小学六年级数学:正反比例练习题
- 格式:doc
- 大小:35.00 KB
- 文档页数:5
六年级数学正反比例应用题)练习卷六年级数学正反比例应用题练卷1.计算题:如果200千克的花生可以榨出76千克的油,那么550千克的花生可以榨出多少千克的油?2.计算题:一个盐田需要晒2.4万吨盐,如果100千克的海水可以晒出4千克的盐,那么需要放多少万吨的海水?3.计算题:如果1000克的硫矿石含有625克的硫,那么38吨的这种矿石含有多少吨的硫?5.计算题:筑路队修建了9090米长的公路,前5天修建了450米,那么还需要几天才能完成余下的任务?6.计算题:测量小组把一根6米高的竹竿立在地上,测得它的影子长为7.2米,同时测得一幢建筑物的影子长为21.6米,求这幢建筑物的高度。
7.计算题:某车间6小时可以生产750个零件,那么要生产2500个同样的零件,需要几小时?8.计算题:一辆汽车原计划每小时行驶45千米,从甲城到乙城需要7.5小时,实际上3小时行驶了150千米,那么行驶完全程需要多少小时?9.计算题:汽车从A地开往B地,去时每小时行驶56千米,4小时到达,回来时每小时行驶64千米,那么需要几小时才能到达?10.计算题:汽车从甲地开往乙地,去时每小时行驶45千米,3小时到达。
如果要在2.5小时内返回出发地,每小时需要行驶多少千米?11.计算题:原来一批煤可以烧60天,每天烧煤量由4.2吨减少到3.6吨,现在可以烧多少天?12.计算题:铺12平方米需要309块砖,那么铺20平方米需要多少块砖?13.计算题:用面积是25平方分米的方砖铺地需要960块,那么用面积是16平方分米的方砖需要多少块?14.计算题:原计划40人工作,12天完成修路任务。
如果要在10天内完成,需要增加多少人?15.计算题:一架飞机以每小时420千米的速度,经过2.25小时从甲地到乙地。
回来时逆风飞行,速度比原来减低了七分之一,那么回到甲地比去时慢了几小时?16.计算题:甲乙两地相距551千米,一辆汽车从甲地开往乙地,7小时行驶了406千米,那么还需要几小时才能到达乙地?17.计算题:红星化工厂原计划每天要用12.5吨的煤,由于改进烧煤方法,每天节约20%。
正反比例练习题班级:姓名:成绩:一、判断题1.植树的成活率一定,植树的棵树和成活的棵树成正比例。
( )2.圆的面积和半径成正比例。
( )3.正方形的周长和边长成正比例。
( )4.圆柱体的高一定,底面半径与体积成正比例。
( )5.小明的年龄和她的妈妈的年龄成正比例。
( )6.圆锥体的高一定,体积和底面半径的平方成正比例。
( )7.总价一定,单价和数量成反比例。
()8..实际距离一定,图上距离与比例尺成正比例。
()9.正方体体积一定,底面积和高成反比例。
()10.订阅《辽沈晚报》的总钱数和分数成正比例。
()11、方砖的边长一定,要铺地面积和用砖块数成正比例。
()12、用瓷砖铺地,要用的砖数一定,铺地的面积和瓷砖的面积成正比例。
()13、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例。
()16、梯形的面积一定,高和上下底的和成反比例。
()17、圆的半径一定,圆的面积和兀不成比例。
()18、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例。
()19、南京到北京,所行驶的路程和速度不成比例。
()20、出盐率一定,盐的重量和盐水重量成正比例。
()21、正方形的边长和面积成正比例。
()22. y:7=x y和x成()比例。
23.圆柱德高一定,体积和底面积成()关系。
24.圆的周长和直径成()比例。
二、选择题1、因为14 X=2Y,所以X:Y=():(),X和Y成()比例。
2、因为X=2Y,所以X:Y=():(),X和Y成()比例。
3、下列各式中(a、b均不为0),a和b成正比例的是()。
A 、a×8=b×5B 、9a=6bC 、a×13 -1÷b= 0 D、a+710 =b4、下面不成比例的是( )。
A、正方形的周长和边长B、某同学从家到学校的步行速度和所用时间C、圆的体积和表面积5、如果y=15x, x和y成( )比例;如果y=X15, x和y成( )比例6、如果Y = 8X ,X 和Y 成()比例如果Y =X8,X 和Y 成()比例。
(完整)六年级正反比例实例练习题六年级正反比例实例练题
问题一
在某个比例中,正比例常数是4。
如果当x等于6时,y等于8,那么y是多少时,x等于10?
根据正比例的定义,我们可以得到以下比例关系式:
x y
- = -
6 8
再根据比例的性质,我们可以发现两个关键点:(6, 8) 和 (10, y)。
现在我们可以利用已知的关键点来求解未知的值:
6/8 = 10/y
通过交叉相乘的运算,我们可以得到:
6y = 80
最后,我们将上式解为y:
y = 80/6
因此,当x等于10时,y的值为13.33。
问题二
某公司的收入和投资之间存在着正反比例关系。
该公司的收入是100万美元,而投资是200万美元。
如果该公司的收入增加至150万美元,那么投资会减少到多少?
根据正反比例的定义,我们可以得到以下比例关系式:
收入投资
---- = ------
100万 200万
现在我们可以利用已知的比例关系来解决问题。
已知收入增加到150万美元,我们要求投资的值。
150/100 = 200/投资
通过交叉相乘的运算,我们可以得到:
150 * 投资 = 100 * 200
最后,我们将上式解为投资:
投资 = (100 * 200) / 150
因此,当收入增加到150万美元时,投资会减少到133.33万美元。
以上是关于六年级正反比例实例练习题的解答,希望对您有帮助。
如果还有其他问题,请随时提问。
完整)六年级正反比例练习题1.判断1.当一个因数不变时,它与另一个因数的积成正比例。
(√)2.当长方形的长一定时,宽和面积成正比例。
(√)3.当圆的半径增加时,周长也会增加,它们成正比例。
(√)4.当铺地面积一定时,方砖的边长和所需的块数成反比例。
(√)5.当铺地面积一定时,方砖的面积和所需的块数成反比例。
(√)6.当圆的半径增加时,面积也会增加,它们成正比例。
(√)7.当圆的半径增加时,面积和圆的半径的平方成正比例。
(√)8.当圆的半径增加时,面积和圆的周长的平方成正比例。
(√)9.当正方形的边长增加时,面积也会增加,它们成正比例。
(√)10.当正方形的边长增加时,周长也会增加,它们成正比例。
(√)11.当长方形的面积一定时,长和宽成反比例。
(√)12.当长方形的周长一定时,长和宽成反比例。
(√)13.当梯形的面积一定时,上底和下底的和与高成反比例。
(√)简单说明理由:1.路程一定,速度和时间成反比例,因为速度越快,用的时间越短,反之亦然。
2.车轮的直径一定,所行的路程和车轮的转数成正比例,因为车轮转数越多,所行的路程也就越长。
3.图上距离一定,实际距离和比例尺成正比例,因为比例尺越大,实际距离也就越长。
4.数A与它的倒数成反比例,因为它们的积始终为1.5.收入一定,支出和结余成反比例,因为支出越多,结余越少。
6.除数一定,被除数和商成正比例,因为被除数越大,商也就越大。
7.5A=3B,A和XXX反比例,因为B随着A的增加而减少。
8.总价一定,观看同一场电影的票价和人数成反比例,因为人数越多,每人分摊的票价也就越少。
9.三角形的面积和它的高成正比例,因为高越高,底边也就越长,面积也就越大。
10.长方形的周长一定,它的长和宽成反比例,因为长和宽的和越大,周长也就越大。
11.年龄和身高无法确定成比例关系,因为年龄和身高并没有必然的联系。
12.比例尺一定,图上距离和实际距离成正比例,因为比例尺越大,实际距离也就越长。
六年级正反比例题100道正比例题:1. 如果一个苹果的价格是2元,那么5个苹果的价格是多少元。
2. 5本书的价格是20元,那么每本书的价格是多少元。
3. 一个足球的价格是50元,购买3个足球需要多少钱。
4. 如果一辆车每小时行驶60公里,行驶2小时后能行驶多少公里。
5. 4个橙子的总价是16元,1个橙子多少钱。
6. 一条绳子长6米,3条绳子总长多少米。
7. 如果每辆车能载5人,10辆车能载多少人。
8. 一盒巧克力有10块,3盒巧克力有多少块。
9. 每个学生要交100元的学费,10个学生总共交多少钱。
10. 一台电脑的价格是4000元,4台电脑的总价是多少元。
11. 如果1升油的价格是8元,5升油的价格是多少元。
12. 一辆自行车的价格是300元,7辆自行车总共需要多少钱。
13. 1本书的页数是200页,5本书的总页数是多少页。
14. 如果每个学生需要2支铅笔,20个学生需要多少支铅笔。
15. 一棵树的高度是3米,5棵树的总高度是多少米。
16. 1块蛋糕的价格是15元,3块蛋糕总共多少钱。
17. 如果每本杂志售价10元,9本杂志总共多少钱。
18. 一辆车每小时行驶80公里,4小时能行驶多少公里。
19. 如果1公斤米的价格是5元,2公斤米总共多少钱。
20. 每个孩子要喝250毫升的牛奶,8个孩子需要多少牛奶。
21. 一支笔的价格是3元,12支笔总共多少钱。
22. 如果一个篮球的价格是120元,3个篮球的价格是多少元。
23. 一根铅笔的长度是20厘米,4根铅笔的总长度是多少厘米。
24. 如果一个人的工资是3000元,5个人的总工资是多少元。
25. 每条鱼的重量是200克,10条鱼的总重量是多少克。
26. 如果1个西瓜的价格是30元,4个西瓜的价格是多少元。
27. 一辆车的油耗是每公里8升,行驶100公里需要多少升油。
28. 每个学生要用5张纸,25个学生需要多少张纸。
29. 如果一个房间的面积是50平方米,5个这样的房间总面积是多少平方米。
六年级下册数学『正反比例——判断题30道』01.正方形的周长和它的边长。
(正比例)02.小明从家到学校,骑自行车的速度和所用的时间。
(反比例)03.在一定的时间里,做一个零件所用的时间与做零件的个数。
(反比例)04.看一本书,己看的页数和未看的页数。
(不成比例)05.工作效率一定,工作总量和工作时间。
(正比例)06.烧煤总量一定,每天的烧煤量和烧煤天数。
(反比例)07.买相同的电脑,购买的电脑台数与总价。
(正比例)08.每捆练习本的本数相同,练习本的总本数与捆数。
(正比例)09.总路程一定,已行的路程与未行的路程。
(不成比例)10.分数值一定,分数的分子与分母。
(正比例)11.长方形的长一定,它的面积和宽。
(正比例)12.长方体的体积一定,底面积和高。
(反比例)13.一本书的总页数一定,看的天数与平均每天看的页数。
(反比例)14.订阅《扬子晚报》,订的份数与总价。
(正比例)15.六(1)班同学做操,每排站的人数与排数。
(反比例)16.甲、乙两地的路程一定,骑自行车从甲地到乙地的时间和速度(反比例)六年级下册数学『正反比例——判断题30道』17.工程队施工的效率一定,施工的时间和施工总量。
(正比例)18.一辆汽车行驶的速度一定,这辆汽车的载重量好行驶的总路程。
(不成比例)19.圆柱的底面积一定,这个圆柱的高和体积。
(正比例)20.机器零件的合格率一定,合格率零件数量与残次品零件数量。
(不成比例)21.李红作100道口算题,每分钟作题的数量和所用的时间。
(反比例)22.瓷砖面积一定,瓷砖的块数和铺地的面积。
(正比例)23.生产一个零件的时间一定,生产零件的总时间和个数。
(正比例)24.比的前项一定,比的后项和比值。
(反比例)25.在太阳照射下,同时同地的竿高和影长。
(正比例)26.每台织布机的每小时织布的米数一定,织布的总米数和所用的小时数。
(正比例)27.每公顷施肥量一定,施肥总量与公顷数。
(正比例)28.煤的总量一定,每天烧煤量和可烧的天数。
小学六年级正反比例的应用题含答案1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0. 25平方米的方砖铺地,需要方砖多少块?3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?4我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?5、一种铁丝,7.5米长重3千克,现在有19.5米长的这种铁丝,重多少千克?6、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?7、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?8、小明读一本书,每天读12页,8天可以读完。
如果每天多读4页,几天可以读完?9、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?10、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?11、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?12、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?13、学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?14、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?15、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?16、一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
(5分)17、地图上的26厘米,在比例尺为1∶1300000的地图上约是多少千米?(5分)18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?19、用一批纸装订同样的练习本,如果每本30页,可以装订80本。
六年级数学正比例和反比例试题答案及解析1.把一根木料锯成4段要用12分钟,照这样,如果要锯成6段,一共需要______分钟。
【答案】20【解析】解:设一共需要x分钟,则有12:(4-1)=x:(6-1),3x=12×5,3x=60,x=20;答:一共需要20分钟。
2.把一根木料锯成4段要6分钟,锯成7段要______分钟。
【答案】12【解析】6÷(4-1)×(7-1),=6÷3×6,=2×6,=12(分钟)答:锯成7段要12分钟。
3.学校买来161米塑料绳子,剪下21米,做12根跳绳,照这样计算,剩下的塑料绳还可以剪______根跳绳。
【答案】80【解析】解:设剩下的塑料绳还可以剪x根跳绳,21:12=(161-21):x,21:12=140:x,x=804.正午时小丽量得自己的影子有40cm,同时它量得身旁一棵树的影长是1m,已知小丽的身高是160cm,那么这棵树高______m。
【答案】4【解析】解:设这棵数高xm,160:40=x;1,40x=160×1,x=160÷40,x=4;答:这棵数高4米。
5.张师傅5小时生产了300个零件.照这样计算,生产480个零件需要多少小时?因题中______一定,所以这道题用______解答。
设_________________为X,列式为__________。
【答案】工作效率;正比例;生产480个零件需要的时间;300:5=480:x.【解析】因为题中的工作效率一定,所以这道题用正比例解答,设生产480个零件需要x小时,300:5=480:x,300x=480×5,x=x=86.正午时小丽量得自己的影子有30cm,同时它量得身旁一棵树的影长是1m,已知小强的身高是180cm,那么这棵树高______m。
【答案】6【解析】解:设这棵数高xm,180:30=x;1,30x=180×1,x=180÷30,x=6答:这棵数高6米。
正反比例练习题六年级1. 问题描述在数学学习中,正反比例是一个非常重要的概念。
正反比例是指当两个量存在一种特定的关系时,其中一个量增加时,另一个量减少;反之,当一个量增加时,另一个量也增加。
本文将为六年级学生提供一些正反比例练习题,帮助学生更好地理解和掌握这个概念。
2. 练习题一某商店销售一种商品,每件商品的售价为20元。
现在商店决定对该商品进行促销,售价降低为15元。
请计算购买不同数量商品时,原价和促销价的总花费。
解答:- 购买1件商品:- 原价总花费:20元- 促销价总花费:15元- 购买2件商品:- 原价总花费:40元- 促销价总花费:30元- 购买3件商品:- 原价总花费:60元- 促销价总花费:45元- 购买4件商品:- 原价总花费:80元- 促销价总花费:60元由此可见,随着购买商品数量的增加,原价总花费和促销价总花费之间存在正比例关系。
3. 练习题二一辆汽车以每小时60公里的速度行驶。
现在汽车要提速,以每小时70公里的速度行驶。
请计算在不同时间内,汽车行驶的距离。
解答:- 行驶1小时:- 速度为60公里/小时,行驶距离为60公里- 速度为70公里/小时,行驶距离为70公里- 行驶2小时:- 速度为60公里/小时,行驶距离为120公里- 速度为70公里/小时,行驶距离为140公里- 行驶3小时:- 速度为60公里/小时,行驶距离为180公里- 速度为70公里/小时,行驶距离为210公里- 行驶4小时:- 速度为60公里/小时,行驶距离为240公里- 速度为70公里/小时,行驶距离为280公里可以看出,随着行驶时间的增加,汽车行驶的距离也在增加,存在着正比例关系。
4. 练习题三小明在一个小时内骑自行车绕操场跑步道骑行了10圈。
现在他决定增加骑行时间,每小时骑行12圈。
请计算在不同时间内,小明骑行的圈数。
解答:- 骑行半小时:- 一小时骑行10圈,半小时骑行5圈- 一小时骑行12圈,半小时骑行6圈- 骑行1小时:- 一小时骑行10圈- 一小时骑行12圈- 骑行1小时半:- 一小时骑行10圈,1小时半骑行15圈- 一小时骑行12圈,1小时半骑行18圈可见,随着骑行时间的增加,小明骑行的圈数也在增加,存在正比例关系。
练习题
一、判断.
1.一个因数不变,积与另一个因数成正比例.()
2.长方形的长一定,宽和面积成正比例.()3.大米的总量一定,吃掉的和剩下的成反比例.()
4.圆的半径和周长成正比例.()
5.分数的分子一定,分数值和分母成反比例.()
6.铺地面积一定,方砖的边长和所需块数成反比例.()
7.铺地面积一定,方砖面积和所需块数成反比例.()
8.除数一定,被除数和商成正比例.()
二、选择.
1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.()
A.成正比例 B.成反比例 C.不成比例
2.和一定,加数和另一个加数.()
A.成正比例 B.成反比例 C.不成比例
3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是().
A.汽车每次运货吨数一定,运货次数和运货总吨数.
B.汽车运货次数一定,每次运货的吨数和运货总吨数.
C.汽车运货总吨数一定,每次运货的吨数和运货的次数.
正比例反比例练习(一)
一、判断题:
正比例反比例练习(二)
一.选择填空,判断数量间的比例关系。
(1)比例尺一定,图上距离与实际距离____________。
(2)圆的面积一定,直径与圆周率_______________。
(3)比的前项一定,比的后项与比值_________________。
(4)时间一定,速度与路程____________。
(5)被减数一定,减数与差______________。
(6)圆锥体体积一定,底面积与高_____________。
A、成正比例
B、成反比
例 C、不成比例
二.选择填空。
ab=c,当c一定时a和b();当a一定时b和c();当b一定时a和c()。
A、成正比例 B、成反比例三.判断对错
(1)正方体的表面积与体积成正比例。
()
(2)一堆煤的总量不变,每天烧去的数量与烧的天数成反比例。
()(3)长方体底面积一定,体积和高成正比例。
()
(4)三角形的面积不变,它的底与高成反比例。
()
四、下列各题中的两种量是不是成比例,成什么比例,并说明理由。
(1)买相同的电脑,购买的电脑台数与总价
(2)每捆练习本的本数相同,练习本的总本数与捆数
(3)总路程一定,已行的路程与未行的路程
(4)分数值一定,分数的分子与分母
(5)长方形的长一定,它的面积和宽
(6)长方体的体积一定,底面积和高
(7)一本书的总页数一定,看的天数与平均每天看的页数
(8)圆的周长和直径
(9)订阅《扬子晚报》,订的份数与总价
(10)图上距离一定,实际距离与比例尺
(11)小麦的出粉率一定,小麦的质量与面粉的质量
(12)六(1)班同学做操,每排站的人数与排数
五、下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?(1)小红看一本儿童小说,每天看12页,10天可以看完;如果每天看15页,8天可以看完。
(2)一种螺丝钉,20个重30克。
一盒这样的螺丝钉是600克,一共有400个
六、用比例解答
(1)印刷厂装订一批图书,原计划每天装订500本,30天完成;实际只用了25天就完成了任务,实际每天装订多少本?(用比例方法解答)
(2)修路队修一条长120千米的公路,前4天修了20千米;照这样的速度,修完全路共需要多少天?(用比例方法解答)。