题目中涉及的所有方法,只是重点讨论其中一些比较常用的方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论建模方法,并结合案例说明建模方法的原理及应用.1 微分方程与差分方程建模在很多竞赛题目中,常常会涉及很多变量之间的关系,找出它们之间的函数关系式具有重要意义.可在许多实际问题中,我们常常不能直接给出所需要的函数关系,但可以得到含有所求函数的导数(或微分)或差分(即增量)的方程,这样的方程称为微分方程或差分方程. 建立微分方程或差分方程的数学模型是一种重要的建模方法.如1996年A 题“最优捕鱼策略”,1997年A 题“零件参数设计”,2003年A 题“SARS 的传播”,2007年A 题“中国人口增长预测”,2009年A 题“最优捕鱼策略”等赛题中,都用到了这种方法.1.1 微分方程建模1.1.1 微分方程建模的原理和方法一般来说,任何时变问题中随时间变化而发生变化的量与其它一些量之间的关系经常以微分方程的形式来表现.例1.1 有一容器装有某种浓度的溶液,以流量1v 注入该容器浓度为1c 的同样溶液,假定溶液立即被搅拌均匀,并以2v 的流量流出混合后的溶液,试建立反映容器内浓度变化的数学模型.解 注意到溶液浓度=溶液体积溶液质量,因此,容器中溶液浓度会随溶质质量和溶液体积变化而发生变化.不妨设t 时刻容器中溶质质量为()t s ,初始值为0s ,t 时刻容器中溶液体积为()t v ,初始值为0v ,则这段时间()t t t ∆+,内有⎩⎨⎧∆-∆=∆∆-∆=∆t v t v V t v c t v c s 212211, (1) 其中1c 表示单位时间内注入溶液的浓度,2c 表示单位时间内流出溶液的浓度,当t ∆很小时,在()t t t ∆+,内有≈2c =)()(t V t s tv v V t s )()(210-+. (2) 对式(1)两端同除以t ∆,令0t ∆→,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00212211)0(,)0(V V s s v v dtdV v c v c dt ds . (3) 即所求问题的微分方程模型.虽然它是针对液体溶液变化建立的,但对气体和固体浓度变化同样适用.实际应用中,许多时变问题都可取微小的时间段t ∆去考察某些量之间的变化规律,从而建立问题的数学模型,这是数学建模中微分方程建模常用手段之一.常用微分方程建模的方法主要有:(1)按实验定律或规律建立微分方程模型.此种建模方法充分依赖于各个学科领域中有关实验定律或规律以及某些重要的已知定理,这种方法要求建模者有宽广的知识视野,这样才能对具体问题采用某些熟知的实验定律.(2)分析微元变化规律建立微分方程模型.求解某些实际问题时,寻求一些微元之间的关系可以建立问题的数学模型.如例1.1中考察时间微元t ∆,从而建立起反应溶液浓度随时间变化的模型.此建模方法的出发点是考察某一变量的微小变化,即微元分析,找出其他一些变量与该微元间的关系式,从微分定义出发建立问题的数学模型.(3)近似模拟法.在许多实际问题中,有些现象的规律性并非一目了然,或有所了解亦是复杂的,这类问题常用近似模拟方法来建立问题的数学模型.一般通过一定的模型假设近似模拟实际现象,将问题做某些规范化处理后建立微分方程模型,然后分析、求解,并与实际问题作比较,观察模型能否近似刻画实际现象.近似模拟法的建模思路就是建立能够近似刻画或反映实际现象的数学模型,因此在建模过程中经常做一些较合理的模型假设使问题简化,然后通过简化建立近似反映实际问题的数学模型.1.1.2 微分方程建模应用实例例1.2(2003年高教社杯全国大学生数学建模竞赛A 题) SARS 传播的预测. 2003年爆发的“SARS ”疾病得到了许多重要的经验和教训,使人们认识到研究传染病的传播规律的重要性.题目给出了感病情况的三个附件,要求对SARS 的传播建立数学模型:(1)对SARS 的传播建立一个自己的模型,并说明模型的优缺点;(2)收集SARS 对经济某个方面影响的数据,建立相应的数学模型并进行预测.问题求解过程分析 由于题目具有开放性,故选择文献[1]中的求解思路分析. 传染病的传播模式可近似分为自由传播阶段和控后阶段,然后将人群分为易感者S ,感病者I ,移出者R 三类.由三者之间的关系可得到下列微分方程:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=-=-=NR I S hI dt dR hI kIS dt dI kISdt dS , 利用附件中给出的数据,可以将上述方程变形为I hI kNI dtdI λ=-=, 其中h kN -=λ,其解为t e I t I λ-=0)(.其中0I 为初始值.但此模型只适用于病例数与总人口数具有可比性的情况,当病例数远小于总人口数时,感病人数将随时间以指数增长.这是按实验定律或规律建立的微分方程模型.为进一步改进模型,用计算机跟踪病毒的个体传播情况,又建立计算机模拟模型.然后用计算机模拟北京5月10日之前SARS 的传播情况,并对5月10日以后的传播情况进行预测.但是得到的有效接触率与实际统计数据有所偏差,所以统计数据,为参数的确定寻求医学上的支持,并以随机模拟取代完全确定性的模拟,对原模型进行改进,建立随机模拟模型.通过计算机编程,产生正态分布的随机数,并对传染情况进行500次模拟,即可进行预测,并可得出对SARS 疫情控制提出的相应建议.1.2 差分方程建模1.2.1 差分方程建模的原理和方法差分方程在数学建模竞赛中应用的频率极高,所以要对这种方法引起足够的重视.它针对要解决的目标,引入系统或过程中的离散变量.具体方法是:根据实际的规律性质、平衡关系等,建立离散变量所满足的关系式,从而建立差分方程模型.差分方程可以分为不同的类型,如一阶和高阶差分方程,常系数和变系数差分方程,线性和非线性差分方程等等.建立差分方程模型一般要注意以下问题:(1)注意题中的离散变化量,对过程进行分析,尤其要注意形成变化运动过程的时间或距离的分化而得到离散变量;(2)通过对具体变化过程的分析,列出满足题意的差分方程,其中入手点是找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程.1.2.2差分方程建模应用实例例1.3(2007年高教社杯全国大学生数学建模竞赛A题)中国人口增长预测.题目要求从中国的实际情况和人口增长的特点出发,参考附录中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测,特别要指出模型中的优点与不足之处.问题求解过程分析由于题目具有开放性,故选择文献[2]中的求解思路分析.通过分析题中相关的数据,考虑到我国近年来人口发展的总趋势,因为涉及到人口的增长和变换,所以可以先用微分方程来建立模型,并对我国人口增长的中短期和长期趋势做出预测.首先,根据灰色系统理论,使用灰色关联分析模型法对人口系统结构进行关联分析,找出影响人口增长的主要因素;其次使用年龄推算法进行短期预测.在建立和求解长期预测模型时,根据人口阻滞增长模型(Logistic模型),可以考虑对中国人口老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素建立新的人口增长的差分方程模型.但是它仅给出了人口总数的变化规律,反映不出各类人口的详细信息,所以我们需要建立离散化的模型,并进一步可以得到全面系统地反应一个时期内人口数量状况的差分方程,可以用微分和差分方程理论来表现和模拟人口数量的变化规律.从而对人口分布的状况、变化趋势、总体特征等有更加详细和科学的了解.在模型的求解过程中,用到了MATLAB软件,并做参数估计,利用所得结果和题目给出的近五年来的人口数据,对我国人口发展趋势进行了预测,得到了在老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素影响下,未来我国人口发展预测情况.2 数学规划建模数学规划是指在一系列条件限制下,寻求最优方案,使得目标达到最优的数学模型,它是运筹学的一个重要分支.数学规划的内容十分丰富,包括许多研究分支,如:线性规划、非线性规划、整数规划、二次规划、0-1规划、多目标规划、动态规划、参数规划、组合优化、随机规划、模糊规划、多层规划问题等.在1993年A 题“非线性交调的频率设计”,1993年B 题“足球队排名”,1995年A 题“飞行管理问题”,1996年B 题“节水洗衣机”,1997年A 题“零件的参数设计”,1998年A 题“一类投资组合问题”,1999年B 题“钻井布局”,2001年B 题“公交车调度问题”,2002年A 题“车灯线光源的优化”,2006年A 题“出版社书号问题”,2007年B 题“城市公交线路选择问题”等赛题中,都用到了规划的方法.在此以线性规划为例,对规划的方法进行探讨.2.1 线性规划建模的一般理论线性规划建模方法主要用于解决生产实际中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法.一般的优化问题是指用“最好”的方式,使用或分配有限的资源即劳动力、原材料、机器、资金等,使得费用最小或利润最大.优化模型的一般形式为:()m ax m in 或 ()x f z = (4)().0..≤x g t s ()m i ,,2,1 = (5)()()12,,T n x x x x =,.由(4)、(5)组成的模型属于约束优化.若只有(4)式就是无约束优化.()x f 称为目标函数,()0g x ≤称为约束条件.在优化模型中,如果目标函数()x f 和约束条件中的()g x 都是线性函数,则该模型称为线性规划.建立实际问题线性规划模型的步骤如下:(1)设置要求解的决策变量.决策变量选取得当,不仅能顺利地建立模型而且能方便地求解,否则很可能事倍功半.(2)找出所有的限制,即约束条件,并用决策变量的线性方程或线性不等式来表示.当限制条件多,背景比较复杂时,可以采用图示或表格形式列出所有的已知数据和信息,从而避免“遗漏”或“重复”所造成的错误.(3)明确目标要求,并用决策变量的线性函数来表示,标出对函数是取极大还是取极小的要求.需要特别说明的是,要使用线性规划方法来处理一个实际问题,必须具备下面的条件:(1)优化条件:问题的目标有极大化或极小化的要求,而且能用决策变量的线性函数来表示.(2)选择条件:有多种可供选择的可行方案,以便从中选取最优方案.(3)限制条件:达到目标的条件是有一定限制的(比如,资源的供应量有限度等),而且这些限制可以用决策变量的线性等式或线性不等式表示出来.此外,描述问题的决策变量相互之间应有一定的联系,才有可能建立数学关系,这一点自然是不言而喻的.线性规划模型的求解可用图解法或单纯形法.随着计算机的普及和大量数学软件的出现,可以利用现成的软件MATLAB或LINGO等求解,在此不再叙述.2.2线性规划建模应用实例例2.1(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目给出了美国某艾滋病医疗试验机构公布的两组数据,数据涉及到了病人CD4和HIV的浓度含量的测试结果.根据所给的资料需要参赛者完成以下问题:(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间;(2)利用附件2的数据,评价4种疗法的优劣(仅以4CD为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间;(3)如果病人需要考虑4种疗法的费用,对评价和预测有什么影响.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.首先对题目所给数据进行分析,考虑到治疗的效果与患者的年龄有关,将患者按年龄分组,如25~35岁及45岁以上4组.每组中按照4种疗法和4个25岁,45~~14岁,35治疗阶段(如1020周,4030周),构造16个决策单元.取4~~~~0周,2010周,30种药品量为输入,治疗各个阶段末患者的4CD值的比值为输出.CD值与开始治疗时4然后建立相应的数学模型,利用相对有效性评价方法,建立分式规划模型并经过变换,转化为线性规划模型求解,对各年龄组患者在各阶段的治疗效率进行评价.计算结果:对第1年龄组疗法2和4在整个治疗中效率较高,在第4阶段仍然有效;对第2年龄组疗法1在第1,2阶段有效;对第3年龄组疗法1,2,3在第1阶段有效;对第4年龄组疗法1,2在第1,2阶段有效.表明只有2514岁的年4种轻患者,才能在治疗的最~后阶段仍然有有效的疗法.随后,由线性规划模型的对偶形式建立预测模型,对各年龄组各种疗法下一阶段的疗效进行预测.若由某决策单元得到的实际输出大于预测输出,则该决策单元相对有效;反之,说明该种疗法对该组患者在治疗的未来阶段不再有效,应该转换疗法.3 统计学建模方法在数学建模竞赛中,常常会涉及到大量的数据,因此,我们就需要用统计学建模方法对这些数据进行处理.此类方法主要包括统计分析、计算机模拟、回归分析、聚类分析、数据分类、判别分析、主成分分析、因子分析、残差分析、典型相关分析、时间序列等.如2004年A题“奥运会临时超市网点设计问题”,2004年B题“电力市场的输电阻塞管理问题”,2007年A题“人口增长预测问题”,2008年B题“大学学费问题”,2012年A题“葡萄酒的评价”等都用到了这种建模方法.在此选取其中两类方法进行阐述.3.1聚类分析3.1.1聚类分析的原理和方法该方法说的通俗一点就是,将n个样本,通过适当的方法选取m聚类中心,通过研究各样本和各个聚类中心的距离,选择适当的聚类标准,通常利用最小距离法来聚类,从而可以得到聚类.结果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图.这种模型的的特点是直观,容易理解.聚类分析的类型可分为:Q型聚类(即对样本聚类)和R型聚类(即对变量聚类).通常聚类中有相似系数法和距离法两种衡量标准.聚类方法种类多样,有可变类平均法、中间距离法、最长距离法、利差平均和法等.在应用时要注意,在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理.主要的方法步骤大致如下:(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵;(3)重新计算类间距离,得到衡量矩阵;(4)重复第2步,直到只剩下一个类.3.1.2聚类分析应用实例例3.1(2012年高教社杯全国大学生数学建模竞赛A题)葡萄酒的评价.题目的附件中给出了某一年份一些葡萄酒的评价结果,和该年份这些葡萄酒的和酿酒葡萄的成分数据.要求参赛者建立数学模型解决以下问题:(1)分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信;(2)根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级;(3)分析酿酒葡萄与葡萄酒的理化指标之间的联系;(4)分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量.问题求解过程分析由于题目具有开放性,故选择文献[4]中的求解思路分析.由于给定了酿酒葡萄的理化指标,首先可将附录2和附录3中的一些数据进行处理.并可以据此对各种酿酒葡萄进行聚类分析,但是,由于题目中所给的数据庞大,所以可通过主成分分析法,简化并提取大部分有效信息,再用聚类分析对酿酒葡萄进行分级.最后根据酿酒葡萄对应葡萄酒质量的平均值大小进行比较,排序分级.接下来针对问题中分析酿酒葡萄与葡萄酒理化指标之间的联系,及上面整理好的数据,采用回归分析原理,在SPSS中得到酿酒葡萄与葡萄酒的理化指标之间的联系.再通过相关分析,得出相应的相关系数,从而得到相应的判断结论.在分析酿酒葡萄与葡萄酒的理化指标之间的联系时,还用到了多元线性回归分析.该模型用于生活实践中,也可以解决很多实际问题.3.2回归分析回归分析是利用数据统计原理,对大量数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程,并加以外推,用于预测今后的因变量的变化的分析方法.3.2.1回归分析的原理与方法回归分析是在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型;对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制.回归分析主要包括一元线性回归、多元线性回归、非线性回归.回归分析的主要步骤为:(1)根据自变量和因变量的关系,建立回归方程.(2)解出回归系数.(3)对其进行相关性检验,确定相关系数.(4)当符合相关性要求后,便可与具体条件结合,确定预测值的置信区间.需要注意的是,要尽可能定性判断自变量的可能种类和个数,并定性判断回归方程的可能类型.另外,最好应用高质量的统计数据,再运用数学工具和相关软件定量定性判断.3.2.2回归分析应用实例例3.2(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目同例2.1.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.问题2的解决就用到回归模型.首先分析数据知,应建立时间的一次与二次函数模型,并经过统计分析比较,确定哪种较好.所以可建立一个统一的回归模型,也可对每种疗法分别建立一个模型.以总体回归模型为例,分别用一次与二次时间函数模型进行比较,可知疗法3~1用一次模型较优,且一次项系数为负,即4CD在减少,从数值看疗法3优于疗法2和1;疗法4用二次模型较优,即4t左右达到最大.可以通过4条回归CD先增后减,在20曲线进行比较,显示疗法4在30周之前明显优于其它.最后再用检验法作比较,结果是疗法1与2无显著性差异,而疗法1与3,2与3,3与4均有显著性差异.4 图论建模方法图论建模方法在建模竞赛中也经常涉及,应用十分广泛,并且解法巧妙,方法灵活多变.如1990年B题“扫雪问题”,1991年B题“寻找最优Steiner树”,1992年B题“紧急修复系统的研制”,1993年B题“足球队排名”,1994年A题“逢山开路问题”,1994年B题“锁具装箱问题”,1995年B题“天车与冶炼炉的作业调度”,1997年B题“截断切割的最优排列”,1998年B题“灾情巡视最佳路线”,1999年B题“钻井布局”,2007年B题“城市公交线路选择问题”等都应用到了图论的方法.图论近几年来发展十分迅速,在物理、化学、生物学、地理学、计算机科学、信息论、控制论、社会科学、军事科学以及计算机管理等方面都有着广泛的应用.因此图论越来越受到了全世界数学界和工程技术界乃至经营决策管理者的重视.同时也成为了数学建模中一种十分重要的方法.图论问题算法很多,包括最短路、最大流、最小生成树、二分匹配、floyd、frim等.。
2023数学建模国赛题一、选择题(每题3分,共30分)下列函数中,最小正周期为π的是()A. y=sin2xB. y=cos2xC. y=tanxD. y=∣sinx∣若实数a,b满足a>b,则下列不等式一定成立的是()A. a2>b2B. ac2>bc2C. a+a1>b+b1D. ab<1已知loga2<logb2<0,则下列不等式成立的是()A. a>b>1B. b>a>1C. 0<a<b<1D. 0<b<a<1二、填空题(每题4分,共16分)已知等差数列{an}的前n项和为Sn,若a1=1,S5=15,则公差d= _______。
已知圆x2+y2=4与直线y=kx+b相切,且直线在y轴上的截距为2,则k= _______。
若a,b是两个不共线的向量,且AB⟶=2a+kb,CB⟶=a+b,CD⟶=−2a−b,则k= _______时,A,B,D三点共线。
三、解答题(共54分)1.(本题满分12分)已知函数f(x)=lnx−xa。
(1)求函数f(x)的单调区间;(2)若函数f(x)在[1,e]上的最小值为23,求实数a的值。
2.(本题满分14分)在ΔABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=41。
(1)求sinC的值;(2)求ΔABC的面积。
3.(本题满分14分)已知椭圆C:a2x2+b2y2=1(a>b>0)的离心率为23,且过点P(1,23)。
(1)求椭圆C的方程;(2)过点E(4,0)的直线l与椭圆C交于A,B两点,若线段AB的中点坐标为(m,n),求m的取值范围。
4.(本题满分14分)已知函数f(x)=31x3−21x2+cx+d有极值点x1,x2,且x1<x2,x1+2x2=0。
(1)求c的取值范围;(2)证明:f(x1)>41。