MD收放卷张力控制资料
- 格式:ppt
- 大小:1.15 MB
- 文档页数:46
第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。
1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。
转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。
根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。
MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。
2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。
张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。
2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。
3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。
摩3擦补偿可以克服系统阻力对张力产生的影响。
3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。
张力控制专用变频器MD330用户手册V E R:0目 录第一章 概述 (1)第二章 张力控制原理介绍 (2)2.1 典型收卷张力控制示意图 (2)2.2 张力控制方案介绍 (3)第三章 功能参数表 (6)第四章 参数说明 (12)4.1 控制模式选择部分 (12)4.2 张力设定部分: (14)4.3 卷径计算部分 (15)4.4 线速度输入部分 (18)4.5 张力补偿部分 (19)4.6 PID参数 (21)4.7 自动换卷参数 (22)4.8 增补部分参数 (23)第一章 概述本手册需与《MD320用户手册》配合使用。
本手册仅介绍与卷曲张力控制有关的部分,其他的基本功能请参考《MD320用户手册》。
当张力控制模式选为无效时,变频器的功能与MD320完全相同。
MD330用于卷曲控制,可以自动计算卷径,在卷径变化时仍能够获得恒张力效果。
在没有卷径变化的场合实现恒转矩控制,建议使用MD320变频器。
选用张力控制模式后,变频器的输出频率和转矩由张力控制功能自动产生,F0组中频率源的选择将不起作用。
1第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。
1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。
转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。
根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。
MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。
收放卷卷曲张力设定值1. 引言在卷曲工艺中,卷曲张力是一个关键的参数。
卷曲张力的设定值的准确性和合理性对于保证产品质量和生产效率至关重要。
本文将介绍卷曲张力设定值的含义、影响因素以及如何合理设定卷曲张力设定值。
2. 卷曲张力设定值的含义卷曲张力设定值指的是在卷曲过程中,为了保证卷曲质量和生产效率,所设定的卷曲张力的数值。
卷曲张力设定值通常以单位长度(如N/m)表示,表示每单位长度上的张力大小。
3. 影响卷曲张力设定值的因素卷曲张力设定值的合理性需要考虑以下几个因素:3.1 材料特性不同材料的特性对卷曲张力设定值有不同的影响。
例如,材料的强度、硬度、伸长率等都会对卷曲张力设定值产生影响。
较硬的材料通常需要较大的卷曲张力,以保证卷曲的稳定性。
3.2 卷曲设备卷曲设备的性能和参数也会对卷曲张力设定值产生影响。
例如,卷曲设备的速度、张力控制系统的精度等都会对卷曲张力设定值产生影响。
较高的卷曲速度通常需要较大的卷曲张力。
3.3 卷曲要求不同的卷曲要求对卷曲张力设定值也有不同的要求。
例如,某些产品对卷曲张力的要求较高,需要设定较小的卷曲张力,以避免材料变形或破坏。
4. 如何合理设定卷曲张力设定值合理设定卷曲张力设定值需要综合考虑以上因素,并进行实际测试和调整。
以下是一个设定卷曲张力设定值的一般步骤:4.1 了解材料特性首先,需要了解所使用材料的特性,包括强度、硬度、伸长率等。
可以通过材料供应商提供的技术参数或实验室测试来获取这些信息。
4.2 了解卷曲设备性能其次,需要了解所使用的卷曲设备的性能参数,包括速度、张力控制系统的精度等。
可以通过设备厂商提供的技术参数或实际测试来获取这些信息。
4.3 进行实验测试根据材料特性和设备性能,选择一组初步的卷曲张力设定值进行实验测试。
可以在实际生产环境中进行小规模试生产,观察卷曲质量和生产效率,并对卷曲张力设定值进行调整。
4.4 优化调整根据实验测试的结果,对卷曲张力设定值进行优化调整。
第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。
1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。
转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。
根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。
MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。
2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。
张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。
2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。
3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。
摩3擦补偿可以克服系统阻力对张力产生的影响。
3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。
MD330收、放卷张力变频参数设定一、变频调试和参数设定汇川MD330变频器为用于收放卷张力控制的专用变频器,是从MD320基础上添加的功能,所以当不选用张力控制是用法和MD320一样。
首先参考下表接线:接线图:收放卷方式,张力输入为AI1,线速度输入为AI2MD330变频调试步骤如下:1、参数恢复出厂值:才能上电,参数设定前先对变频器参数初始化(FP-01=1)同时按ENT键确认,即变频器参数恢复出厂设定值。
2、调好开环矢量:(注意调谐时加速和减速时间不可设置太小,保持出厂的默认数据即可。
)3、调好闭环矢量F2-11=编码器脉冲数(电机运行一圈编码器反馈的脉冲数)F0-02=1开环矢量成功后将编码器的脉冲数(,将F0-01参数改为“有速度传感器矢量控制”模式,按键和启停变频器分别让其运行5HZ、50HZ观察及电流,2中相差不大,如果电流比较大或者变频器停不下来,一般是编码器反馈回路有问题,停不下来需按急停断电才能停下来。
可能由以下原因造成:a检查F2-11是否设定正确,b编码器A、B相接线是否正确,是否接反了,必要时调换A、B相c检查编码器是否有松动、如有需紧固螺丝d外部线路有无松动情况以上步骤没问题才进行以下参数设定:4、其他参数设定:开环运行成功后,就可进行张力控制模式,目前常用的模式为:开环转矩控制模式,下面以开环转矩控制模式为例进行参数设定:5、摩擦补偿系数FH-36设定:逐渐加大FH-36摩擦补偿系数,按和启停变频器,直到在无张力的情况下马达能够运行起来,值。
6、完善设定参数:1)将FH-05设定20N张力,变频是否能快速启动起来并保持该张力。
如果是则2设定和控制了,可以拉材料做张力控制运行了。
7、惯量补偿FH-33:收卷起动时偏软或跟不上以及停机时张力过大的情况都由于惯量造成的。
需增加惯量补偿系数,适当增加FH-33的数值,改善收放卷启停由于惯性造成的张力偏大或偏小的问题。
二、参数设定补充说明:1)张力控制时,请清楚以下几个问题:A、张力来源,例如模拟量给定,或者通讯给定,正确设好张力来源参数B、卷径计算方式一般通过线速度计算设定好最大与最小卷径及初始卷径线速度输入部分选择好线速度输入来源并正确设定最大线速度(最大线速度对应输入的最大值,如选择模拟量做速度来源,最大线速度即为10V输入,为使用方便我们一般使用线速度计算方式)2)设定IO输入输出,你可能需要设定DI1启动、DI2卷径复位、DI3初始卷径选择,DI4故障复位以及故障报警输出,你还可以根据你的要求设定其他功能IO输入输出3)补偿设定,补偿包括摩擦补偿和机械惯量补偿摩擦补偿设定方法,先将张力设定为0,逐渐加大摩擦补偿系数,使得电机处于即将旋转的状态(一般是电机不转,但只要你稍微加一点力就能转起来),这时的摩擦补偿系数就是适当值,一般就不要再去改他,但根据你的需要也可做一点点变动。
汇川变频器张力控制功能参数说明卷曲张力控制专用变频器MD330用户手册第一章概述本手册需与《MD320用户手册》配合使用。
本手册仅介绍与卷曲张力控制有关的部分,其他的基本功能请参考《MD320用户手册》。
当张力控制模式选为无效时,变频器的功能与MD320完全相同。
MD330用于卷曲控制,可以自动计算卷径,在卷径变化时仍能够获得恒张力效果。
在没有卷径变化的场合实现恒转矩控制,建议使用MD320变频器。
选用张力控制模式后,变频器的输出频率和转矩由张力控制功能自动产生,F0组中频率源的选择将不起作用。
第二章张力控制原理介绍一、典型收卷张力控制示意图二、张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。
A、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。
转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。
根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。
MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。
与开环转矩模式有关的功能模块:1、张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。
张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。
2、卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。
1张力检测辊此辊是控制薄膜收卷时合理张力的主要部件,通常薄膜的张力通过张力辊两端轴承下方的压力传感器进行检测,检测的信号通过电子线路,控制收卷电机的转速,以保证适当的收卷张力。
2展平辊使薄膜展平,消除薄膜在拉伸应力作用下产生的一些纵向皱纹。
3跟踪辊在收卷机卷芯的前面装有一个可以改变位置的跟踪辊(也称压紧辊),其主要作用是将薄膜压靠在收卷卷芯上,实行接触收卷或小间隙收卷,以将平整的薄膜迅速地转到卷芯上,实现平整收卷的目的。
同时,借助跟踪辊对母卷施加一定的压力,及时排除收卷时膜层间的空气,使母卷不变松。
一般使用跟踪辊后母卷中的空气含量可减至12%~18%。
4收卷辊由收卷电机驱动,收卷速度的控制系统与拉伸机的驱动系统联网,与拉伸机同步,受张力控制器的反馈控制。
5转盘与空卷芯当薄膜卷满一个芯轴后,不答应停机更换卷芯,因此转盘转回180°,母卷转离出来,空卷芯进入收卷位置,然后切断薄膜,将薄膜贴在新的卷芯上,继续进行收卷。
二、薄膜张力对收卷质量的影响为了牵引薄膜并将其卷到卷芯上,必须给薄膜施加一定拉伸并张紧的牵引力,其中张紧薄膜的力即为张力。
通常由于薄膜的材料厚度及性能不同,以及选用的收卷方式也有不同,张力的大小可设定为100~600N之间。
收卷张力的大小直接影响产品收卷的质量及收得率。
张力过大,收卷过紧,薄膜轻易产生皱纹;张力不足,带入膜层的空气量过多,母卷薄膜的密度小,薄膜轻易在芯卷上产生轴向滑移及严重的错位,以至造成无法卸卷。
分切时放卷轴产生大幅度摆动,影响分切薄膜的质量。
所以收卷机必须具有良好的张力控制系统。
收卷辊的控制主要包括速度控制和张力控制两部分。
薄膜收卷时,随着母卷直径增大,假如收卷辊的转速仍然不变,则随着收卷线速度的增大,必然引起收卷张力的递增,(因为从牵引装置送出的薄膜速度是不变的),这样不仅会造成膜卷的内松外紧,外层薄膜把内层薄膜压皱,而且分切时也会增加复卷难度,影响分切质量。
第二章张力控制原理介绍2.1 典型收卷张力控制示意图浮动辊F牵引辊收卷图2 带浮动辊张力反馈收卷F牵引辊图1 无张力反馈32.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330 设计了两种张力控制模式。
1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。
转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。
根据公式F=T/R(其中F 为材料张力,T 为收卷轴的扭矩,R 为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。
MD 系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG 卡)。
2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。
张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。
2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。
3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。
摩4擦补偿可以克服系统阻力对张力产生的影响。
3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F 控制三种方式中的任何一种。
张力控制专用变频器MD330用户手册(v er:060.13)第一章概述本手册需与《MD320 用户手册》配合使用。
本手册仅介绍与卷曲张力控制有关的部分,其他的基本功能请参考《MD320 用户手册》。
当张力控制模式选为无效时,变频器的功能与MD320 完全相同。
MD330 用于卷曲控制,可以自动计算卷径,在卷径变化时仍能够获得恒张力效果。
在没有卷径变化的场合实现恒转矩控制,建议使用MD320 变频器。
F0组中频选用张力控制模式后,变频器的输出频率和转矩由张力控制功能自动产生,率源的选择将不起作用。
第二章张力控制原理介绍一、典型收卷张力控制示意图F牵引辊收卷图 1 无张力反馈F牵引辊浮动辊收卷图 2 带浮动辊张力反馈二、张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径, MD330 设计了两种张力控制模式。
A、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。
转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。
根据公式 F=T/R(其中 F 为材料张力, T 为收卷轴的扭矩, R 为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。
MD 系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG 卡)。
与开环转矩模式有关的功能模块:1、张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。
张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。
2、卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。