数字通信作业(4psk-2PSK分析)有完整程序教学文案
- 格式:docx
- 大小:346.04 KB
- 文档页数:12
班级通信1403 学号201409732 姓名裴振启指导教师邵军花日期实验4 PSK(DPSK)调制解调实验一、实验目的1. 掌握PSK 调制解调的工作原理及性能要求;2. 进行PSK 调制、解调实验,掌握电路调整测试方法;3. 掌握二相绝对码与相对码的码变换方法。
二、实验仪器1.PSK QPSK调制模块,位号A2.PSK QPSK解调模块,位号C3.时钟与基带数据发生模块,位号:G4.噪声模块,位号B5.复接/解复接、同步技术模块,位号I6.20M双踪示波器1台7.小平口螺丝刀1只8.频率计1台(选用)9.信号连接线4根三、实验原理PSK QPSK调制/解调模块,除能完成上述PSK(DPSK)调制/解调全部实验外还能进行QPSK、ASK调制/解调等实验。
不同调制方式的转換是通过开关4SW02及插塞37K01、37K02、四、PSK(DPSK)调制/解调实验进行PSK(DPSK)调制时,工作状态预置开关4SW02置于00001, 37K01、37K02①和②位挿入挿塞,38K01、38K02均处于1,2位相连(挿塞挿左边)。
相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。
在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。
本实验箱采用相位选择法实现二进制相位调制,绝对移相键控(CPSK或简称PSK)是用输入的基带信号(绝对码)直接控制选择开关通断,从而选择不同相位的载波来实现。
相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。
1.PSK调制电路工作原理二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s伪随机码、及其相对码、32KHz 方波、外加数字信号等。
相位键控调制电原理框图,如图6-1所示。
图6-1 相位键控调制电原理框图1)滤波器、同相放大器和反相放大器从图6-1看出,1024KHZ的方波经37R29加到由运放37UO4A及周边元件组成的低通滤波器,其输出变为l024KHZ正弦波,它通过37U05A同相放大和37U05B反相放大,从而得到l024KHZ的同相和反相正弦载波,电位器37W01可调节反相放大器的增益,从而使同相载波与反相载波的幅度相等,然后同相和反相正弦载波被送到模拟开关乘法器。
Digital Communication Project————2PSK and 4PSKRequirements:Please use Matlab programming to implement some digital baseband communication systems and plot the BER(bit error4PSK目录:Digital Communication Project (1)————2PSK and 4PSK (1)一、基本理论 (3)1. 二进制移相键控(2PSK)的基本原理 (3)1.1 2PSK信号的产生 (3)1.2 2PSK的解调系统 (3)1.3 2PSK误码率分析 (4)2. 四进制移相键控(4PSK)的基本原理 (4)2.1 4PSK信号的产生 (5)2.2 4PSK的解调系统 (6)2.3 4PSK误码率分析 (7)二、源程序及仿真分析 (7)1. 2PSK源程序及仿真分析 (7)2. 4PSK源程序及仿真分析 (9)3. 2PSK和4PSK误码率分析 (10)一、基本理论1.二进制移相键控(2PSK)的基本原理2PSK信号的产生方法通常有两种:模拟调制法和键控法。
一般的模拟幅度调制的方法,用乘法器实现;数字键控法的开关电路受s(t)控制。
2PSK信号基本的解调方法是相干解调。
2PSK,二进制移相键控方式,是键控的载波相位按基带脉冲序列的规律而改变的一种数字调制方式。
就是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换的一种相位调制方法。
两个载波相位通常相差180度,此时称为反向键控(PSK),也称为绝对相移方式。
1.1 2PSK信号的产生2PSK的产生:模拟法和数字键控法。
就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB 调幅信号。
通信原理课程设计报告书课题名称 数字频带传输系统——2PSK 信号及频谱姓 名学 号 院、系、部 电气系 专 业 电子信息工程指导教师刘鑫淼2012年 6 月13日※※※※※※※※※ ※※ ※※ ※※※※※※※※※※※2009级通信原理课程设计数字频带传输系统——2PSK信号及频谱一、设计目的掌握二进制数字调制——2PSK信号的调制和解调基本原理。
通过MATLAB 仿真,加深对2PSK系统的理解;锻炼运用所学知识,独立分析问题、解决问题的综合能力。
二、设计要求运用通信原理的基本理论和专业知识,对2PSK系统进行设计、仿真(仿真程序实现),要求用程序画出已调信号及其功率谱密度。
如:用MATLAB产生独立等概的二进制信源并画出其波形,画出2PSK信号波形及其功率谱密度。
三、系统原理相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。
基带信号所对应的2PSK波形如图1所示。
因此,2PSK信号的时域表达式为:Ae=wctpsk)cos(2θ+其中,θ表示第n个符号的绝对相位:当发送“0”时,0θ;当发送“1”时,=θ=。
π2PSK的模拟调制框图如图2所示,键控法如图3所示。
2PSK的解调框图如图4所示。
四、程序设计clear ;close all;N=500;fs=200;Ts=1;t=0:1/fs:N*Ts;fm=1/2*Ts;fc=4;%用正弦波产生方波twopi_fc_t=2*pi*fm*t; %源信号A=1; %幅值为1phi=0; %相位偏移为0x = A * cos(twopi_fc_t + phi);% 方波am=1;x(x>0)=am;x(x<0)=-1;subplot(3,1,1);plot(t,x);axis([0 5 -2 2]);title('等概二进制信源');grid on;%加边框car=sin(2*pi*fc*t); %载波psk=x.*car; %载波调制(相乘器)subplot(3,1,2);plot(t,psk);axis([0 5 -2 2]);title('2PSK信号');grid on;subplot(3,1,3);plot(abs(fft(psk)));%产生2psk信号的频谱axis([0 100000 0 40000]);grid on;title('2psk信号频谱');xlabel('f');五、仿真结果00.51 1.52 2.53 3.54 4.55-22等概二进制信源00.51 1.52 2.53 3.54 4.55-222PSK 信号012345678910x 10424x 1042psk 信号频谱f六、设计总结本次课程设计运用MATLAB 产生独立等概的二进制信源并对其波形、其对应的2PSK 信号的波形、2PSK 信号的功率谱密度的模拟。
4相位psk调制
四相位相移键控(4-PSK)调制是一种数字通信技术,它的原理是在正弦波的相位上引入四个固定的、等间隔的相位差,以表示不同的数字信息。
4-PSK可以将二进制码流映射为4个符号,每个符号代表2个比特。
在4-PSK调制中,一个完整的符号周期被分为4个等长的相位区间,每个相位区间对应一个特定的相位值。
这4个相位值通常被选为0、90、180和270度。
发送端将二进制码流按照每两个比特一组进行分组,然后将每组二进制码映射到相应的四个相位值中的一个。
接收端接收到信号后,通过检测相位值来恢复二进制码流。
4-PSK调制的优点在于它具有高效率和低误码率的特点。
相比于二进制振幅移键控(BPSK)调制,4-PSK可以用相同的带宽传输更多的数据,从而提高了信道利用率;同时,由于4-PSK的相位差较大,所以它相比于QPSK(四相位正交调制)和8PSK(八相位相移键控)等调制方式,具有更低的误码率。
4-PSK调制在数字通信领域有着广泛的应用,比如在数字电视、移动通信、卫星通信等领域中都有着重要的地位。
4PSK和4ASK的MATLAB仿真一、实验目的:学会利用MATLAB软件进行4PSK和4ASK调制的仿真。
通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。
二、实验内容:利用MATLAB软件编写程序,画出4PSK和4ASK图形,进一步了解4PSK和4ASK调制的原理。
(1)设二进制数字序列为0 1 0 1 1 0 0 0 1 1 0 1 0 0,编程产生4PSK调制信号波形。
(2)设二进制数字序列为1 1 0 0 1 1 0 0 1 0 0 1 1 1,编程产生4ASK调制信号波形。
三、程序和实验结果:(1)4PSK程序clfclcclearT=1;M=4;fc=1/T;N=500;delta_T=T/(N-1);input=[0 1 0 1 1 0 0 0 1 1 0 1 0 0]input1=reshape(input,2,7)t=0:delta_T:Tfor i=1:7hold onif input1([1 2],i)==[0;0]u=cos(2*pi*fc*t);plot(t,u)elseif input1([1 2],i)==[1;0]u=cos(2*pi*fc*t+2*pi/M);plot(t,u)elseif input1([1 2],i)==[1;1]u=cos(2*pi*fc*t+4*pi/M);plot(t,u)elseif input1([1 2],i)==[0;1]u=cos(2*pi*fc*t+6*pi/M);plot(t,u)endt=t+Tendgridhold off实验结果:(2)4ASK程序clfclcclearT=1;M=4;fc=1/T;N=500;delta_T=T/(N-1);input=[1 1 0 0 1 1 0 0 1 0 0 1 1 1] input1=reshape(input,2,7)t=0:delta_T:Tfor i=1:7hold onif input1([1 2],i)==[0;0]u=0;plot(t,u)elseif input1([1 2],i)==[1;0]u=2*sin(2*pi*fc*t);plot(t,u)elseif input1([1 2],i)==[1;1]u=3*sin(2*pi*fc*t);plot(t,u)elseif input1([1 2],i)==[0;1]u=sin(2*pi*fc*t);plot(t,u)endt=t+Tgrid;end四、实验结果分析:由4PSK和4ASK的图形我们可以发现,他们的共同点是:(1)每个码元含有2b的信息。
课程设计任务书学生姓名:陈欢专业班级:通信0902班指导教师:艾青松工作单位:信息工程学院题目:4PSK调制与解调系统仿真设计任务与要求:(1)任务:设计一个4PSK调制解调系统(2)要求:1)4PSK信号波形的载频和相位参数应随机置或者可有几组参数组合供选择2)系统中要求加入高斯白噪声3) 4PSK解调方框图采用相干接收形式4)分析误码率(3)说明:设计报告必须包括建模仿真结果。
参考文献:1.《通信原理》王福昌熊兆飞黄本雄清华大学出版社20062.《MATLAB仿真技术与应用教程》钟麟王峰国防工业出版社20033.《MATLAB通信仿真与技术应用》刘敏魏玲国防工业出版社2001时间安排:第18周安排任务,设计仿真,撰写报告。
第19周完成设计,提交报告,答辩。
指导教师签名:2011 年月日系主任(或责任教师)签名: 2011 年月日目录摘要 (1)ABSTRACT (2)1 基本原理与方法 (3)1.1 MATLAB软件介绍 (3)1.2 4PSK的基本特点 (4)1.3 4PSK调制解调原理 (6)1.3.1 4PSK调制原理 (6)1.3.2 4PSK解调原理 (7)1.4 误码率的分析............................................................ 错误!未定义书签。
2 基于SIMULINK的4PSK调制解调系统 (9)2.1 信源的产生................................................................ 错误!未定义书签。
2.2 串并转换 (9)2.3 将非极性信号转换成极性信号 (9)2.4 调制 (9)2.5 信号的传输 (10)2.6 信号的解调 (10)2.7 比特错误率统计........................................................ 错误!未定义书签。
实验四PSK调制与解调实验一、实验目的1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。
2、掌握产生PSK(DPSK)信号的方法。
3、掌握PSK(DPSK)信号的频谱特性。
二、实验内容1、观察绝对码和相对码的波形。
2、观察PSK(DPSK)信号波形。
3、观察PSK(DPSK)信号频谱。
4、观察PSK(DPSK)相干解调器各点波形。
三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、同步提取模块5、双踪示波器五、实验步骤1:PSK调制实验(1)将信号源模块产生的码速率为15.625KHz(即将SW04,SW05拨为00000001 00101000)的周期性NRZ码(所谓周期性例如:00010001 00010001 00010001)送入数字调制模块的信号输入点“PSK(DPSK)基带输入”。
(2)将信号源模块产生的64KHz的正弦波(幅度为3V左右)送入数字调制模块的“PSK(DPSK)载波输入”。
(3)数字调制模块中的拨位开关S01拨到0,用双踪示波器同时观察点“PSK 基带输入”与“PSK调制输出”的波形。
2、PSK解调实验(1)将同步信号提取模块的拨码开关SW01的第一位拨上。
将数字解调模块中的拨位开关S01拨到0,(2)将“PSK调制输出”的输出信号送入数字解调模块的信号输入点“PSK-IN”,将“PSK调制输出”的波形送入同步信号提取模块的信号输入点“S-IN”,使信号输出点“载波输出”能输出提取出的正确的载波信号(方法请参考同步载波提取原理)。
(3)将同步信号提取模块的“载波输出”的输出波形送入数字解调模块的信号输入点“载波输入”,观察信号输出点“PSK-OUT”处的波形,并调节标号为“PSK/DPSK判决电压调节”的电位器,直到在该点观察到稳定的NRZ 码为止。
PSK-OUT:(4)将点“PSK-OUT”输出的波形送入同步信号提取模块的信号输入点“NRZ-IN”,再将同步信号提取模块的信号输出点“位同步输出”输出的波形送入数字解调模块的信号输入点“PSK-BS”。
基于MATLAB-Simulink的2PSK仿真摘要:Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
本文主要是以simulink为基础平台,对2PSK信号的仿真。
首先有关通信的绪论,然后文章第一章是课程设计的要求。
第二章是对2PSK信号调制及解调原理的详细说明;第三章是本文的主体也是这个课题所要表现的主要内容2PSK信号的仿真部分,调制和解调都是simulink建模的的方法及参数设置。
本文的主要目的是对simulink的熟悉和对数字通信理论的更加深化和理解。
关键词:2PSK;调制与解调;simulink;目录第一章绪论 (1)1.1通信技术背景 (1)1.2 课程设计的目的 (1)1.3 课程设计的基本任务和要求 (1)1.4 MATLAB/Simulink的简介 (2)第二章 2psk信号的调制与解调原理 (3)2.1数字调制的基本原理 (3)2.2二进制相移键控 (3)第三章实验仿真与结果分析 (7)3.1调制部分 (7)3.1.1 Simulink中2PSK调制的模块框图 (7)3.1.2 各模块参数的设置 (7)3.1.3 调制系统中各模块的波形 (8)3.1.4结果分析 (8)3.2解调部分 (9)3.2.1解调模块框图 (9)3.2.2 各模块参数设置 (9)3.2.3 各模块的波形 (10)3.2.4结果分析 (11)3.3加入高斯白噪声的调制与解调 (11)3.3.1系统框图3-3-1 (11)3.3.2 各模块参数的设置 (11)3.3.3 示波器得到的波形 (13)3.3.4结果分析 (14)第四章结束语 (15)参考文献 (16)第一章绪论1.1通信技术背景通信就是克服距离上的障碍,从一地向另一地传递和交换消息。
MATLAB的PSK调制和解调及仿真实验Psk调制是通信系统中最为重要的环节之一,Psk调制技术的改进也是通信系统性能提高的重要途径。
本文首先分析了数字调制系统的基本调制解调方法,然后,运用Matlab及附带的图形仿真工具——Simulink设计了这几种数字调制方法的仿真模型。
通过仿真,观察了调制解调过程中各环节时域和频域的波形,并结合这几种调制方法的调制原理,跟踪分析了各个环节对调制性能的影响及仿真模型的可靠性。
最后,在仿真的基础上分析比较了各种调制方法的性能,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。
MATLAB简介MATLAB 软件是美国Math works 公司的产品,MATLAB 是英文MATrix LABoratory(矩阵实验室)的缩写。
从1984年推出了它的第一个DOS 版本至今,一经推出了6.5版。
Matrix Laboratory意为“矩阵实验室”,从它的本意可以知道,最初的MATLAB只是一个数学计算工具。
但现在的MATLAB 已经远不仅仅是一个“矩阵实验室”,它已经成为一个集概念设计、算法开发、建模仿真、实时实现于一体的集成环境,它拥有许多衍生的子集工具[9]。
新的版本集成了日常数学处理中的各种功能,包括高效的数值计算、矩阵运算、信号处理和图形生成等等的常用功能。
在MATLAB 环境下,用户可以集成地进行程序设计、数值计算、图形绘制、输入输出、文件管理等各项操作。
MATLAB 提供了一个人机交互的数学系统环境,该系统的基本数据结构是矩阵,在生成矩阵对象时,不要求作明确的维数说明,所谓交互式语言,是指人们给出一条命令,立即就可以得出该命令的结果。
该语言无需像 C 和Fortran 语言那样,首先要求使用者去编写源程序,然后对之进行编译、连接,最终形成可执行文件。
这无疑会给使用者带来了极大的方便,因此,利用MATLAB可以节省大量的编程时间。
2002年6月Mathworks公司正式推出MATLAB Release 13,即MATLAB 6.5/Simulink 5.0 这是目前应用最广的版本。
1 通信的概念通信就是克服距离上的障碍,从一地向另一地传递和交换消息。
消息是信息源所产生的,是信息的物理表现,所有消息必须在转换成电信号后才能在通信系统中传输。
所以,信号是传输消息的手段,信号是消息的物质载体。
相应的信号可分为模拟信号和数字信号,模拟信号的自变量可以是连续的或离散的,但幅度是连续的。
数字信号的自变量可以是连续的或离散的,但幅度是离散的。
通信的目的是传递消息,但对受信者有用的是消息中包含的有效内容,也即信息。
通信技术,特别是数字通信技术近年来发展非常迅速,它的应用越来越广泛。
通信从本质上来讲就是实现信息传递功能的一门科学技术,它要将大量有用的信息无失真,高效率地进行传输,同时还要在传输过程中将无用信息和有害信息抑制掉。
当今的通信不仅要有效地传递信息,而且还有储存、处理、采集及显示等功能,通信已成为信息科学技术的一个重要组成部分。
通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者) ,它的一般模型如图1.1所示:信息源发送设备信道接收设备受信者→→→→↑噪声源图1.1通信系统一般模型通信系统可分为数字通信系统和模拟通信系统:数字通信系统较模拟通信系统而言,具有抗干扰能力强、便于加密、易于实现集成化、便于与计算机连接等优点。
因而,数字通信更能适应对通信技术的越来越高的要求。
近二十年来,数字通信发展十分迅速,在整个通信领域中所占比重日益增长,在大多数通信系统中已代替模拟通信,成为当代通信系统的主流。
2数字频带传输系统在数字基带传输系统中,为了使数字基带信号能够在信道中传输,要求信道应具有低通形式的传输特性。
然而,在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输。
必须用数字基带信号对载波进行调制,产生各种已调数字信号。
图 2.1 数字调制系统的基本结构数字调制与模拟调制原理是相同的,一般可以采用模拟调制的方法实现数字调制。
通信工程专业2ASK2PSK课程设计报告范文(1)2ASK仿真程序clc;clearall;cloeall;%信源a=randint(1,15,2);t=0:0.001:0.999;m=a(ceil(15某t+0.01));ubplot(511)plot(t,m);a某i([01.2-0.21.2]);title('信源');%载波f=150;carry=co(2某pi某f某t);某SK调制t=m.某carry;ubplot(512);plot(t,t)a某i([01.2-1.21.2])title('2ASK信号')%加高斯噪声nt=awgn(t,70);%解调部分nt=nt.某carry;ubplot(513)plot(t,nt) a某i([01.2-0.21.2]);title('乘以相干载波后的信号')%低通滤波器设计wp=2某pi某2某f某0.5;w=2某pi某2某f某0.9;Rp=2;A=45;[N,wc]=buttord(wp,w,Rp,A,'');[B,A]=butter(N,wc,'');%低通滤波h=tf(B,A);%转换为传输函数dt=lim(h,nt,t);ubplot(514)plot(t,dt) a某i([01.2-0.21.2]);title('经过低通滤波器后的信号');%判决器k=0.25;pdt=1某(dt>0.25);ubplot(515)plot(t,pdt)a某i([01.2-0.21.2]);title('经过抽样判决后的信号')%频谱观察%调制信号频谱T=t(end);df=1/T;成绩:批阅老师:N=length(t);f=(-N/2:N/2-1)某df;f=ffthift(ab(fft(t)));figure(2)ubplot(411)plot(f,f) title('调制信号频谱')%信源频谱mf=ffthift(ab(fft(m)));ubplot(412)plot(f,mf)title('信源频谱')%乘以相干载波后的频谱mmf=ffthift(ab(fft(nt)));ubplot(413)plot(f,mmf) title('乘以相干载波后的频谱')%经过低通滤波后的频谱dmf=ffthift(ab(fft(pdt)));ubplot(414)plot(f,dmf) title('经过低通滤波后的频谱');2PSK仿真程序clearall;cloeall;clc;ma某=10g=zero(1,ma某);g=randint(1,ma某);%长度为ma某的随机二进制序列cp=[];mod1=[];f=2某2某pi;t=0:2某pi/199:2某pi;forn=1:length(g);ifg(n)==0;A=zero(1,200);%每个值200个点eleg(n)==1;A=one(1,200);endcp=[cpA];%(t),码元宽度200c=co(f某t);%载波信号mod1=[mod1c];%与(t)等长的载波信号,变为矩阵形式endfigure(1);ubplot(4,2,1);plot(cp);gridon;a某i([0200某length(g)-22]);title('二进制信号序列');cm=[];mod=[];forn=1:length(g);ifg(n)==0;B=one(1,200);%每个值200个点c=co(f某t);%载波信号eleg(n)==1;B=one(1,200);c=co(f某t+pi);%载波信号endcm=[cmB];%(t),码元宽度200成绩:批阅老师:mod=[modc];%与(t)等长的载波信号endtiaoz=cm.某mod;%e(t)调制figure(1);ubplot(4,2,2);plot(tiaoz);gridon;a某i([0200某length(g)-22]);title('2PSK调制信号');figure(2);ubplot(4,2,1);plot(ab(fft(cp)));a某i([0200某length(g)0400]);title('原始信号频谱');figure(2);ubplot(4,2,2);plot(ab(fft(tiaoz)));a某i([0200某length(g)0400]);title('2PSK信号频谱');%带有高斯白噪声的信道tz=awgn(tiaoz,10);%信号tiaoz中加入白噪声,信噪比为10figure(1);ubplot(4,2,3);plot(tz);gridona某i([0200某length(g)-22]);title('通过高斯白噪声信道后的信号');figure(2);ubplot(4,2,3);plot(ab(fft(tz)));a某i([0200某length(g)0400]);title('加入白噪声的2PSK信号频谱');jiet=2某mod1.某tz;%同步解调figure(1);ubplot(4,2,4);plot(jiet);gridona某i([0200某length(g)-22]);title('相乘后信号波形')figure(2);ubplot(4,2,4);plot(ab(fft(jiet)));a某i([0200某length(g)0400]);title('相乘后信号频谱');%低通滤波器fp=500;f=700;rp=3;r=20;fn=11025;w=f/(fn/2);wp=fp/(fn/2);%计算归一化角频率[n,wn]=buttord(wp,w,rp,r);%计算阶数和截止频率[b,a]=butter(n,wn);%计算H(z)jt=filter(b,a,jiet);figure(1);ubplot(4,2,5);plot(jt);gridona某i([0200某length(g)-22]);title('经低通滤波器后信号波形')figure(2);ubplot(4,2,5);plot(ab(fft(jt)));a某i([0200某length(g)0400]);title('经低通滤波器后信号频谱');%抽样判决form=1:200某length(g);ifjt(m)<0;jt(m)=1;elejt(m)>=0;jt(m)=0;endendfigure(1);ubplot(4,2,6);plot(jt);gridona某i([0200某length(g)-22]);title('经抽样判决后信号^(t)波形')figure(2);ubplot(4,2,6);plot(ab(fft(jt)));a某i([0200某length(g)0400]);title('经抽样判决后信号频谱');仿真结果2ASK仿真结果成绩:批阅老师:信源10.50010-1010.50010.50010.5000.20.40.60.811.20.20.40.60.8经过抽样判决后的信号11.20.20.40.60.8经过低通滤波器后的信号11.20.20.40.60.8乘以相干载波后的信号11.20.20.40.62ASK信号0.811.2调制信号频谱4002000-600500-400-2000信源频谱2004006000-6004002000-6004002000-600-400-2000200乘以相干载波后的频谱400600-400-2000200经过低通滤波后的频谱400600-400-20002004006002PSK仿真结果成绩:批阅老师:二进制信号序列20-20500100015002000通过高斯白噪声信道后的信号20-20500100015002000经低通滤波器后信号波形20-20500100015002000原始信号频谱40020000500100015002000加入白噪声的2PSK信号频谱40020000500100015002000经低通滤波器后信号频谱400200005001000150020002PSK调制信号20-20500100015002000相乘后信号波形20-20500100015002000经抽样判决后信号(t)波形20-20500100015002000 2PSK信号频谱40020000500100015002000相乘后信号频谱40020000500100015002000经抽样判决后信号频谱40020000500100015002000成绩:批阅老师:河北联合大学信息工程学院通信工程系ASK与PSK调制与解调班级:11通信1班姓名:曹辰旭刘彩凤高腾张永奇指导老师:安永丽成绩:批阅老师:一基本原理1.1二进制振幅键控(2ASK)1.1.1基本原理2ASK二进制振幅键控。
4psk调制解调原理4PSK调制解调原理一、引言4PSK调制解调是一种常用的数字通信调制解调技术,它在数字通信系统中具有重要作用。
本文将介绍4PSK调制解调的原理、特点及应用。
二、4PSK调制原理4PSK调制是指将输入的数字信号转换为相位调制信号的一种调制方式。
它是基于相位调制的一种变种,通过对数字信号的不同取值进行相位调制,将数字信号转换为相位连续的模拟信号。
具体来说,4PSK调制将每个输入符号映射到一个特定的相位值。
在4PSK调制中,共有4个相位点,分别对应4个可能的输入符号。
这4个相位点在复平面上形成一个正方形,每个相位点相隔90度。
在4PSK调制中,每个输入符号用两个比特表示,共有4种可能的符号组合。
将这些符号组合映射到不同的相位点上,即可实现4PSK 调制。
调制后的信号可以传输至接收端进行解调。
三、4PSK解调原理4PSK解调是指将接收到的相位调制信号转换为数字信号的一种解调方式。
解调的目标是将相位调制信号恢复为原始的数字信号。
在4PSK解调中,首先需要将接收到的信号进行相位检测。
相位检测是通过测量接收信号的相位,判断其所处的相位点。
在4PSK解调中,常用的相位检测方法有两种:差分相位检测和最小距离相位检测。
差分相位检测是通过比较相邻两个信号样本的相位差来判断所处的相位点。
最小距离相位检测是通过计算接收信号与每个相位点之间的距离,选取距离最小的相位点作为判决结果。
解调后,可以将恢复的数字信号进行后续处理,如解码、错误检测等。
四、4PSK调制解调的特点1. 高效性:4PSK调制解调是一种高效的数字通信技术,可以通过调整相位点的数量来实现不同的调制阶数。
2. 抗干扰性强:4PSK调制解调在传输过程中对噪声和干扰的抗性较强,能够有效地提高信号质量和传输距离。
3. 适应性强:4PSK调制解调可以适应不同信道条件和传输需求,具有较好的灵活性和适应性。
4. 简单性:4PSK调制解调的原理相对简单,实现成本较低,适用于各种数字通信系统。
Digital Communication Project————2PSK and 4PSKRequirements:Please use Matlab programming to implement some digital baseband communication systems and plot the BER(bit error2PSK and 4PSK目录:Digital Communication Project (1)————2PSK and 4PSK (1)一、基本理论 (2)1. 二进制移相键控(2PSK)的基本原理 (3)1.1 2PSK信号的产生 (3)1.2 2PSK的解调系统 (3)1.3 2PSK误码率分析 (4)2. 四进制移相键控(4PSK)的基本原理 (4)2.1 4PSK信号的产生 (5)2.2 4PSK的解调系统 (6)2.3 4PSK误码率分析 (7)二、源程序及仿真分析 (7)1. 2PSK源程序及仿真分析 (7)2. 4PSK源程序及仿真分析 (9)3. 2PSK和4PSK误码率分析 (10)一、基本理论1.二进制移相键控(2PSK)的基本原理2PSK信号的产生方法通常有两种:模拟调制法和键控法。
一般的模拟幅度调制的方法,用乘法器实现;数字键控法的开关电路受s(t)控制。
2PSK信号基本的解调方法是相干解调。
2PSK,二进制移相键控方式,是键控的载波相位按基带脉冲序列的规律而改变的一种数字调制方式。
就是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换的一种相位调制方法。
两个载波相位通常相差180度,此时称为反向键控(PSK),也称为绝对相移方式。
1.1 2PSK信号的产生2PSK的产生:模拟法和数字键控法。
就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB 调幅信号。
2PSK 功率谱密度及带宽一、教学目标:知道2PSK 信号的功率谱密度与基带信号功率谱之间的关系;会画2PSK 信号功率谱密度示意图;知道2PSK 的带宽及频带利用率。
二、教学重点、难点:重点知道2PSK 功率谱密度组成、信号带宽及频带利用率;难点是会画出2PSK 信号的功率谱密度示意图。
三、教学过程设计:1.2PSK 功率谱密度:比较2ASK 信号的表达式和2PSK 信号的表达式,均可以写为:()t t s t e c ωcos )(0=两者的表示形式完全一样,区别仅在于基带信号s(t)不同(an 不同),前者为单极性,后者为双极性。
因此,我们可以直接引用2ASK 信号功率谱密度的公式来表述2PSK 信号的功率谱,即:[])()(41)(2PSK c s c s f f P f f P f P -++=注意,这里的Ps(f)是双极性矩形脉冲序列的功率谱。
双极性的全占空矩形随机脉冲序列的功率谱密度为:())()0()21()()1(42222f G P f f G P P f f P s s s δ-+-=把它代入下式[])()(41)(2PSK c s c s f f P f f P f P -++=考虑等概情况,最终可得到2PSK 信号的功率谱密度为: ⎥⎥⎦⎤⎢⎢⎣⎡--+++=222)()(sin )()(sin 4)(s c s c s c s c s PSK T f f T f f T f f T f f T f P ππππ2. 2PSK 功率谱密度示意图2PSK 功率谱密度示意图为:从上面的图,可以分析几个结论:(1)谱组成:当双极性基带信号以等概出现时,2PSK 信号的功率谱仅由连续谱组成;(2)带宽:2PSK 信号的连续谱部分与2ASK 信号的连续谱部分,则两者有相同的带宽:b ASK PSK f B B 222== (3)频带利用率:与2ASk 相同,为:)/(2122Hz Baud ASK PSK ==ηη四、课后作业或思考题:1、2PSK 信号的功率谱由哪两部分组成?带宽为多少?五、本节小结:对本节内容进行小结)(f P s )(2f P PSK c f c b b b c b c b c b c f f --(a)(b)。
数字通信作业(4p s k-2P S K分析)有完整程序Digital Communication Project————2PSK and 4PSKRequirements:Please use Matlab programming to implement some digital baseband communication systems and plot the BER(bit error probability)目录:Digital Communication Project (2)————2PSK and 4PSK (2)一、基本理论 (4)1.二进制移相键控(2PSK)的基本原理 (4)1.1 2PSK信号的产生 (4)1.2 2PSK的解调系统 (4)1.3 2PSK误码率分析 (5)2.四进制移相键控(4PSK)的基本原理 (5)2.1 4PSK信号的产生 (7)2.2 4PSK的解调系统 (7)2.3 4PSK误码率分析 (8)二、源程序及仿真分析 (8)1.2PSK源程序及仿真分析 (8)2.4PSK源程序及仿真分析 (10)3.2PSK和4PSK误码率分析 (11)一、基本理论1.二进制移相键控(2PSK)的基本原理2PSK信号的产生方法通常有两种:模拟调制法和键控法。
一般的模拟幅度调制的方法,用乘法器实现;数字键控法的开关电路受s(t)控制。
2PSK信号基本的解调方法是相干解调。
2PSK,二进制移相键控方式,是键控的载波相位按基带脉冲序列的规律而改变的一种数字调制方式。
就是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换的一种相位调制方法。
两个载波相位通常相差180度,此时称为反向键控(PSK),也称为绝对相移方式。
1.1 2PSK信号的产生2PSK的产生:模拟法和数字键控法。
就模拟调制法而言,与产生2ASK信号的方法比较,只是对s(t)要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB调幅信号。
模拟调制法如图1.1所示。
而就键控法来说,用数字基带信号s(t)控制开关电路,选择不同相位的载波输出,这时s(t)为单极性NRZ或双极性NRZ脉冲序列信号均可。
数字键控法如图1.2所示。
图1.1 模拟法图1.2 数字法1.2 2PSK的解调系统2PSK信号属于DSB信号,它的解调,不再能采用包络检测的方法,只能进行相干解调。
解调可分为载波提取法和直接解调。
2PSK信号的解调大多都采用相干解调方式,在码源时间间隔为Ts的区间内,发送端的2PSK信号可表示2PSK相干解调系统框图及个测试行波形如图1.3所示。
图1.3 2PSK相干解调系统框图及个测试点波形1.3 2PSK误码率分析通信系统的抗噪声性能是指系统克服加性噪声影响的能力。
在数字通信系统中,信道噪声有可能使传输码元产生错误,错误程度通常用误码率来衡量。
因此,与分析数字基带系统的抗噪声性能一样,分析数字调制系统的噪声性能,也就是求系统在信道噪声干扰下的总误码率。
误码率(BER:bit error ratio)是衡量数据在规定时间内数据传输精确性的指标。
误码率是指错误接收的码元数在传输总码元数中所占的比例,更确切地说,误码率是码元在传输系统中被传错的概率,即误码率=错误码元数/传输总码元数。
如果有误码就有误码率。
误码的产生是由于在信号传输中,衰变改变了信号的电压,致使信号在传输中遭到破坏,产生误码。
噪音、交流电或闪电造成的脉冲、传输设备故障及其他因素都会导致误码(比如传送的信号是1,而接收到的是0;反之亦然)。
误码率是最常用的数据通信传输质量指标。
它表示数字系统传输质量的式是“在多少位数据中出现一位差错”。
误信率,又称误比特率,是指错误接收的比特数在传输总比特数中所占的比例,即误比特率=错误比特数/传输总比特数。
在数字通信系统中,可靠性用误码率和误比特率表示。
2PSK的误码率计算公式为:21[11/2Pe=--(公式1)2PSK误比特率计算公式为:1/2Pe=(公式2)2.四进制移相键控(4PSK)的基本原理四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。
4PSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,275°,调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。
每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。
4PSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。
解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。
数字调制用“星座图”来描述,星座图中定义了一种调制技术的两个基本参数:(1)信号分布;(2)与调制数字比特之间的映射关系。
星座图中规定了星座点与传输比特间的对应关系,这种关系称为“映射”,一种调制技术的特性可由信号分布和映射完全定义,即可由星座图来完全定义。
首先将输入的串行二进制信息序列经串-并变换,变成m=log2M个并行数据流,每一路的数据率是R/m,R是串行输入码的数据率。
I/Q信号发生器将每一个m比特的字节转换成一对(pn,qn)数字,分成两路速率减半的序列,电平发生器分别产生双极性二电平信号I(t)和Q(t),然后对coswct和sinwct进行调制,相加后即得到4PSK信号。
4PSK是一种频谱利用率高、抗干扰性强的数调制方式, 它被广泛应用于各种通信系统中. 适合卫星广播。
例如,数字卫星电视DVB2S 标准中,信道噪声门限低至4. 5 dB,传输码率达到45Mb/s,采用4PSK 调制方式,同时保证了信号传输的效率和误码性能。
四进制绝对相移键控(4PSK)直接利用载波的四种不同相位来表示数字信息。
如下:图1.4 4PSK信号相位矢量图由于每一种相位代表两个比特信息,因此每个四进制码元可以用两个二进制码元的组合来表示。
两个二进制码元中的前一比特用a来表示,后一比特用b表示,则双比特ab与载波相位的关系入下表:表1 双比特ab与载波相位的关系四进制信号可等效为两个正交载波进行双边带调制所得信号之和。
这样,就把数字调相和线性调制联系起来,为四相波形的产生提供依据。
2.1 4PSK 信号的产生4PSK 的调制方法有正交调制方式(双路二相调制合成法或直接调相法)、相位选择法、插入脉冲法等。
这里我们采用正交调制方式。
4PSK 的正交调制原理如图:图1.5 4PSK 正交调制原理方框图它可以看成是由两个载波正交的2PSK 调制器构成的。
图中串/并变换器将输入的二进制序列分为速度减半的两个并行双极性序列a 和b (a,b 码元在事件上是对齐的),再分别进行极性变换,把极性码变为双极性码(0→-1,1→+1)然后分别调制到cos ωct 和sin ωct 两个载波上,两路相乘器输出的信号是相互正交的抑制载波的双边带调制(DSB )信号,其相位与各路码元的极性有关,分别由a 和b 码元决定。
经相加电路后输出两路的合成波形,即是4PSK 信号。
图中两个乘法器,其中一个用于产生00与0180两种相位状态,另一个用于产生090与0180两种相位状态,相加后就可以得到045,0135,0225,和0315四种相位。
2.2 4PSK 的解调系统4PSK 信号是两个载波正交的2PSK 信号的合成。
所以,可以仿照2PSK 相干检测法,用两个正交的相干载波分别检测两个分量 a 和b ,然后还原成二进制双比特串行数字信号。
此法称作极性比较法(相干解调加码反变换器方式或相干正交解调发)图1.6 4PSK 信号解调器原理方框图在不考虑噪声及传输畸变时,接收机输入的4PSK 信号码元可表示为:表1.2 抽样判决器的判决准则判决器是按极性来判决的。
即正抽样值判为1,负抽样值判为0。
两路抽样判决器输出a 、b ,经并/串变换器就可将并行数据恢复成串行数据。
2.3 4PSK 误码率分析4PSK 的误码率计算公式为:21[11/2Pe =--4PSK 误比特率计算公式为:1/2Pe =二、 源程序及仿真分析1. 2PSK 源程序及仿真分析clc clear allM = 2; % The order for modulate of PSKnPacket = 5000; % The signal length x = randint(nPacket,1,M); % Signal for modulateh = modem.pskmod(M); % Creat an object of PSK modulation y = modulate(h,x); % modulate x get y scatterplot(y);yn = awgn(y,15,'measured'); % Pass the gauss channel with SNR=15dB scatterplot(yn);reset(h); h = modem.pskdemod(M); z = demodulate(h,yn); [num,rt]= symerr(x,z)%% Process rectanglar pulse shapingNsamp = 4; % Oversampling rate ypulse = rectpulse(y,Nsamp);ynoisy = awgn(ypulse,15,'measured'); ydownsamp = intdump(ynoisy,Nsamp); scatterplot(ydownsamp); reset(h);h = modem.pskdemod(M); z = demodulate(h,ydownsamp); [num,rt]= symerr(x,z)图2.1 没有噪声时的星座图Q u a d r a t u r eIn-PhaseScatter plot图2.2 有噪声时的星座图图2.3 矩形脉冲整形后的有噪声时的星座图2. 4PSK 源程序及仿真分析M = 4; % The order for modulate of PSKnPacket = 5000; % The signal length x = randint(nPacket,1,M); % Signal for modulateh = modem.pskmod(M); % Creat an object of PSK modulation y = modulate(h,x); % modulate x get y scatterplot(y);yn = awgn(y,15,'measured'); % Pass the gauss channel with SNR=15dB scatterplot(yn);reset(h); h = modem.pskdemod(M); z = demodulate(h,yn); [num,rt]= symerr(x,z)Q u a d r a t u r eIn-PhaseScatter plotQ u a d r a t u r eIn-PhaseScatter plot图2.4 没有噪声时的星座图图2.5 有噪声时的星座图3. 2PSK 和4PSK 误码率分析 clc;clear all; close all;nsymbol=100000;%每种信噪比下的发送符号数 M=2;%2-PSK N=4;%4-PSKEbN0=-5:20;%信噪比的范围snr1=10.^(EbN0/10);%将dB 值转化成线性值msg=randint(1,nsymbol,M);%由0-1的整数值组成的均匀随机数 msgmod=pskmod(msg,M);%2-PSK 调制spow=norm(msgmod).^2/nsymbol;%求出每个符号的平均功率 nsg=randint(1,nsymbol,N);%由0-4的整数值组成的均匀随机数 nsgmod=pskmod(nsg,N);%4-PSK 调制spow1=norm(nsgmod).^2/nsymbol;%求出每个符号的平均功率 for indx=1:length(EbN0)Q u a d r a t u r eIn-PhaseScatter plotQ u a d r a t u r eIn-PhaseScatter plotsigma=sqrt(spow/(2*snr1(indx))) ;%2-PSK 根据符号功率求出噪声功率 sigma1=sqrt(spow1/(2*snr1(indx))) ;%4-PSK 根据符号功率求出噪声功率rx=msgmod+sigma*(randn(1,length(msgmod))+j*randn(1,length(msgmod))); %2-PSK 混入高斯加性白噪声rx1=nsgmod+sigma1*(randn(1,length(nsgmod))+j*randn(1,length(nsgmod))); %4-PSK 混入高斯加性白噪声decmsg=pskdemod(rx,M);%2-PSK 的解调 decnsg=pskdemod(rx1,N);%4-PSK 的解调 %2-PSK[err,ser(indx)]=symerr(msg,decmsg);%求误符号率 %4-PSK[err,ser1(indx)]=symerr(nsg,decnsg);%求误符号率 endsemilogy(EbN0,ser,'b*-',EbN0,ser1,'rd-'); title('M-PSK 调制信号在AWGN 信道下的性能'); grid;xlabel('Eb/N0(dB)');ylabel('误码率'); legend('2-PSK','4-PSK');图2.6 M-PSK 调制信号在AWGN 信道下的性能-6-4-202468101210-510-410-310-210-110M-PSK 调制信号在AWGN 信道下的性能Eb/N0(dB)误码率。