无线电通讯、导航系统与设施及雷达服务概要
- 格式:ppt
- 大小:2.62 MB
- 文档页数:40
民航航行的通信与导航系统航空器通信与导航系统在民航航行中起着至关重要的作用。
它们不仅保障了航班的安全与顺利进行,还提升了航空交通的效率和准确性。
本文将重点探讨民航航行中通信与导航系统的关键要素和技术。
一、通信系统航空器通信系统主要用于飞行员与地面控制中心、其他航空器、地面导航设施等之间的无线通信。
通信系统通过无线电波进行信息传递,使飞行员能够接收和发送必要的航行信息,保持与外界的联系和协调。
1. VHF通信VHF通信是现代民航通信系统中的主要方式。
VHF(Very High Frequency)频段的通信具有较高的传输质量和可靠性。
飞行员可以通过VHF频段与地面控制中心进行语音通信,共享飞行计划、气象信息等。
同时,VHF通信还支持机队之间的通信,提供航班之间的协调和保障。
2. ACARS系统ACARS(Aircraft Communications Addressing and Reporting System)是一种通过VHF或卫星通信网络进行应答和消息传输的系统。
ACARS 系统可以实时传输各类航行数据,包括飞机位置、机载系统状态、燃油消耗等。
这些数据对于飞行员和地面运营人员来说至关重要,可以用于监测航班状态和及时调整飞行计划。
二、导航系统航空导航系统是指用于确定和控制航空器位置、航向和航行路径的技术与设备。
它能够为飞行员提供准确的导航信息,确保航班安全和准时到达目的地。
1. 惯性导航系统惯性导航系统是一种独立于地面导航设施的导航技术。
该系统通过感知航空器的加速度和转弯率来测定飞行器的当前位置和速度。
惯性导航系统不受天气、地形等外界因素的限制,能够提供高度准确的导航数据。
2. 全球定位系统全球定位系统(GPS)是一种卫星导航系统,通过一组卫星和地面控制站来实现全球范围内的位置定位和导航。
飞机上安装的GPS接收器能够接收卫星发射的导航信号,计算出飞机的准确位置,并传输给飞行员。
GPS技术无需依赖地面基础设施,并且具有高精度和全天候可用的特点。
通信导航与雷达通信导航与雷达是现代通信和无线电技术领域中的两个重要应用,它们的发展和应用在国防、民用和科学研究等领域中发挥着不可替代的作用。
本文将从通信导航和雷达的定义、工作原理、应用和未来发展等方面进行阐述,旨在为读者深入了解这两种技术提供参考。
一、通信导航的定义和工作原理通信导航,又称通信定位,是一种通过无线电通信实现定位的技术。
它结合了无线通信和定位技术,可以用来实时跟踪和定位对象,为用户提供所需的位置信息和导航服务。
通信导航的实现主要依靠对象与地面基站通信和信号传输,因此必须具备一定的通信设施和技术支持。
通信导航系统的工作原理是先将发射信号的位置和时间等信息记录下来,再将信号通过基站发送出去。
当接收器接收到信号时,也会记录下信号的到达时间,并与该信号来自的基站进行通信,通过计算时间差,确定了自身与基站之间的距离。
同时,由于基站的位置事先已知,因此收到信号的位置也就可以确定。
通过多个基站发出信号,同时监测信号到达时间,就可确定用户的位置。
通信导航技术在民航、汽车定位和手机导航等方面的应用非常广泛。
GPS导航系统就是一种基于卫星通信的定位系统,采用了类似的方法来确定用户的位置。
未来,通信导航技术还将应用于更多的领域,助力人类实现更加精准的定位和导航。
二、雷达的定义和工作原理雷达是一种主动探测技术,具有高精度、双向探测、远距离等特点,主要用于目标探测、跟踪和识别。
雷达技术是由电磁波的发射和接收组成的,通过发送电磁波,探测目标并接收反弹回来的信号进行信号处理,实现目标的探测和识别。
雷达系统的主要部分包括:雷达发射器、天线、接收器和信号处理模块。
其中,雷达发射器主要负责发射电磁波;天线负责将发射出的电磁波发向目标,并接收目标反弹回来的电磁波;接收器则负责接收返回的电磁信号,并将其转发给信号处理模块,信号处理模块对接收到的信号进行处理、分析和解码,之后确定目标的位置和运动情况。
雷达技术在国防、气象、交通和地质探测等领域具有广泛的应用,如军事侦察、目标跟踪、气象监测、交通控制和海洋勘测等。
无线电导航设备与系统概述无线电导航是借助于载体上的电子设备接收和处理无线电波在空间传播时的无线电信号参量(如幅度、频率及相位等)获得载体相对导航台的导航参量(如方位、距离、速度等),从而获取载体的实时位置信息,以保障载体安全、准确、及时地到达目的地的一种导航手段。
无线电导航具有不受时间、天气的限制;精度高;定位时间短;设备简单、可靠等优点。
无线电导航的主要缺点在于它必须辐射和接收无线电波因而易被发现和干扰,且绝大多数无线电导航设备需要载体外的导航台支持工作,一旦导航台失效,将使与之相应的无线电导航设备在此期间无法使用。
航空导航系统所必备●确定所产生的信号特性的方法;●带有天线的发射机,用来产生和发射无线电波;●飞机接收设备和天线,用来截获信号并对接收到的信号进行选择和译码;●为驾驶员提供的适当的视觉显示装置,用来对接收到的信号进行适当的评价。
导航参量●用于描述载体的航行状态●载体航行状态指的是载体作为一个刚体在空间运动时所表现的物理状态,通常与一定的参照系(如载体坐标系、当地地理坐标系等)相联系,它们可以从不同的角度来进行描述,如方位、距离、位置、速度、姿态等,而狭义的航行状态通常仅仅局限于速度和姿态的描述。
●方位:以经线北端为基准,顺时针测量到水平面上某方向线的角度。
●相对方位:以飞机纵轴的前端与观测线在水平面上的夹角来表示目标的方向。
方位相对方位基本原理在二维或三维空间中,若导航台的位置已知,相对于该位置的某一导航参量相同的点的轨迹应为一条曲线或一个曲面,该曲线或曲面称为位置线或位置面;单值确定载体的位置,至少需要测定两条位置线(在二维空间内)或三个位置面(在三维空间内),根据相交定位法实现定位。
位置线(a)圆位置线;(b)直线位置线;(c) 等高线;(d)双曲线位置线相交定位 位置线定位原理☐ 如果通过无线电方式测量到了三个独立的几何参量,则可以得到,三个独立的位置面方程:⎪⎩⎪⎨⎧===),,(),,(),,(332111z y x f u z y x f u z y x f u☐ 因而可以得到载体在空间中的三维位置。
航空航天航空电子技术的通讯与导航系统随着科技的不断进步,航空航天航空电子技术的通讯与导航系统也得到了极大的发展与完善。
这些技术不仅让人类更加便捷地进行飞行,同时也保障了人类的生命安全。
在下文中,我将从各个方面来深入探讨航空航天航空电子技术的通讯与导航系统。
一、通讯系统航空飞行中的通讯系统已经不再是简单的对讲机或者无线电,现在的航空飞行通讯系统已经被广泛应用于许多不同的用途,从永久安装的交流装置到空管的无线电和航空电子设备。
其中,最常用的应该就是卫星通讯。
卫星通讯的作用在于解决飞机在远洋、复杂地形、高山区域等信号不覆盖的区域内无法及时与地面通讯的问题,尤其是在人口分布稀少的区域、国际海洋和极地等区域,卫星通讯更是必不可少。
在国外,特别是在美国,卫星通讯技术已经得到了广泛的应用,且广泛的用于航空通讯。
除此之外,此前常用的频率也已经换成更加先进和准确的数字化频率。
目前,无线电通信是采用复合频道,将通讯、导航和引导信息集成在一个频道中,节省频率、方便使用和管理等。
二、导航系统导航系统在飞行中同样起着至关重要的作用,它能够为飞机提供准确定位和安全导航,可以保证飞机正常飞行并避免出现误解方航向、位置等导致的事故。
通常,导航系统需要采用多种方式,包括星上导航、激光导航、电磁波导航等。
其中,全球卫星导航系统也越来越得到广泛应用,如我国的北斗卫星导航系统。
并且,航空公司为了便于操作和维护,现在通常选择一个或一种以上的导航系统作为主要导航来源。
在这些系统中, GPS 和惯性导航系统是最被广泛应用的技术之一。
除了卫星导航外,导航系统还可以在飞机上使用激光导航、电磁波导航、飞行数据记录、航空电子设备等。
其中,激光导航可以通过光束的强弱、速度等参数来维持飞机的运作,十分的准确。
三、航空电子设备航空电子设备是指航空飞行中用于支持飞行和导航的各种应用设备。
常见的设备包括通讯雷达系统、天气雷达系统、自动驾驶仪、高度仪、气压高度计等。
导航系统导航是指把飞机、导弹、宇宙飞行器、舰船等运动体从一个地方(如出发点)引导到目的地的过程。
导航系统的主要用途就是引导飞机沿着预定航线飞到预定地点,并能随时给出飞机准确的即时位置。
在军事上,导航系统还要配合其他系统完成武器投放、侦察、巡逻、反潜、预警和救援等任务。
早期的飞机主要依靠目视导航。
从20世纪20年代开始发展仪表导航,依靠磁罗盘、时钟、空速表和人工推算,确定飞机即时位置。
30年代出现了利用中波无线电台导航的无线电罗盘。
40年代开始研制甚高频伏尔(VOR)导航系统和仪表着陆系统(ILS)。
50年代惯性系统和多普勒雷达系统相继用于飞机导航。
作用距离达2000km的罗兰C无线导航系统于60年代初投入使用。
为满足军事上的需要,以后又相继研制出作用距离达10000km的奥米伽超远程导航系统和近程战术空中导航系统“塔康”(TACAN),70年代以后卫星导航系统问世,其中最著名的有美国的GPS和前苏联的GLONASS。
按照工作原理的不同,目前实际应用的飞机导航方法有下列几种:仪表导航、无线电导航、卫星导航、惯性导航、图像匹配导航、天文导航以及组合导航。
其中的仪表导航是利用飞机上的简单仪表(如空速表、磁罗盘、航向陀螺仪和时钟等)所提供的数据,通过人工计算或自动计算得出各种导航参数。
下面介绍除了仪表导航外的其他导航方式。
无线电导航系统无线电导航系统借助于无线电波的发射和接收,利用地面上设置的无线电导航台和飞机上的相应设备对飞机进行定位,测定飞机相对于导航台的方位、距离等参数,以确定飞行器的位置、速度、航迹等导航参数。
无线电导航很少受气候条件的限制,作用距离远、精度高、设备简单可靠,所以是飞机导航的主要技术手段之一。
尤其在夜间或复杂气象条件下,要保证飞行器的安全着陆,无线电导航设备更是必不可少的导航工具。
无线电导航系统按所测定的导航参数可分为:测向系统,如无线电罗盘和甚高频全向无线电信标(VOR)系统;测距系统,如无线电高度表和测距设备(DME);测距差系统,即双曲线无线电导航系统,如罗兰C和奥米伽导航系统;测角距系统,如战术空中导航(TACAN)和VOR/DME系统;测速系统,如多普勒雷达。
机场导航知识点总结机场导航是飞行员和航空交通管制员的重要工具,它确保了航班的安全和准时。
在本文中,我们将探讨机场导航的知识点,包括常见的导航设备、导航程序和导航术语。
导航设备1. 无线电导航设备- VOR(全向超高频距离测定机):VOR是一种广泛使用的导航设备,它通过从地面向天空发射无线电信号,飞行员可以利用这些信号确定飞机相对于VOR站的位置和航向。
- DME(距离测定机):DME是一种用来测定飞机与地面远程设备之间距离的导航设备,通常与VOR结合使用,能够提供水平位置和距离信息。
2. 全球卫星导航系统(GPS)- GPS是一种基于卫星系统的导航设备,它可以提供精确的位置、速度和时间信息。
现代飞机普遍配备GPS设备,它已成为飞行员主要的导航工具之一。
3. 仪表着陆系统(ILS)- ILS是一种精密着陆系统,它通过向飞机发射无线电信号,提供水平和垂直引导,帮助飞行员准确地着陆。
ILS通常包括本地izer和滑行道灯光系统。
导航程序1. 飞行计划- 飞行计划是飞行员在执行航班前制定的一份详细计划,其中包含航线、预计飞行时间、燃油消耗、天气情况等信息。
2. 航向- 航向是飞行员确定飞机飞行方向的基本依据,它通常由指南针指示。
飞行员根据航向和地面标志物来确定飞机的位置。
3. 航路- 航路是飞机在空中飞行时沿着的路径,它通常由导航台、无线电信标、航路点等组成。
飞行员根据航路来规划飞行路线。
4. 空中交通管制- 空中交通管制是负责监控和指导飞机在空中飞行的组织,它负责确保飞机安全、有序地进行飞行。
导航术语1. 航向- 航向是指飞机相对于地面的方向,通常用罗盘或导航设备来确定。
2. 航线- 航线是飞机在空中飞行的路径,它由一系列的导航点和航路组成。
3. 航空电子图- 航空电子图是飞行员在执行航班时使用的一种电子地图,它提供了飞行所需的地形、航路和导航信息。
4. 关键点- 关键点是航线上的重要标志物,飞行员通常通过关键点来确定自己的位置和飞行进程。
雷达和无线电定位技术的原理及应用雷达是一种利用电磁波对目标进行探测的设备,其原理是利用电磁波在空气中的传播速度为光速,从而通过测量电磁波的往返时间和方向来确定目标的位置。
无线电定位技术则是基于雷达原理发展而来的技术,可用于航空、航海、军事、交通、通信等许多领域。
一、雷达及无线电定位技术的基本原理雷达的核心部件是发射器、天线和接收器。
它的工作原理是将电磁波发送到目标,若目标存在,则会将一部分返回,然后由接收器接收这些返回信号,并计算出目标的位置、运动方向和速度等信息。
无线电定位技术是利用电磁波与目标的相互作用来确定目标的位置。
通过发射和接收具有一定频率和波长的电磁波,利用接收到的信息计算出目标的位置、距离和方向等信息。
其中,常用的无线电定位技术包括雷达、无线电方位角定位、无线电距离测量和全球定位系统等。
二、雷达及无线电定位技术的应用1. 航空领域雷达和无线电定位技术应用于航空领域,可以提供关键的飞行数据和设置导航路径。
如在云层中通过雷达扫描确定飞行路径,准确判断跑道方向,以及使用全球卫星定位系统等技术实现精准导航。
2. 航海领域在航海领域,雷达和无线电定位技术同样具有重要应用价值。
在海上航行中,通过雷达精确掌握船舶位置、距离和航向等信息,以及利用全球卫星定位系统实现精准导航和定位。
3. 军事领域在军事领域,雷达和无线电定位技术同样具有重要作用。
它们可以用于监视和掌握战场情况,警戒侦察、隐蔽作战等各种军事作战活动。
例如,雷达导弹和无线电定位技术等可以用于识别潜在威胁,制定应对策略。
4. 通信领域通信是现代社会必不可少的一种基本需求,雷达和无线电定位技术可用于次一层面实现数据传输和交流。
按照频段的不同,无线电通信技术可分为高频、中频和低频等,其中利用微波和天线的高频无线电通信技术应用广泛。
5. 交通领域雷达和无线电定位技术在交通领域也有着广泛的应用。
如在地铁或其他交通工具上,通过安装雷达设备实现对象定位和实时数据传输,帮助实现数据记录和轨道监视。