2020年材料力学习题册答案-第9章 压杆稳定
- 格式:doc
- 大小:548.00 KB
- 文档页数:9
15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)?解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。
15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。
解:(a) 柔度: 2301500.4λ⨯== 相当长度:20.30.6l m μ=⨯=(b) 柔度: 1501250.4λ⨯== 相当长度:10.50.5l m μ=⨯=(c) 柔度: 0.770122.50.4λ⨯== 相当长度:0.70.70.49l m μ=⨯=(d) 柔度: 0.590112.50.4λ⨯== 相当长度:0.50.90.45l m μ=⨯=(e) 柔度: 145112.50.4λ⨯== 相当长度:10.450.45l m μ=⨯=由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。
即:()22cr EIF l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为:()2948222320010 1.610640.617.6410cr EFF l N πππμ-⨯⨯⨯⨯⨯===⨯()2948222320010 1.610640.4531.3010cr EIF l Nπππμ-⨯⨯⨯⨯⨯===⨯15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。
解:92.633827452.5p s s a λπσλ===--===15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr F 。
压杆稳定习题及答案【篇一:材料力学习题册答案-第9章压杆稳定】xt>一、选择题1、一理想均匀直杆受轴向压力p=pq时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( a )。
a、弯曲变形消失,恢复直线形状;b、弯曲变形减少,不能恢复直线形状; c、微弯状态不变; d、弯曲变形继续增大。
2、一细长压杆当轴向力p=pq时发生失稳而处于微弯平衡状态,此时若解除压力p,则压杆的微弯变形( c )a、完全消失b、有所缓和c、保持不变d、继续增大 3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( d)来判断的。
a、长度b、横截面尺寸c、临界应力d、柔度 4、压杆的柔度集中地反映了压杆的( a)对临界应力的影响。
a、长度,约束条件,截面尺寸和形状;b、材料,长度和约束条件;c、材料,约束条件,截面尺寸和形状;d、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( c )a.60;b.66.7;c.80;d.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( d )所示截面形状,其稳定性最好。
≤?≥?- 1 -10、在材料相同的条件下,随着柔度的增大( c)a、细长杆的临界应力是减小的,中长杆不是;b、中长杆的临界应力是减小的,细长杆不是; c、细长杆和中长杆的临界应力均是减小的; d、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( a )a. 临界应力一定相等,临界压力不一定相等;b. 临界应力不一定相等,临界压力一定相等;c. 临界应力和临界压力一定相等;d. 临界应力和临界压力不一定相等;a、杆的材质b、杆的长度c、杆承受压力的大小d、杆的横截面形状和尺寸二、计算题1、有一长l=300 mm,截面宽b=6 mm、高h=10 mm的压杆。
第九章 压杆稳定§9—1 概述短粗压杆——[]σσ≤=AF Nmax (保证具有足够的强度) 细长压杆——需考虑稳定性。
一、压杆稳定性的概念:在外力作用下,压杆保持原有直线平衡状态的能力。
二、压杆的稳定平衡与不稳定平衡:三、临界的平衡状态:给干扰力时,在干扰力给定的位置上平衡;无干扰力时,在原有的直线状态上平衡。
(它是稳定与不稳定的转折点)。
压杆的临界压力:Fcr ( 稳定平衡的极限荷载)四、判断压杆稳定的标志——F cr稳定的平衡状态——cr F F 临界的平衡状态——cr F F =不稳定的平衡状态(失稳)——cr F F§9—2 两端铰支细长压杆的临界力假定压力以达到临界值,杆已经处于微弯状态且服从虎克定律,如图,从挠曲线入手,求临界力。
①、弯矩:w F x M cr -=)(②、挠曲线近似微分方程:w F x M w EI cr -=='')( 即,0=+''w EIF w cr令 EIF k cr =202=+''w k w ③、微分方程的解:kx B kx A w cos sin += ④、确定微分方程常数:0)()0(==L w w )sin (.0sin 0,B kx w kL ===→πn Kl =(n=0、1、2、3……)EIF L n k cr==∴π222L EI n F cr π=→临界力 F c r 是微弯下的最小压力,故,只能取n=1 ;且杆将绕惯性矩最小的轴弯曲。
2min2cr F L EI π=∴§9—3 其它支承下细长压杆的临界力2min2)(l EI F cr μπ=——临界力的欧拉公式(μ——长度系数,L ——实际长度,μL ——相当长度) 公式的应用条件:1、理想压杆;2、线弹性范围内;【例】:试由挠曲线近似微分方程,导出下述细长压杆的临界力公式。
解:变形如图,其挠曲线近似微分方程为:0)(m w F x M w EI cr -==''EI F k cr =2:令 crF m k w k w EI 022=+'' kx d kx c w sin cos += 边界条件为:.0,;0,0='==='==w w L x w w x, 2,,00πn kL F m d c cr=-== 为求最小临界力, “ n ”应取除零以外的最小值,即取:π2=kL所以,临界力为:2222)2/(4L EIL EI F cr ππ== (μ=0.5)【例】:求下列细长压杆的临界力。
作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A、弯曲变形消失,恢复直线形状;B、弯曲变形减少,不能恢复直线形状;C、微弯状态不变;D、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q时发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形( C )A、完全消失B、有所缓和C、保持不变D、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A、长度B、横截面尺寸C、临界应力D、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A、长度,约束条件,截面尺寸和形状;B、材料,长度和约束条件;C、材料,约束条件,截面尺寸和形状;D、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m,直径50mm。
其柔度为 ( C )A.60;B.66.7;C.80;D.507、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤、λ≤C 、λ≥π D、λ≥10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
A 、细长杆的σe 值与杆的材料无关;B 、中长杆的σe 值与杆的柔度无关;C 、中长杆的σe 值与杆的材料无关;D 、粗短杆的σe 值与杆的柔度无关; 13、细长杆承受轴向压力P 的作用,其临界压力与( C )无关。
A 、杆的材质B 、杆的长度C 、杆承受压力的大小D 、杆的横截面形状和尺寸二、计算题1、 有一长l =300 mm ,截面宽b =6 mm 、高h =10 mm 的压杆。
两端铰接,压杆材料为Q235钢,E =200 GPa ,试计算压杆的临界应力和临界力。
解:(1)求惯性半径i对于矩形截面,如果失稳必在刚度较小的平面内产生,故应求最小惯性半径mm 732.1126121123minmin ===⨯==b bhhb AI i(2)求柔度λλ=μl /i ,μ=1,故 λ=1×300/1.732=519>λp =100 (3)用欧拉公式计算临界应力()MPa 8.652.1731020ππ24222cr =⨯==λσE(4)计算临界力F cr =σcr ×A =65.8×6×10=3948 N=3.95 kN2、一根两端铰支钢杆,所受最大压力KN P 8.47=。
其直径mm d 45=,长度mm l 703=。
钢材的E =210GPa ,p σ=280MPa ,2.432=λ。
计算临界压力的公式有:(a) 欧拉公式;(b) 直线公式cr σ=461-2.568λ(MPa)。
试 (1)判断此压杆的类型;(2)求此杆的临界压力;解:(1) 1=μ 8621==P E σπλ 5.624===d lil μμλ由于12λλλ<<,是中柔度杆。
(2)cr σ =461-2.568λMPaKN A P cr cr 478==σ3、活塞杆(可看成是一端固定、一端自由),用硅钢制成,其直径d=40mm ,外伸部分的最大长度l =1m ,弹性模量E=210Gpa ,1001=λ。
试(1)判断此压杆的类型;(2)确定活塞杆的临界载荷。
解:看成是一端固定、一端自由。
此时2=μ,而,所以,。
故属于大柔度杆-用大柔度杆临界应力公式计算。
4、托架如图所示,在横杆端点D 处受到P=30kN 的力作用。
已知斜撑杆AB 两端柱形约束(柱形较销钉垂直于托架平面),为空心圆截面,外径D=50mm 、内径d=36mm ,材料为A3钢,E=210GPa 、p σ=200MPa 、s σ=235MPa 、a=304MPa 、b=1.12MPa 。
若稳定安全系数n w =2,试校杆AB 的稳定性。
1.5m0.5mC ABD30o解 应用平衡条件可有∑=0A M ,107N 5.05.11040230sin 5.123=⨯⨯⨯==P N BD kN 2cm 837.32=A ,4cm 144=y I ,cm 04.2=y i ,4cm 1910=x Icm 64.7=x iA3钢的4.99=P λ,1.57=S λ压杆BA 的柔度S x x i lλμλ<=⨯==7.220764.030cos 5.11Pyy i lλμλ<=⨯==9.820209.030cos 5.11因x λ、y λ均小于P λ,所以应当用经验公式计算临界载荷()[]N 109.8212.130400329.0)(6⨯⨯-⨯=-==y cr cr b a A A P λσ695=kN压杆的工作安全系数55.6107695=>==st n n作者:非成败作品编号:92032155GZ5702241547853215475102 时间:2020.12.13BA 压杆的工作安全系数小于规定的稳定安全系数,故可以安全工作。
5、 如图所示的结构中,梁AB 为No.14普通热轧工字钢,CD 为圆截面直杆,其直径为d =20mm ,二者材料均为Q235钢。
结构受力如图所示,A 、C 、D 三处均为球铰约束。
若已知p F =25kN ,1l =1.25m ,2l =0.55m ,s σ=235MPa 。
强度安全因数s n =1.45,稳定安全因数st []n =1.8。
试校核此结构是否安全。
解:在给定的结构中共有两个构件:梁AB ,承受拉伸与弯曲的组合作用,属于强度问题;杆CD ,承受压缩荷载,属稳定问题。
现分别校核如下。
(1) 大梁AB 的强度校核。
大梁AB 在截面C 处的弯矩最大,该处横截面为危险截面,其上的弯矩和轴力分别为3max p 1(sin 30)(25100.5) 1.25M F l ==⨯⨯⨯° 315.6310(N m)15.63(kN m)=⨯⋅=⋅3N p cos302510cos30F F ==⨯⨯°°321.6510(N)21.65(kN)=⨯=由型钢表查得14号普通热轧工字钢的 333222102cm 10210mm 21.5cm 21.510mmz W A ==⨯==⨯由此得到33max N max392415.631021.6510102101021.51010z M F W A σ--⨯⨯=+=+⨯⨯⨯⨯ 6163.210(Pa)163.2(MPa)=⨯= Q235钢的许用应力为ss235[]162(MPa)1.45n σσ===max σ略大于[]σ,但max ([])100%[]0.7%5%σσσ-⨯=<,工程上仍认为是安全的。
(2) 校核压杆CD 的稳定性。
由平衡方程求得压杆CD 的轴向压力为N p p 2sin 3025(kN)CD F F F ===° 因为是圆截面杆,故惯性半径为 5(mm)4I di A === 又因为两端为球铰约束 1.0μ=,所以p 31.00.55110101510li μλλ-⨯===>=⨯这表明,压杆CD 为细长杆,故需采用式(9-7)计算其临界应力,有 222932Pcrcr 2220610(2010)41104Ed F A σλ-πππ⨯⨯π⨯⨯==⨯=⨯352.810(N)52.8(kN)=⨯=于是,压杆的工作安全因数为cr Pcr w st w N 52.82.11[] 1.825CD F n n F σσ====>=这一结果说明,压杆的稳定性是安全的。
上述两项计算结果表明,整个结构的强度和稳定性都是安全的。
6、一强度等级为TC13的圆松木,长6m ,中径为300mm ,其强度许用应力为10MPa 。
现将圆木用来当作起重机用的扒杆,试计算圆木所能承受的许可压力值。
解:在图示平面内,若扒杆在轴向压力的作用下失稳,则杆的轴线将弯成半个正弦波,长度系数可取为1μ=。
于是,其柔度为168010.34liμλ⨯===⨯ 根据80λ=,求得木压杆的稳定因数为22110.39880116565ϕλ===⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭从而可得圆木所能承受的许可压力为62[][]0.398(1010)(0.3)281.34F A ϕσπ==⨯⨯⨯⨯=(kN)如果扒杆的上端在垂直于纸面的方向并无任何约束,则杆在垂直于纸面的平面内失稳时,只能视为下端固定而上端自由,即2μ=。
于是有2616010.34liμλ⨯===⨯ 求得22280028000.109160ϕλ=== 62[][]0.109(1010)(0.3)774F A ϕσπ==⨯⨯⨯⨯=(kN)显然,圆木作为扒杆使用时,所能承受的许可压力应为77 kN ,而不是281.3 kN 。
7、 如图所示,一端固定另一端自由的细长压杆,其杆长l = 2m ,截面形状为矩形,b = 20 mm 、h = 45 mm ,材料的弹性模量E = 200GPa 。
试计算该压杆的临界力。
若把截面改为b = h =30 mm ,而保持长度不变,则该压杆的临界力又为多大? 解:(一)、当b=20mm 、h=45mm 时 (1)计算压杆的柔度692.82012liμλ===>123c λ=(所以是大柔度杆,可应用欧拉公式)(2)计算截面的惯性矩由前述可知,该压杆必在xy 平面内失稳,故计算惯性矩4433100.312204512mm hb I y ⨯=⨯== (3)计算临界力μ = 2,因此临界力为()()kN N l EI Fcr 70.337012210310200289222==⨯⨯⨯⨯⨯==-πμπ (二)、当截面改为b = h = 30mm 时 (1)计算压杆的柔度461.93012liμλ===>123c λ=(所以是大柔度杆,可应用欧拉公式)(2)计算截面的惯性矩44431075.6123012mm bh I I z y ⨯====代入欧拉公式,可得()()N l EI F cr 8330221075.610200289222=⨯⨯⨯⨯⨯==-πμπ 从以上两种情况分析,其横截面面积相等,支承条件也相同,但是,计算得到的临界力后者大于前者。