基于学习生活方面的二叉树法研究
- 格式:ppt
- 大小:256.00 KB
- 文档页数:9
生活在二叉树上现代计算机科学以艾伦·J·佩利的“有两种方法可以编写无错误的程序;只有第三种方法有效。
”为嚆矢。
滥觞于哲学与数学的期望正失去它们的借鉴意义。
但面对看似无垠的未来天空,我想循林纳斯·托瓦兹“技术标准就是纸。
我每天都用纸擦屁股。
这就是这些纸的价值所在。
”好过过早地振翮。
我们怀揣热忱的灵魂天然被赋予对超越性的追求,不屑于古旧坐标的约束,钟情于在别处的芬芳。
但当这种期望流于对直觉主义不假思索的批判,乃至走向逻辑与构造主义时,便值得警惕了。
与秩序的落差、错位向来不能为越矩的行为张本。
而纵然我们已有翔实的蓝图,仍不能自持已在浪潮之巅立下了自己的沉锚。
““回归测试”?那是什么东西?代码能编译就是好的,如果能运行,那就是完美的。
”林纳斯·托瓦兹之言可谓切中了肯綮。
人的离散性是不可祓除的,而我们欲上青云也无时无刻不在因风借力。
数学与哲学暂且被我们把握为一个薄脊的符号客体,一定程度上是因为我们尚缺乏体验与阅历去支撑自己的认知。
而这种偏见的傲慢更远在知性的傲慢之上。
在孜孜矻矻以求计算机科学意义的道路上,对自己的期望本就是在与数学与哲学对接中塑型的动态过程。
而我们的底料便是对不同哈密顿通路的证明、不同模拟退火的觉感与体认。
菲尔·卡尔顿为大卫·韦勒送去AC自动机,又维系启发式迭代加深。
他的计算机科学观念是厚实的,也是实践的。
倘若我们在对过往借尼尔·福特之言“祓魅”后,又对不断膨胀的自我进行“赋魅”,那么在丢失外界预期的同时,未尝也不是丢了自我。
毫无疑问,从哲学与数学角度一觇的自我有偏狭过时的成分。
但我们所应摒弃的不是对此的批判,而是其批判的廉价,其对批判投诚中的反智倾向。
在林纳斯·托瓦兹的观念中,如果在成为狮子与孩子之前,略去了像骆驼一样背负前人遗产的过程,那其“永远重复”洵不能成立。
蓝图上的落差终归只是理念上的区分,在实践场域的分野也未必明晰。
课题二叉树的遍历学习目标:1、知识与技能掌握二叉树三种遍历的遍历原则和方法2、过程与方法通过体验、分析、讲授和实践探究,学会遍历二叉树3情感态度与价值观(!)通过遍历学习,培养学生细致严谨的思维习惯(2)促进学生对算法学习的热情,学习在平时生活中建模思想。
学情分析:本学期高一学生刚刚学习完数学选修科目3《算法》,对数据流程有比较深刻的认知,具备探究树理论的基础。
重难点:重点:二叉树特征;难点:二叉树的遍历规则的实际使用。
教学过程:活动一:一起游戏——汉诺塔游戏介绍:汉诺塔是一款WP7平台上源于印度一个古老传说的益智类游戏。
传说上帝创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上安大小顺序摞着64片黄金圆盘。
上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。
并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
游戏玩法:游戏里有三根金刚石柱子,在一根柱子上从下往上安大小顺序摞着64片黄金圆盘。
玩家需要做的是把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。
并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
活动二:二叉树1 特点:一棵由一个结点和两棵互不相交的分别称作根的左子树和右子树所组成的非空树,左右子树又同样都是二叉树。
遍历是对二叉树树的一种最基本的运算,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。
2 几种遍历(1)前序遍历:中序遍历后序遍历(2)遍历规则步骤第一第二第三名称前序遍历访问根结点前序遍历左子树前序遍历右子树中序遍历中序遍历左子树访问根结点中序遍历右子树后序遍历后序遍历左子树后序遍历右子树风味根结点备注二叉树非空活动三:完成图5二叉树的前序遍历abcdeghi图5活动四:分组讨论完成右图二叉树的中序遍历和后序遍历中序CBDAEGF后序:CDBGFEA活动五:讨论探究完成图5二叉树的中序遍历和后序遍历中序:CBAFEGDHI后序:CBFGEIHDA活动五:知识拓展:1假设前序遍历是adbgcefh,中序遍历是dgbaechf,请你推演出该二叉树;2假设后序遍历是gbdehfca,中序遍历是dgbaechf,请你推演出该二叉树的前序遍历节奏把控:前序遍历是先访问根节点,然后再访问子树的,而中序遍历则先访问左子树再访问根节点,那么把前序的a 取出来,然后查找a 在中序遍历中的位置就得到dgb a echf 这样我们就知道dgb 是左子树echf 是右子树,因为数量要吻合所以前序中相应的dbg 是左子树cefh 是右子树。
课题二叉树的遍历学习目标:1、知识与技能掌握二叉树三种遍历的遍历原则和方法2、过程与方法通过体验、分析、讲授和实践探究,学会遍历二叉树3情感态度与价值观(!)通过遍历学习,培养学生细致严谨的思维习惯(2)促进学生对算法学习的热情,学习在平时生活中建模思想。
学情分析:本学期高一学生刚刚学习完数学选修科目3《算法》,对数据流程有比较深刻的认知,具备探究树理论的基础。
重难点:重点:二叉树特征;难点:二叉树的遍历规则的实际使用。
教学过程:活动一:一起游戏——汉诺塔游戏介绍:汉诺塔是一款WP7平台上源于印度一个古老传说的益智类游戏。
传说上帝创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上安大小顺序摞着64片黄金圆盘。
上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。
并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
游戏玩法:游戏里有三根金刚石柱子,在一根柱子上从下往上安大小顺序摞着64片黄金圆盘。
玩家需要做的是把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。
并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
活动二:二叉树1 特点:一棵由一个结点和两棵互不相交的分别称作根的左子树和右子树所组成的非空树,左右子树又同样都是二叉树。
遍历是对二叉树树的一种最基本的运算,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。
2 几种遍历(1)前序遍历:中序遍历后序遍历(2)遍历规则步骤第一第二第三名称前序遍历访问根结点前序遍历左子树前序遍历右子树中序遍历中序遍历左子树访问根结点中序遍历右子树后序遍历后序遍历左子树后序遍历右子树风味根结点备注二叉树非空活动三:完成图5二叉树的前序遍历abcdeghi图5活动四:分组讨论完成右图二叉树的中序遍历和后序遍历中序CBDAEGF后序:CDBGFEA活动五:讨论探究完成图5二叉树的中序遍历和后序遍历中序:CBAFEGDHI后序:CBFGEIHDA活动五:知识拓展:1假设前序遍历是adbgcefh,中序遍历是dgbaechf,请你推演出该二叉树;2假设后序遍历是gbdehfca,中序遍历是dgbaechf,请你推演出该二叉树的前序遍历节奏把控:前序遍历是先访问根节点,然后再访问子树的,而中序遍历则先访问左子树再访问根节点,那么把前序的a 取出来,然后查找a 在中序遍历中的位置就得到dgb a echf 这样我们就知道dgb 是左子树echf 是右子树,因为数量要吻合所以前序中相应的dbg 是左子树cefh 是右子树。
二叉树建立的实验原理
二叉树是一种树状结构,其中每个节点最多有两个子节点:一个是左子节点,一个是右子节点。
构建二叉树有几种常见的方法,其中最常用的是递归方法。
递归方法构建二叉树的原理是:对于给定的一组节点,首先选择其中一个作为根节点,并将其他节点划分为左子树和右子树。
然后递归地在左子树和右子树上再次构造二叉树。
具体的步骤如下:
1. 如果给定的节点集合为空,则返回空树。
2. 选择一个节点作为根节点,可以选择任意一个节点作为根节点。
3. 将节点集合分成两部分:左子树节点集合和右子树节点集合。
4. 递归地构造左子树和右子树,将它们分别作为根节点的左子节点和右子节点。
5. 返回根节点。
递归方法的关键是找到合适的递归条件,即当节点集合为空时返回空树。
此外,为了保证二叉树的平衡性,可以在选择根节点时采取一些策略,如选择节点集合中的中间节点作为根节点。
除了递归方法外,还有其他方法可以构建二叉树,如迭代方法和层次遍历方法。
这些方法的原理和实现细节可能稍有不同,但基本原理都是根据给定的节点集合
构建二叉树结构。
二叉树算法应用引言:二叉树是一种常见的数据结构,它在计算机科学领域有着广泛的应用。
二叉树算法是对二叉树进行操作和处理的一系列方法和技巧。
本文将介绍二叉树算法的一些常见应用,并详细讨论它们的实现原理和使用场景。
一、二叉树的遍历二叉树的遍历是指按照某种顺序访问二叉树的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历是先访问根节点,再遍历左子树和右子树;中序遍历是先遍历左子树,再访问根节点和右子树;后序遍历是先遍历左子树和右子树,再访问根节点。
这些遍历方式在实际应用中非常重要,例如在搜索树中查找某个节点、打印二叉树等场景都会用到。
二、二叉树的搜索二叉树的搜索是指在二叉树中查找特定节点的过程。
通过比较节点的值,可以判断目标节点在左子树还是右子树中,从而递归地进行搜索。
二叉搜索树是一种特殊的二叉树,它的左子树的所有节点的值都小于根节点的值,右子树的所有节点的值都大于根节点的值。
利用二叉搜索树的特性,可以快速地进行搜索操作,时间复杂度为O(logn)。
二叉搜索树的搜索在数据库索引、字典等场景中有广泛应用。
三、二叉树的插入和删除二叉树的插入和删除是对二叉树进行修改的操作。
插入操作是将新节点插入到合适的位置,保持二叉树的有序性。
删除操作是删除指定节点,并重新调整二叉树的结构。
在插入和删除操作中,需要考虑的情况比较复杂,例如插入的节点已存在、删除的节点有左右子树等。
通过合理地设计算法,可以高效地进行插入和删除操作,保持二叉树的平衡性。
四、二叉树的平衡二叉树的平衡是指左右子树的高度差不超过1。
平衡二叉树是一种特殊的二叉树,它的插入和删除操作可以保持树的平衡性,从而避免出现极端情况下的退化性能。
常见的平衡二叉树有红黑树、AVL 树、B树等。
平衡二叉树在高效查询和存储大量数据的场景中被广泛应用,例如数据库索引和文件系统。
五、二叉树的重建二叉树的重建是指根据给定的前序遍历和中序遍历结果,构建原二叉树的过程。
二叉树实验心得(优秀5篇)二叉树实验心得篇1二叉树实验心得在进行二叉树实验的过程中,我不仅掌握了一个重要的数据结构——二叉树,还从中体验到了深入理解一个数据结构的魅力和乐趣。
在实验开始时,我首先学习了二叉树的基本概念,如节点、左子树、右子树等。
我明白了二叉树是一种重要的数据结构,它具有层次结构,每个节点最多有两个子节点,且没有祖先节点的左或右子树中的任何一个节点。
接下来,我学习了二叉树的遍历,包括前序遍历、中序遍历和后序遍历。
通过实验,我明白了这些遍历方式的实现原理,并能够灵活地应用它们。
此外,我还学习了递归和迭代两种方法来实现这些遍历方式,这两种方法各有优点和缺点,我深入了解了它们之间的差异。
在进行实验的过程中,我遇到了一些问题,如递归方法导致的栈溢出,以及中序遍历中的栈和队列的使用。
我通过查阅资料和讨论,解决了这些问题,并从中获得了宝贵的经验。
通过这次实验,我更加深入地理解了二叉树的结构和遍历方式,并能够在实际应用中灵活使用。
我明白了数据结构的重要性,以及深入理解数据结构的过程中的乐趣。
同时,我也学会了如何解决问题,并从中获得了宝贵的经验。
总的来说,这次实验是一个非常有意义的经历,我不仅掌握了新的知识,还锻炼了自己的解决问题的能力。
我相信,这次实验将对我未来的学习和工作产生积极的影响。
二叉树实验心得篇2二叉树实验心得这次实验我们了解了二叉树的基本概念,包括二叉树、结点、左子树、右子树、祖先节点等概念。
通过实验,我们对二叉树的性质有了更深刻的理解,比如二叉树只有左子树或右子树,没有左右子树的情况,即空子树。
在实现二叉树时,我们了解了二叉树节点的定义和插入节点的多种方法,包括先插法、后插法等。
我们还学会了利用二叉树来解决实际问题,比如快速查找等问题。
在实验过程中,我们对二叉树的知识进行了深入探究,收获颇丰。
通过这次实验,我对二叉树有了更深刻的认识,明白了二叉树在计算机科学中的重要性。
同时,我对自己的编程能力也有了新的认识,发现自己可以在理解算法的基础上更好地实现它们。
二叉树实验报告二叉树是数据结构中最常见且重要的一种类型。
它由节点组成,每个节点最多有两个子节点,分别称为左节点和右节点。
通过连接这些节点,可以构建一个有序且具有层次结构的树形结构。
本实验报告将介绍二叉树的概念、特点以及常见的操作,同时介绍二叉树在实际应用中的一些典型案例。
一、二叉树的定义和特点二叉树是一种树形结构,它的每个节点至多只有两个子节点。
它的定义可以使用递归的方式进行描述:二叉树要么是一棵空树,要么由根节点和两棵分别称为左子树和右子树的二叉树组成。
二叉树的特点是每个节点最多只有两个子节点。
二、二叉树的创建和操作1.创建二叉树:二叉树可以通过两种方式来创建,一种是使用树的节点类来手动构建二叉树;另一种是通过给定的节点值列表,使用递归的方式构建二叉树。
2.遍历二叉树:二叉树的遍历有三种方式,分别是前序遍历、中序遍历和后序遍历。
a.前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树。
b.中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树。
c.后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点。
3.查找节点:可以根据节点的值或者位置来查找二叉树中的节点。
4.插入节点:可以通过递归的方式在指定位置上插入一个新节点。
5.删除节点:可以通过递归的方式删除二叉树中的指定节点。
三、二叉树的应用案例二叉树在实际应用中有很多重要的用途,下面介绍几个典型的案例。
1.表示文件系统结构:文件系统可以使用二叉树来进行表示,每个文件或文件夹都可以看作是树中一个节点,节点之间的父子关系可以通过左右子树建立连接。
2.实现二叉树:二叉树是一种特殊的二叉树,它要求左子树上的节点值小于根节点的值,右子树上的节点值大于根节点的值。
这种树结构可以快速实现元素的插入、删除和查找等操作。
3.表达式求值:二叉树可以用来表示数学表达式,并且可以通过遍历来对表达式进行求值。
四、实验总结通过本次实验,我们深入了解了二叉树的定义和特点,学会了二叉树的创建和操作方法,以及了解了二叉树在实际应用中的一些典型案例。
147在计算机世界中,有各种各样的抽象数据结构,包括数组,队列,堆栈,链表等。
这些数据结构都可以转换到现实生活中的各种问题中去,以此能够高效的解决一些问题。
在这些数据结构中,被使用的较为广泛的无疑是树状结构。
本文就将详细介绍一下树状结构。
所谓树状结构,就是将信息存贮在节点之中,节点与节点之间用边链接起来的结构。
一颗二叉树由结点的有限集合组成。
这个集合可以由一个根节点和两个不相交的二叉树组成,这两颗二叉树分别成为这个根节点的左子树和右子树。
关于树状结构其他种类更多的结构介绍,我们将在下文中一一阐述。
树状结构在现实生活中的使用也相当广泛。
从计算机网络到数据库实现,树状结构无时无刻的在提高我们的工作效率。
本文也会介绍其在生活中的应用,以引发读者对计算机科学的兴趣。
1 二叉检索树我们首先介绍一下树状结构中最为简单也是最为常见的一种树:二叉检索树(Binary Search Tree)。
1.1 定义首先我们介绍一下二叉检索树,明确一下它的定义。
所谓二叉检索树,就是满足一下条件的一棵二叉树:任意一个结点,设其值为K,则该节点的左子树中任意一个结点的值都小于K;该结点右子树种任意一个结点的值都大于或等于K。
如图1所示。
同时,任意一个结点都有其深度,我们定义为根节点到该节点的路径长度。
而BST的高度就是最深深度加1。
1.2 二叉检索树的搜索对于一棵二叉检索树而言,其最重要的功能就是能够快速的找到某一个节点的值。
假设我们从根节点开始,在BST中检索K值。
如果根节点存储的值为K,则检索结束。
如果不是K,则必须检索树的更深一层。
BST检索的优势在于只需要检索两棵子树的其中之一。
如果K小于根节点的值,则只需要检索左子树,反之则检索右子树。
这个过程将会一直持续到K被找到,或者到一个叶节点(没有子树)为止。
如果到了一个叶节点,依然没有发现K,则表示K不在该BST中。
搜索所消耗的时间取决于该结点被找到的深度。
我们思考一下在一般的情况下,我们需要往下寻找直到一个最深叶节点才能够停下。
二叉树的遍历学习心得 (4)二叉树是一种重要的数据结构,在计算机科学领域中被广泛应用。
对二叉树的遍历是对树进行操作和处理的重要方法之一。
二叉树遍历包括先序遍历、中序遍历和后序遍历三种,每种遍历方式都有它的特点和应用场景。
在本文中,我将结合自己的学习经历,介绍二叉树遍历的相关知识,并分享我的学习心得。
一、什么是二叉树遍历?二叉树遍历指的是按照某种次序访问二叉树的所有节点。
具体来说,遍历过程中所有节点都会被访问且只会被访问一次。
遍历是二叉树最基本的操作之一,它能够帮助我们遍历整个二叉树,并且可以实现二叉树的各种功能。
二、二叉树遍历的种类1. 先序遍历:先访问根节点,然后按照左子树到右子树的顺序依次访问所有的节点。
2. 中序遍历:按照左子树、根节点、右子树的顺序依次访问所有的节点。
3. 后序遍历:按照左子树、右子树、根节点的顺序依次访问所有的节点。
在学习二叉树遍历时,首先需要掌握各种遍历方式的定义和遍历过程。
我们需要了解如何通过递归或非递归的方式来实现二叉树的遍历。
三、学习心得在学习二叉树遍历时,我发现遍历过程中需要注意以下几点:1. 二叉树的遍历是递归算法的经典应用之一。
在递归调用时,需要注意传递和保存上一层函数中的参数和变量,以及返回值的传递和处理。
2. 在遍历时需要针对每个节点进行相应的操作,比如修改节点值、计算节点的数值、输出节点信息等等。
3. 非递归遍历时需要使用栈或队列辅助存储节点信息,在遍历时需要注意栈或队列的操作和数据结构实现。
通过实践,我逐渐掌握了二叉树遍历的基本思想,学会了如何根据需要选择不同的遍历方式。
同时,我也深刻体会到学习算法需要循序渐进、一步步地进行,并且需要强化巩固,多多实践才能真正掌握。
四、总结二叉树遍历是数据结构中的重要主题之一,是学习和掌握二叉树等数据结构算法的基础。
学习时需要理解各种遍历方式的定义和遍历过程,对递归和非递归实现进行深入的练习和掌握,通过不断地巩固和实践,最终能够掌握二叉树遍历的基本思想和实现方法。
二叉树实验报告二叉树实验报告引言:二叉树是一种常见的数据结构,它由节点和边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。
在本次实验中,我们将探索二叉树的基本概念、特性以及应用。
一、二叉树的定义与性质1.1 二叉树的定义二叉树是一种递归定义的数据结构,它可以为空,或者由一个根节点和两个二叉树组成,分别称为左子树和右子树。
1.2 二叉树的性质(1)每个节点最多有两个子节点,分别称为左子节点和右子节点。
(2)左子树和右子树也是二叉树。
(3)二叉树的子树之间没有关联性,它们是相互独立的。
二、二叉树的遍历方式2.1 前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左子树和右子树。
2.2 中序遍历中序遍历是指先遍历左子树,然后访问根节点,最后遍历右子树。
2.3 后序遍历后序遍历是指先遍历左子树,然后遍历右子树,最后访问根节点。
2.4 层次遍历层次遍历是指按照从上到下、从左到右的顺序遍历二叉树的每个节点。
三、二叉树的应用3.1 二叉搜索树二叉搜索树是一种特殊的二叉树,它的每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。
这种特性使得二叉搜索树可以高效地进行查找、插入和删除操作。
3.2 哈夫曼树哈夫曼树是一种带权路径长度最短的二叉树,它常用于数据压缩中。
哈夫曼树的构建过程是通过贪心算法,将权值较小的节点放在离根节点较远的位置,从而实现最优编码。
3.3 表达式树表达式树是一种用于表示数学表达式的二叉树,它的叶节点是操作数,而非叶节点是操作符。
通过对表达式树的遍历,可以实现对表达式的求值。
结论:通过本次实验,我们对二叉树的定义、性质、遍历方式以及应用有了更深入的了解。
二叉树作为一种重要的数据结构,在计算机科学和算法设计中发挥着重要的作用。
在今后的学习和工作中,我们应该进一步探索二叉树的高级应用,并灵活运用于实际问题的解决中。