人教版六年级数学正比例和反比例的比较
- 格式:doc
- 大小:31.00 KB
- 文档页数:7
小学六年级数学正反比例一、什么是正反比例1、正比例:正比例是指两个变量之间的变化率是一致的,当其中一个变量增大时,另一个也会相应地增大,反之亦然。
两个值之间的正比例可以用y=ax+b (a>0)这样的函数表达出来。
2、反比例:反比例是指两个变量之间的变化率相反,当其中一个变量增大时,另一个会相应地减小,反之亦然。
反比例可以用y=a/x+b (a>0)的函数表示出来。
二、小学六年级数学中的正反比例1、小学六年级数学中常见的正反比例实例有:(1)时间与内容的正比例:学习的时间与学习的内容正比,也就是说,投入的时间越多,学习的内容就会比较多。
(2)距离与时间的反比例:一般来说,距离和所耗时间是反比例的。
也就是说,距离越大,耗费的时间也就越长。
(3)质量与价格的反比例:大家购买物品也是质量和价格是反比例的。
也就是说,质量越高,价格也就越高。
三、正反比例在小学六年级数学中的应用1、分数的反比例:比如有一个划分为两部分的数,其中一部分是原数的3分之一,另一部分是原数的2分之1,这就是表达反比例的例子,可以让学生掌握反比例的概念。
2、重量和体积的反比例:利用试管、称重的方式,让学生观察自己所得的试管中重量和体积的反比例关系,并且按照规律画出反比例的图像,总结出反比例特点,这样就可实现对正反比例的洞察和掌握。
3、面积与周长之间的正比例:通过画图测量形状的面积和周长,从中可以观察面积与周长之间的正比例关系,让学生把正反比例概念掌握其中,从而可以解决有关正反比例的问题。
4、实际问题求解:可以用折线图、比例图等形式来表示,在给定2个变量情况下,实现对反比例、正比例的概念掌握,从而解决实际问题,培养学生使用正反比例进行实际问题求解的能力。
六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
六年级数学下册正比例和反比例知识点一、内容概要正比例和反比例是六年级数学下册的重要知识点,简单来说正比例表示两个量成正比关系,当一个量增加时,另一个量也会增加,反之亦然。
好比速度和时间是常见的正比例例子,当速度加快时,需要的时间就会减少。
反比例则是当两个量中的其中一个增加时,另一个会减少。
像是你在爬山过程中体力消耗与海拔高度的关系,海拔越高体力消耗越大,反之越省力就是反比例的例子。
掌握这些知识可以帮助我们更好地理解生活中的各种现象,接下来我们将详细解析这两个概念的应用和解题方法。
1. 回顾数学基础知识,为学习正比例和反比例做铺垫亲爱的小朋友们,转眼间我们已经进入了六年级的数学之旅,那么今天我们来一起回顾一下前面学过的数学知识,为接下来要学习的正比例和反比例知识点做好铺垫吧!数学的世界总是充满了神奇的奥秘,让我们一步步走进这个奇妙的世界。
我们知道数学是生活中的一把钥匙,它能帮助我们解决很多有趣的问题。
在学习正比例和反比例之前,我们要先打好基础。
回顾一下我们之前学过的关于数量和数量之间的关系的知识,比如当我们买文具时,文具的数量和总价之间就有一种特殊的关系。
买一支笔和买十支笔的价格是不一样的,这就是数量和价格之间的关系。
这就是我们接下来要学习的正比例和反比例的基础,你们准备好了吗?接下来我们要更深入地去探索这种关系的奥秘!2. 简述正比例和反比例的概念及其在实际生活中的应用反比例呢?它与正比例相反,当一个量变大时,另一个量就会变小。
比如说你在调节电视机的音量和亮度时,通常音量越大,电视屏幕的亮度就越低,因为电视的音量和亮度就是一对反比例关系。
再如开车的时候,车速越慢反而里程消耗越多;一个钟表转得越慢它行走的总圈数就越大等生活中都可以发现反比例的例子。
明白正比例和反比例的概念后,我们就可以更好地理解和解决生活中的很多问题啦!二、正比例知识点我们知道生活中有很多事物之间是有关系的,比如你吃的零食越多,肚子就越容易饱。
比例知识盘点知识点1:比例的意义和基本性质1、比例的意义:表示两个比相等的式子叫做比例。
2、比例的基本性质①组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
②比例的基本性质:在比例里,两个外项的积等于两个内项的积。
可以用字母表示比例的基本性质,如果a:b =c:d ,那么ad =bc 。
3、解比例:求比例中的未知项,叫做解比例。
解比例的方法:利用比例的基本性质将比例转化为外项之积与内项之积相等的 等式,再通过解方程求出未知项的值。
知识点2:正比例和反比例1、正比例:两种相关联的量的比值一定。
正比例关系式:yx =k 正比例的图像:一条射线2、反比例:两种相关联的量的乘积一定。
反比例关系式:xy =k 反比例图像:一条光滑的曲线 知识点3:比例尺1、意义:一幅图的图上距离和实际距离的比。
2、分类:线段比例尺和数值比例尺;缩小比例尺和放大比例尺3、计算:比例尺=图上距离:实际距离 知识点4:图形的放大和缩小 形状相同,大小不同 知识点5:用比例解决问题 造出情境中不变的量是关键。
易错集合易错点1:比例的基本性质典例 比例24:6=12:3,第一项24减去6,第二项的6怎样变化,才能使比例仍然成立?解析 根据比例的性质,24-6=18,外项的积变为18×3=54,内项12不变,根据比例的基本性质,两个外项的积等于两个内项的积,求解。
解答 24-6=18 18×3=54 54÷12=4.5 6-4.5=1.5 答:第二项6应减去1.5,才能使比例仍然成立。
✨针对练习1比例24:6=12:3,第三项12乘2,第四项的3怎样变化,才能使比例仍然成立?易错点2:利用图像解决正比例问题 典例 下图是老虎和猎豹比赛跑步的情况。
猎豹的奔跑路程和时间是否成正比例关系?老虎呢?解析 判断老虎、猎豹奔跑的路程和奔跑时间是否成正比例关系,根据正比例的意义要看它们的比值是否一定。
教学笔记练习课(正比例和反比例)教学内容完成教科书P50~52“练习九”中第7、9、12、13、14、15、16题。
教学目标1.在练习中,进一步理解正、反比例的意义,弄清它们的联系和区别,能正确、熟练地判断正、反比例关系。
2.提高观察、分析、比较、抽象概括和判断推理的能力。
3.提高学生综合运用知识解决实际问题的能力,培养学生自主探究、合作交流的学习能力。
教学重点进一步掌握正、反比例关系的意义。
教学难点正确应用正、反比例知识解答基本的正、反比例应用题。
教学准备课件。
教学过程一、比较正、反比例的意义,加深理解1.回顾旧知识,对比感知。
师:我们已经初步学习了判断两种量是不是成正比例或反比例的关系的方法,你能判断下面两种量成什么比例吗?(出示课件)【学情预设】预设1:路程和时间是两种相关联的量,因为速度一定,路程÷时间=速度,所以路程和时间成正比例关系。
预设2:速度和时间是两种相关联的量,因为路程一定,速度×时间=路程,所以速度和时间成反比例关系。
预设3:路程和速度是两种相关联的量,因为时间一定,路程÷速度=时间,所以路程和速度成正比例关系。
师:同样都是速度、时间、路程,为什么有的成正比例关系,有的成反比例关系?【学情预设】引导学生说出要看两种相关联的量的变化规律,还要看比值一定还是乘积一定。
(教师可以让学生具体说一说成正比例关系的两种量的变化规律、成反比例关系的两种量的变化规律。
)师:你还能举出类似的例子吗?【学情预设】预设1:单价、数量、总价之间也有这样的关系。
总价一定,单价×数量=总价,单价和数量成反比例关系;单价一定,总价÷数量=单价,总价和数量成正比例关系;数量一定,总价÷单价=数量,总价和单价成正比例关系。
预设2:工作总量、工作时间、工作效率之间也有这样的关系。
工作总量一定,工作效率×工作时间=工作总量,工作效率和工作时间成反比例关系;工作效率一定,工作总量÷工作时间=工作效率,工作总量和工作时间成正比例关系;工作时间一定,工作总量÷工作效率=工作时间,工作总量和工作效率成正比例关系。
一、比例的概念比例是数学中一个重要的概念,是指两个或多个数之间的相对大小关系。
比例的形式常表示为a:b,读作“a与b成比例”。
其中a和b称为比例的项,a称为第一项,b称为第二项。
二、比例的性质1.相等性:如果两个比例的两个项分别相等,那么它们成比例,即a:b=c:d。
2.反比例:如果两个比例的两个项的乘积相等,那么它们成反比例,即a:b=c:d,可表示为a×b=c×d。
三、比例的应用1.比例的计算:已知一个比例的三项中有两项和一个比例,计算另一个项。
常用的计算方法有:-已知a:b=c:d,求b,可通过计算得到b=d×(b/a)。
-已知a:b=c:d,求d,可通过计算得到d=b×(d/a)。
-已知a:b=c:d,求c,可通过计算得到c=a×(c/b)。
-已知a:b=c:d,求a,可通过计算得到a=c×(a/d)。
2.比例的单位换算:在比例中,两个项有可能使用不同单位表示。
为了进行计算,需要进行单位换算。
常见的单位换算包括长度单位、质量单位等。
例如,1米=100厘米,1千克=1000克。
3.量与量的比较:在日常生活中,经常会出现量与量之间的比较,例如时间比较、长度比较等。
这时可以使用比例的概念进行比较。
4.图形的相似:图形的相似指的是形状相似、对应边长成比例的两个图形。
在图形的相似性中,比例起到非常重要的作用。
可以通过比例关系求解未知边长。
5.比例的简化和扩大:当一个比例中的两个项可以同时除以一个相同的数,得到一个新的比例,新比例与原比例相等,此时可以将原比例进行简化。
相反地,如果将一个比例的两个项同时乘以一个相同的数,得到一个新的比例,新比例与原比例相等,此时可以将原比例进行扩大。
四、解题方法与注意事项1.了解比例的性质,正确理解比例的概念。
2.熟练掌握比例的计算方法,理解比例计算的思路。
3.注意单位换算,在进行比例计算时,要注意单位的一致性。
人教版小学六年级数学下册知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!人教版小学六年级数学下册知识点数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
六年级下册数学教学设计:正比例和反比例的意义——人教新课标一、教学目标1. 知识与技能:学生能够理解正比例和反比例的概念,掌握正比例和反比例的判断方法,并能够运用这些概念解决实际问题。
2. 过程与方法:通过观察、分析、归纳和推理,学生能够培养数学思维和解决问题的能力。
3. 情感态度价值观:激发学生对数学学习的兴趣,培养学生合作学习的意识和探究精神。
二、教学内容1. 正比例的概念:如果两个相关联的量的比值(也就是商)一定,那么这两个量就成正比例。
2. 反比例的概念:如果两个相关联的量的乘积一定,那么这两个量就成反比例。
三、教学重点与难点1. 重点:掌握正比例和反比例的判断方法,能够运用这些概念解决实际问题。
2. 难点:理解正比例和反比例的内涵,能够准确判断两个量之间的关系。
四、教学过程1. 导入- 利用生活实例引入正比例和反比例的概念,如“一辆汽车行驶的距离与所需时间的关系”。
- 提问:这两个量之间有什么关系?如何判断两个量之间的关系?2. 探究正比例- 活动一:让学生观察并记录数据,如汽车行驶的距离与时间。
- 活动二:引导学生计算距离与时间的比值,观察是否有规律。
- 活动三:总结正比例的概念,并给出判断正比例的方法。
3. 探究反比例- 活动一:让学生观察并记录数据,如一块土地的面积与所需种子数量。
- 活动二:引导学生计算面积与种子数量的乘积,观察是否有规律。
- 活动三:总结反比例的概念,并给出判断反比例的方法。
4. 实践应用- 任务一:给出一些实际问题,让学生判断两个量之间是正比例还是反比例。
- 任务二:让学生自己设计一个问题,并解答。
5. 总结与反思- 让学生回顾所学内容,总结正比例和反比例的判断方法。
- 引导学生反思学习过程,提高学习效率。
五、教学评价1. 过程性评价:观察学生在探究活动中的表现,如观察数据、计算比值、总结规律等。
2. 终结性评价:通过课后作业、小测验等方式,检查学生对正比例和反比例的理解和应用能力。
正比例和反比例的比较
问题导入观察下面的两个表格,并填空,分别比较它们的异同。
(1)表 1
在表1中相关联的量是和,随着变化,是一定的。
因此,路程和时间成关系。
过程讲解
1.观察表格并填空
(1)在表1中相关联的量是路程和时间,路程随着时间变化,相对应的两个数的比值是一定的。
因此,路程和时间成正比例关系。
(2)在表2中相关联的量是速度和时间,速度随着时间变化,相对应的两个数的积是一定的。
因此,速度和时间成反比例关系。
2.比较正比例关系与反比例关系的异同
(1)相同点。
(2)不同点
归纳总结
正比例与反比例的异同点:。
第四单元比例一、比例的意义旧知识复习1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
新知识学习5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
例如:提示:组成比例的两个比既可以写成带比号的形式,也可以写成分数的形式,但读法相同。
例如:a:b=c:d或ab =cd(b、d≠0)提示:如果4个不同的数能组成比例,那么这4个数一共能组成8个不同的比例。
6、判断两个比能否组成比例的方法:(1)可以根据比例的意义,看两个比的比值是否相等。
(2)可以根据比的基本性质,化简两个比。
7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
二、比例的基本性质解比例1、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
人教版六年级数学——正比例和反比例的
比较
教科书第87-90页的内容,
教学目的
1.通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断成正、反比例的关系.
2.进一步发展学生的分析、比较、抽象、概括的能力.渗透对立统一的观点.
教学过程
一、复习引入
教师:前面我们学习了正比例和反比例的意义,谁能说说正比例和反比例的意义?然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例.
1.单价一定,数量和总价.
2.路程一定,速度和时间.
3.正方形的边长和它的面积.
4.时间一定,工效和工作总量.
教师:我们在前两节课分别学习了成正比例的量和成反比例的量,初步学会判断两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确.这节课我们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同
点.
板书课题:正比例和反比例的比较
二、探究新知
1.正、反比例意义的对比.教学例7.
出示例7的两个表:
表1
总价(元)8164080160
数量(件)1251020
表2
单价(元)804020195
数量(件)124816
(1)学生根据教科书第19页的两个表中所给的数量,分别在课本上填空.要求学生独立完成后在小组中互相检查,电脑出示正确答案,集体校正.
在表1中:在表2中:
相关联的量是路程和时间,路程随着时相关联的量是速度和时间,速度随着时
间变化,速度是一定的.因此,路程和间变化,路程是一定的.因此,速度和
时间成正比例关系时间成反比例关系.
(2)讨论:从两张表中,你是怎样发现谁是一定的?怎样判断另外两个量成什么比例关系?学生分小组充分讨论后,
选派代表发言.
(3)你发现总价、单价、数量这三个量之间有什么关系?板书:单价数量=总价
总价/数量=单价总价/单价=数量
这三个量中,当其中一个量一定时,其他两个量之间有什么比例关系呢?你们能通过小组讨论,得出结论吗?
归纳:当单价一定时(也就是总价和数量的比值一定),总价和数量成正比例关系.
当总价一定时(也就是单价和数量的乘积一定),单价和数量成反比例关系.
当数量一定时(也就是总价和单价的比值一定),总价和单价成正比例关系.
(随着学生的归纳总结,依次将结论写出.)
2.比较正比例和反比例关系.
(1)通过上面的例子,比较正比例关系和反比例关系,你能说出它们之间有什么相同点与不同点吗?
学生分小组讨论后每组汇报自己的讨论结果,教师逐步完成板书.
组织讨论,教师归纳并板书:
正比例反比例
相同点1.都有两种相关联的量.2.一种量随着另一种量变化.
不同点1.变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小.2.相对应的每两个数的比值(商)是一定的.1.变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).2.相对应的每两个数的积是一定的.
三、巩固练习
1.试一试做教科书第89页试一试中的题目.判断书牍、时间和路程中,每两个量成什么比例关系,为什么?
让学生自己填,并说一说为什么.
2.做练一练的第1~4题.要求学生先独立进行判断、填空,再互相说明理由.
反馈讲评。
教师巡视,个别辅导,最后订正.
3、判断下面各题中的两种量成什么比例关系?
(1)大米总数一定,每袋大米的质量和袋数。
(2)每袋大米的质量一定,大米的袋数和大米的总数。
(3)工作总量一定,工作时间和工作效率。
(4)少年报的单价一定,份数和总价。
(5)被除数一定,除数和商。
(6)分子不变,分母和分数值。
(7)长方形的周长一定,它的长和高
(8)圆柱的体积一定,底面积和高
(9)总产量一定,单位面积产量和种植面积
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。
(10)用砖铺一块地,砖的面积和用砖块数。
五、小结
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注
意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教
师”的必要条件不光是拥有知识,更重于传播知识。
教师:请同学们说说正比例和反比例关系有什么相同点和不同点。