【新人教】高考数学专题复习《简易逻辑》测试题2013
- 格式:doc
- 大小:228.00 KB
- 文档页数:3
第一章集合与简易逻辑【知识网络】【学法点拨】集合与简易逻辑是近代数学中最基本、应用非常广泛的基础知识,是研究数学问题、进行数学思维的基本工具.集合的语言、思想、观点渗透于中学数学内容的各个分支,有关简易逻辑常识与原理无不贯穿在数学的分析推理、计算与探索之中.复习巩固有关知识,对于提升数学语言素养,增强解决数学问题能力、提高思维能力等都会产生一定的影响,同时也为今后进一步学习高等数学打好基础.解决集合问题时一要注意吃透概念,准确表示,善于推理判断,并留心元素互异性的特征的利用、所给集合能否为空集的讨论、所求特定系数的取舍;二要注意集合与函数、方程、不等式、三角、解几、立几等知识的密切联系与综合应用;三要注意灵活运用等价转化、分类讨论、数形结合、补集法等思想方法解题.在面临与命题相关的具体问题中,应结合语境仔细阅读、推敲,反复咀嚼有关逻辑联结词.为了加深对于逻辑联结词“或”、“且”、“非”的含义的理解,可联系集合运算中的“交”、“并”、“补”对应地理解.尤其应注意,对逻辑联结词“或”的理解是难点;在研究四种命题及其相互关系时,应注意逆命题、否命题、逆否命题都是相对于原命题而言的.另应注意区分“否命题”与“命题的否定”的不同含义:前者是同时否定条件和结论,而后者只否定结论;反证法是一种重要的证题方法,其理论基础是互为逆否命题的等价性,证明步骤应分为三步:反设、归谬、结论.具体证题时,应注意书写的规范性、步骤的完整性以及导出矛盾时推理的严密性;判断条件的充要关系时,究竟是充分非必要条件,还是必要非充分条件?还是既充分又必要条件?还是非充分又非必要条件?应当判断到位.在寻求充要条件或证明充要性命题时,应准确运用相关概念,防止误把“充分”当“必要”,或把“必要”当“充分”.第1课 集合的概念【考点指津】理解集合、子集、全集、交集、并集、补集等基本概念的内涵,了解属于、包含、相等关系的意义;正确识别与使用集合的有关术语和符号,并会用它们正确表示一些简单的集合. 【知识在线】 1.设集合A ⎭⎬⎫⎩⎨⎧∈==N m x x m ,21|,若,,21A x A x ∈∈则必有 ( )A .A x x ∈+21B .A x x ∈21C .A x x ∈-21D .A x x ∈212.给出6个关系式:(1)0∈∅,(2)∅∈{∅},(3){}0φ,(4){}φφ≠,(5)φ{}φ,(6){}0φ≠.其中正确的个数是 ( )A .6B . 5C . 4D . 33.设S为全集,,B A S ⊆⊆则下列结论中不正确的是 ( )A.S S A B ⊆痧 B.A B B = C.()S A B =∅ ð D.()S A B =∅ ð 4.已知集合A=},21|{+≤≤-a x a x B=},53|{<<x x 则能使A ⊇B 成立的实数a 的取值范围是5.满足{1,2}X ⊆ {1,2,3,4,的集合X 的个数为 .【讲练平台】例1.(2002年全国高考)设集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则 ( ) A .M =N B 。
简易逻辑011.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是 (A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<02.下列命题中,假命题为A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1 D .对于任意01,nn n n n N C C C ∈+++都是偶数3.命题“若α=4π,则tanα=1”的逆否命题是 A.若α≠4π,则tanα≠1 B. 若α=4π,则tanα≠1 C. 若tanα≠1,则α≠4π D. 若tanα≠1,则α=4π【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tanα=1”的逆否命题是 “若tanα≠1,则α≠4π”.4.命题“0x ∃∈R Q ,30x ∈Q ”的否定是A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉R Q ,3x ∈QD .x ∀∈R Q ,3x ∉Q【答案】D【解析】根据对命题的否定知,是把谓词取否定,然后把结论否定。
因此选D 5.下列命题中,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x>∈∀C.a+b=0的充要条件是ab=-1 D.a>1,b>1是ab>1的充分条件6.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件7.已知a>0,则x 0满足关于x 的方程ax=6的充要条件是 (A)220011,22x R ax bx ax bx ∃∈-≥- (B) 220011,22x R ax bx ax bx ∃∈-≤- (C) 220011,22x R ax bx ax bx ∀∈-≥- (D) 220011,22x R ax bx ax bx ∀∈-≤- 【答案】C【命题立意】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力。
2013高考数学基础检测:01专题一-集合与简易逻辑专题一 集合与简易逻辑一、选择题1.若A={x ∈Z|2≤22-x <8}, B={x ∈R||log 2x|>1},则A ∩(C R B)的元素个数为( )A .0B .1C .2D .3 2.命题“若x 2<1,则-1<x<1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x<1,则x 2<1C .若x>1或x<-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥13.若集合M={0, 1, 2}, N={(x, y)|x-2y+1≥0且x-2y-1≤0, x 、y∈M},则N 中元素的个数为( )A .9B .6C .4D .2 4.对于集合M 、N ,定义M-N={x|x∈M,且x ∉N},M ○+N=(M-N)∪(N -M).设A={y|y=x 2-3x, x∈R}, B={y|y=-2x, x∈R},则A ○+B=( )A .],094(-B . )0,49[-C .),0()49,(+∞--∞ D .),0[)49,(+∞--∞ 5.命题“对任意的x∈R ,x 3-x 2+1≤0”的否定是( ){x|x>0}=ф,则实数m 的取值范围是_________. 10.(2008年高考·全国卷Ⅱ)平面内的一个四边形为平行四边形的充分条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件①_____________________; 充要条件②_____________________.(写出你认为正确的两个充要条件)11.下列结论中是真命题的有__________(填上序号即可)①f(x)=ax 2+bx+c 在[0, +∞)上单调递增的一个充分条件是-2a b<0; ②已知甲:x+y ≠3;乙:x ≠1或y ≠2.则甲是乙的充分不必要条件;③数列{a n }, n ∈N *是等差数列的充要条件是P n (n, n S n)共线.三、解答题12.设全集U=R ,集合A={x|y=log 21(x+3)(2-x)},B={x|e x-1≥1}.(1)求A ∪B ; (2)求(C U A)∩B .13.设p :函数f(x)=x 2-4tx+4t 2+2在区间[1,2]上的最小值为2,q :t 2-(2m+1)t+m(m+1)≤0.若┐p 是┐q 的必要而不充分条件,求实数m 的取值范围.14.已知实数c>0,设命题p :∞→n lim c n=0.命题q :当x∈[21,2]时,函数c1x 1x f(x)>+=恒成立.如果“p 或q ”为真命题,“p 且q ”为假命题,求实数c 的取值范围.15.对于函数f(x),若f(x)=x ,则称x 为f(x)的“不动点”;若f[f(x)]=x ,则x 为f(x)“稳定点”,函数f(x)的“不动点”和“稳定点”的集合分别记为A 和B ,即A={x|f(x)=x}, B={x|f[f(x)]=x}. (1)求证:A ⊆B ;(2)若f(x)=ax 2-1(a ∈R, x ∈R),且A=B=ф,求实数a 的取值范围.一、选择题1.C 本题主要考查集合的运算,属于基础知识、基本运算能力的考查. 由1≤2–x <3,∴–1<x ≤1,∴A ={x ∈Z|–1<x ≤1}={0, 1};|lo g 2x |>1,∴x >2,或0<x <12, ∴B ={x |x >2,或0<x <12},∴C R B =1(,0][]2-∞,∴A ∩(C R B )={0, 1}.2.D 命题“若x 2<1,则–1<x <1”的逆否命题是“若x ≥1或x ≤–1,则x 2≥1”,故应选D . 3.C 当y =0时,–1≤x ≤1时,故x 取0或1,当y =1时,1≤x ≤3,故x 取1或2,当y =2时,3≤x ≤5, x 无解,故N 中元素共4个,选C .4.D 由题意99[,),(,0),[0,),(,)44A B A B B A =-+∞=-∞-=+∞-=-∞-,∴A ⊕B =(A –B )∪(B –A )=(–∞, –94)∪[0, +∞). 5.C 本题考查命题的否定,对全称性命题的否定要注意命题的量词之间的转换.“任意的”的否定为“存在”,“≤”的否定为“>”. 6.C 由f (x )<–1=f (3),且f (x )为R 上的减函数,故Q ={x |x >3},由|f (x +t )–1|<2,得f (3)=–1<f (x +t )<3=f (0)有:0<x +t <3,∴P ={x |–t <x <3–t },由“x ∈P ”的充分不必要条件,得P Q ,得–t ≥3,即t ≤–3,故选C . 7.B 由f (x )在(0, +∞)内单调递增可得1()40xf x e x m x'=+++≥对任意x ∈(0, +∞)恒成立.而当0<x ≤12时,4x +1x ≥4, e x >1, 1()45xf x e x m m x'=+++>+;当x ≥12时,函数()f x '是增函数(∵1,4xy e y x x==+分别是增函数),121()44x f x e x m e mx'=+++≥++,且1245e+>,因此只要112240(4)em m e ++≥≥-+且就可以了.综上所述,由f (x )在(0, +∞)内单调递增不能推出m ≥–5;反之,由m ≥–5可知f (x )在(0,+∞)内单调递增,故选B . 二、填空题 8.{–3,1,3,4}解析:由–4≤x ≤4, x ∈Z,可知U={–4, –3, –2, –1, 0, 1, 2, 3, 4},又A ∩B ={–2},∴–2∈A 且–2∈B .由–2∈A 可知a 2+1=–2(舍去),则a 2–3=–2,∴a =±1.当a =–1时,A ={–1,⊂≠2, –2}, B ={–4, –2, 0},这时A ∪B ={–4, –2, –1, 0, 2}.∴C U (A ∪B )={–3, 1, 3, 4}.当a =1时,A ={–1, 2, –2}, B ={–2, 0, 2}.这时A ∩B ={–2,2}不合题意舍去.9.(–4, +∞)解析:∵A ∩{x |x >0}=ф,∴A =ф或A ≠ф且A 的元素小于等于零.①当A =ф时,△=(m +2)2–4<0, 解得–4<m <0. ②当A ≠ф且A 的元素小于等于零时,2(2)4020m m ⎧∆=+-≥⎨+>⎩解得m ≥0.综上得m 的取值范围为(–4, +∞). 10.两组相对侧面分别平行;一组相对侧面平行且相等;对角线交于一点;底面是平行四边形. 11.②③解析:对于①,当a <0时,若02b a -<,则f (x )在[0,)+∞上递减,故排除①;对于②,┐甲为x +y =3, ┐乙为x =1且y =2,┐乙⇒┐甲,∴甲⇒乙,∴②正确;对于③,若{a n }为等差数列,则S n =An 2+Bn .∴nS An B n =+,∴点P n 在直线y =Ax +B 上.反之易证,若(,)nnS P n n 共线,则数列{a n }成等差数列,故③正确.三、解答题 12.解:要使12log (3)(2)y x x =+-有意义,须(x +3)(2–x )>0,即(x +3)(x –2)<0,解得:–3<x <2;由e x –1≥1,得x –1≥0,即x ≥1.(1)A ∪B ={x |–3<x <2}∪{x |x ≥1}={x |–3<x <2或x ≥1}={x |x >–3}.(2)∵C U A ={x |x ≤–3或x ≥2},∴(C U A )∩B ={x |x ≤–3或x ≥2}∩{x |x ≥1}={x |x ≥2}.13.解:∵f (x )=(x –2t )2+2在[1,2]上的最小值为2,∴1≤2t ≤2即12≤t ≤1.由t 2–(2m +1)t +m (m +1)≤0,得m ≤t ≤m +1.∵┐p是┐q 的必要而不充分条件,∴p 是q 的充分不必要条件,∴[12,1] [m , m +1],∴1211,m m ⎧≤⎪⎨⎪+≥⎩即0≤m ≤12. 14.解:由lim 0nn c→∞=且c >0,知0<c <1,即p : 0<c <1,由1(),1]f x x x =+1在[2上为减函数,在[1,2]上为增函数,知f (x )的最小值是2.由112(0)2c c c >>⇒>,即q : 12c >,⊂ ≠高考学习网-中国最大高考学习网站 | 我们负责传递知识!当p 是真命题,q 是假命题时有0110,2c c <<⎧⎪⎨<≤⎪⎩∴0<c ≤12,当p 是假命题,q 是真命题时有1,12c c ≥⎧⎪⎨>⎪⎩∴c ≥1,故c 的取值范围是1(0,][1,)2+∞.15.解:(1)若A =ф,则A B ⊆显然成立,若A ≠ф,设t ∈A ,则f (t )=t , f [f (t )]=f [t ]=t ,即t ∈B ,从而A B ⊆.(2)A 中元素是方程f (x )=x 即ax 2–1=x 的根,∵A ≠ф,∴a =0或011404a a a ≠⎧≥-⎨∆=+≥⎩即.B 中元素是方程a (ax 2–1)2–1=x ,即a 3x 4–2a 2x 2–x +a –1=0的根,由A B ⊆,则方程可化为(ax 2–x –1)(a 2x 2+ax –a +1)=0.要使A =B ,即方程a 2x 2+ax –a +1=0①无实根或其根为方程ax 2–x –1=0②的根.若①无实根,则△=a 2–4a 2(1–a )<0解得a <34;若②有实根,且①的实根是②的实根,由②有a 2x 2=ax +a ,代入①得2ax +1=0,由此解得12x a =-,再代入②得11310,424a a a +-=∴=.故a 的取值范围是13[,]44-.。
2013年全国各地高考文科数学试题分类汇编1:集合一、选择题1 .(2013年上海高考数学试题(文科))设常数a ∈R ,集合()(){}|10A x x x a =--≥,{}|1B x x a =≥-.若A B =R ,则a 的取值范围为( )A .(),2-∞ B .(],2-∞ C .()2,+∞ D .[)2,+∞2 .(2013年高考重庆卷(文))已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()UA B =ð( )A .{1,3,4}B .{3,4}C .{3}D .{4} 3 .(2013年高考浙江卷(文))设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T= ( ) A .[-4,+∞) B .(-2, +∞) C .[-4,1] D .(-2,1] 4 .(2013年高考天津卷(文))已知集合A = {x ∈R| |x|≤2}, B= {x ∈R| x≤1}, 则A B ⋂= ( )A .(,2]-∞B .[1,2]C .[-2,2]D .[-2,1]5 .(2013年高考四川卷(文))设集合{1,2,3}A =,集合{2,2}B =-,则A B = ( )A .∅B .{2}C .{2,2}-D .{2,1,2,3}-6 .(2013年高考山东卷(文))已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =ð,{1,2}B =,则U A B =ð ( ) A .{3} B .{4} C .{3,4} D .∅7 .(2013年高考辽宁卷(文))已知集合{}{}1,2,3,4,|2,A B x x A B ==<=则 ( )A .{}0B .{}0,1C .{}0,2D .{}0,1,2 8 .(2013年高考课标Ⅱ卷(文))已知集合M={x|-3<X<1},N={-3,-2,-1,0,1},则M∩N= ( ) A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D .{-3,-2,-1 }9 .(2013年高考课标Ⅰ卷(文))已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A .{0}B .{-1,,0}C .{0,1}D .{-1,,0,1}10.(2013年高考江西卷(文))若集合A ={x ∈R|ax2+ax+1=0}其中只有一个元素,则a= ( ) A .4 B .2 C .0 D .0或4 11.(2013年高考湖北卷(文))已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =ð ( ) A .{2} B .{3,4} C .{1,4,5} D .{2,3,4,5}12.(2013年高考广东卷(文))设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T = A .{0} B .{0,2} C .{2,0}- D .{2,0,2}-13.(2013年高考福建卷(文))若集合}4,3,1{},3,2,1{==B A ,则B A 的子集个数为 ( ) A .2 B .3 C .4 D .16 14.(2013年高考大纲卷(文))设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð ( )A .{}1,2B .{}3,4,5 C .{}1,2,3,4,5D .∅15.(2013年高考北京卷(文))已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( )A .{}0 B .{}1,0- C .{}0,1D .{}1,0,1-16.(2013年高考安徽(文))已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=( )A .{}2,1--B .{}2-C .{}1,0,1- D .{}0,12013年全国各地高考文科数学试题分类汇编13:常用逻辑用语一、选择题1 .(2013年高考重庆卷(文))命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,使得20x <B .不存在x R ∈,使得20x <C .存在0x R ∈,都有200x ≥D .存在0x R ∈,都有200x <2 .(2013年高考四川卷(文))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则A .:,2p x A xB ⌝∃∈∈ B .:,2p x A x B ⌝∃∉∈C .:,2p x A x B ⌝∃∈∉D .:,2p x A x B ⌝∀∉∉3 .(2013年高考湖南(文))“1<x<2”是“x<2”成立的______( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4 .(2013年高考天津卷(文))设,a b ∈R , 则 “2()0a b a -<”是“a b <”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5 .(2013年高考山东卷(文))给定两个命题q p ,,p q ⌝是的必要而不充分条件,则p q ⌝是 ( )A .充分而不必要条件B .必要而不充分条C .充要条件D .既不充分也不必要条件6 .(2013年高考安徽(文))“(21)0x x -=”是“0x =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7 .(2013年高考陕西卷(文))设z 是复数, 则下列命题中的假命题是( )A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <8 .(2013年高考福建卷(文))设点),(y x P ,则“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(2013年高考课标Ⅰ卷(文))已知命题:p x R ∀∈,23xx<;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝10.(2013年高考湖北卷(文))在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 ( )A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q11.(2013年高考浙江卷(文))若α∈R,则“α=0”是“sin α<cos α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件。
专题1——集合与简易逻辑1.集合概念 元素:互异性、无序性、确定性2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且3.集合关系 空集A ⊆φ 子集B A ⊆:任意B x A x ∈⇒∈B A B B A B A A B A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴;集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.4.四种命题原命题:若p 则q 逆命题:若q 则p 原命题⇔逆否命题 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 否命题⇔逆命题5.充分必要条件( 原充逆比)p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假7.全称命题、存在性命题的否定∀x ∈M, p(x )否定为: ∃x ∈M, )(x p ⌝ ∃x ∈M, p(x )否定为: ∀∈x M, )(x p ⌝附:2012高考真题1.【安徽文2】设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( )(A )(1,2) (B )[1,2] (C )[ 1,2) (D )(1,2 ]2.【安徽文4】命题“存在实数x ,使x > 1”的否定是( )(A )对任意实数x , 都有x >1 (B )不存在实数x ,使x ≤1(C )对任意实数x , 都有x ≤1 (D )存在实数x ,使x ≤13.【2012新课标文1】已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ 4.【高考山东文2】已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则B AC U )(为( ) (A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4}5.【山东文5】设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是( ) (A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真6.【全国文1】已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则( )(A )A B ⊆ (B )C B ⊆ (C )D C ⊆ (D )A D ⊆7.【重庆文1】命题“若p 则q ”的逆命题是( )(A )若q 则p (B )若⌝p 则⌝ q (C )若q ⌝则p ⌝ (D )若p 则q ⌝8.【重庆文10】设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈> {|()2},N x R g x =∈<则M N 为( )(A )(1,)+∞ (B )(0,1) (C )(-1,1) (D )(,1)-∞9【浙江文1】设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P ∩(C U Q )=( )A.{1,2,3,4,6}B.{1,2,3,4,5}C.{1,2,5}D.{1,2}10.【四川文1】设集合{,}A a b =,{,,}B b c d =,则A B =( )A 、{}bB 、{,,}b c dC 、{,,}a c dD 、{,,,}a b c d11.【陕西文1】 集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =( )A. (1,2)B. [1,2)C. (1,2]D. [1,2]12.【辽宁文2】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则=)()(B C A C U U ( ) (A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}13.【辽宁文5】已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1)(x 2-x 1)≥0,则⌝p 是( )(A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1)(x 2-x 1)≤0 (B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1)(x 2-x 1)≤0(C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1)(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1)(x 2-x 1)<014.【江西文2】 若全集U={x∈R|x 2≤4} A={x∈R||x+1|≤1}的补集CuA 为( )A |x∈R |0<x <2|B |x∈R |0≤x<2|C |x∈R |0<x≤2|D |x∈R |0≤x≤2|15.【湖南文1】.设集合M={-1,0,1},N={x|x 2=x},则M ∩N=( )c b a c b a ++≤++111A.{-1,0,1} B.{0,1} C.{1} D.{0}16.【湖南文3】命题“若α=4π,则tan α=1”的逆否命题是( )[中%国(&*^育出版@网 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1 C. 若tan α≠1,则α≠4π D. 若tan α≠1,则α=4π 17.【湖北文1】已知集合A{x| 2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A 错误!不能通过编辑域代码创建对象。
2013年高考真题理科数学解析分类汇编 1集合与简 易逻辑一选择题1.陕西1.设全集为R,函数f (x )_ —X2的定义域为M,则C R M 为(A) [ - 1,1](B) (- 1,1)(C )(W -1] [1, ::)(D)(2, _1) 一 (1,::)【答案】D【解析】... 1-x 2_0, _1沁叮即M 二[-1,1]心=(」:,-1)(1,::)所以选D2.(新课标I) 1、已知集合 A= {x | x 2- 2x >0}, B= {x | —护 v x v 半},贝U ()A 、A n B=.B 、A U B=RC 、B?AD A? B【解析】A=(-二,0) U (2,+ :: ), ••• A U B=R,故选 B.3•[新课标町1、已知集合 M 」x|(x -1)2 ::4),x R ,N - —,0,1,23,则 M"N =(B) {— 1,0 , 1,2 } ( C ) {— 1,0 , 2,3 }(D ){ 0,1 ,2,3 } 【答案】A【解析】因为 M =「x| -1 :: x ::: 3,N —-1,0,1,2,3》所以 M n N 二「0,1,2?,选 A(A )充分不必要条件 (C) 充分必要条件 【答案】C【解析】当a=0时,(A ){ 0,1 , 2}4•安徽理(4)七辽0""是函数f (x)= (ax-1)x 在区间 (0+od)内单调递增的(B )必要不充分条件(D )既不充分也不必要条件f(x)=|x|: y = f(x)在(0, •::)上单调递增;当a 0且x 时,f(x) = (-ax 1)x,y二f(x)在(0, •::)上单调递增所以a乞0是y二f (x)在(0,=)上单调递增的充分条件相反,当y二f(x)在(0,^ :)上单调递增=a乞0,=a乞0是y二f (x)在(0,=)上单调递增的必要条件.故前者是后者的充分必要条件。
《集合与简易逻辑》达标检测试卷第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合{1,0,1,2},{|(1)0}M N x x x =-=-=,则MN =( )(A ){1,0,1,2}- (B ){0,1,2} (C ){1,0,1}- (D ){0,1} 2.集合{|22},{|13}A x x B x x =-<<=-≤<,那么A B =( )(A ){|23}x x -<< (B ){|-12}x x ≤< (C ){|21}x x -<≤ (D ){|-23}x x <<3.设全集{,,,,}I a b c d e =,集合{,,},{,,}M a b c N b c e ==,那么I I C M C N 是( )(A )∅ (B ){}d (C ){,}a c (D ){,}b e 4.如果命题“p 或q ”和命题“p 且q ”都为真,则有( ) (A )p 真q 假 (B )p 假q 真 (C )p 真q 真 (D )p 假q 假5.设全集=U {1,2,3,4,5,7},集合=A {1,3,5,7},集合=B {3,5},则( ) (A )B A U = (B )B A C U U )(= (C ))(B C A U U = (D ))()(B C A C U U 6.“xy >0”是“|x +y |=|x |+|y |”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 7.已知集合=A {2|-x ≤x≤7},}121|{-<<+=m x m x B ,且∅≠B ,若A B A = ,则( )(A )-3≤m≤4 (B )-3<<m 4 (C )42<<m (D )m <2≤48.已知集合}01211|{2<--=x x x A ,集合=B {)13(2|+=n x x ,∈n Z},则B A 等于( ) (A ){2} (B ){2,8} (C ){4,10} (D ){2,4,8,10} 9.设集合=M {1|-x ≤<x 2},=N {xx |≤a },若∅≠N M ,则a 的取值范围是( )(A )(-∞,2)(B )(-1,+∞) (C )[-1,+∞) (D )[-1,1]10.命题“若a >b ,则ac 2>bc 2(a 、b ∈R )”与它的逆命题、否命题中,真命题的个数为( ) (A )3 (B )2 (C )1 (D )011.同时满足①M ⊆{1,2,3,4,5};②若a ∈M ,则6-a ∈M 的非空集合M 有( ) (A )16个 (B )15个 (C )7个 (D )6个 12.下列说法正确的是 ( )(A )函数y =2sin(2x -π6)的图象的一条对称轴是直线x =π12(B )若命题p :“存在x ∈R ,x 2-x -1>0”,则命题p 的否定为:“对任意x ∈R , x 2-x -1≤0” (C )若x ≠0,则x +1x ≥2(D )“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分)13.已知集合=A {1,2},集合B 满足=B A {1,2},则这样的集合B 有 个. 14.若不等式x 2+x-m>0的解集为{x x<-3或x>2},则m= .15.设集合{5,(1)}A a =+,集合{,}B a b =.若{2}A B =,则A B = .16.在实数集上定义一个运算“*”:a *b =2ba +,给出下列四个算式: ①a+(b*c)=(a+b)*(a+c);②a+(b*c)=a*(b+c);③a*(b+c)=a*b+a*c ; ④a*(b+c)=(a+b)*c.其中正确算式的序号是_______.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分12分)已知集合A={-1,a 2+1,a 2-3},B={-4,a-1,a+1},且A∩B={-2},求a 的值.18.(本小题满分12分)已知m ∈R ,对p :x 1和x 2是方程x 2-ax -2=0的两个根,不等式|m -5|≤|x 1-x 2|对任意实数a ∈[1,2]恒成立;q :函数f (x )=3x 2+2mx +m +43有两个不同的零点.求使“p 且q ”为真命题的实数m 的取值范围.19.(本小题满分12分)设集合}2|||{<-=a x x A ,}1212|{<+-=x x x B ,且B A ⊆,求实数a 的取值范围.20.(本小题满分12分)集合A={(x,y )022=+-+y mx x },集合B={(x,y )01=+-y x ,且02≤≤x },又A φ≠⋂B ,求实数m 的取值范围.21.(本小题满分12分)设p:实数x 满足22-4+3x ax a <0,其中a <0;q:实数x 满足x 2-x-6≤0或x 2+2x-8>0,且⌝p 是⌝q 的必要不充分条件,求a 的取值范围.22. (本小题满分14分)设函数f(x)=lg2-5-aax x 的定义域为A ,若命题p :3∈A 与q :5∈A 有且只有一个为真命题,求实数a 的取值范围.《集合与简易逻辑》达标检测参考答案及评分标准一、选择题DDBCC, ADBCB, CB11.解析:∵1+5=2+4=3+3=6,∴集合M 可能为单元素集:{3};二元素集:{1,5},{2,4};三元素集:{1,3,5},{2,3,4};四元素集:{1,2,4,5};五元素集:{1,2,3,4,5}.共7个. 答案:C12.解析:对于A ,令2x -π6=k π+π2,k ∈Z ,则x =k π2+π3,k ∈Z ,即函数y =2sin(2x -π6)的对称轴集合为{x |x =k π2+π3,k ∈Z},x =π12不适合,故A 错;对于B ,特称命题的否定为全称命题,故B 正确;对于C ,当x <0时,有x +1x ≤-2;对于D ,a =-1时,直线x -ay =0与直线x +ay =0也互相垂直,故a =1是两直线互相垂直的充分而非必要条件 答案:B 二、填空题13.4 14.6 15}{1,2,5 16. ①④ 三、解答题17.解:∵A∩B={-2}∴a 2-3=-2 (4)分∴a 2=1∴a=±1经检验a=1不合题意舍去 (10)分∴a=-1 (12)分18.解:由题设知x 1+x 2=a ,x 1x 2=-2,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8. …………………………2分a ∈[1,2]时,a 2+8的最小值为3,要使|m -5|≤|x 1-x 2|对任意实数a ∈[1,2]恒成立,只需|m -5|≤3,即2≤m ≤8. …………………………6分由已知,得f (x )=3x 2+2mx +m +43=0的判别式Δ=4m 2-12(m +43)=4m 2-12m -16>0,得m <-1或m >4, ………………………………10分综上,要使“p 且q ”为真命题,只需p 真q 真,即 814m m m ≤≤⎧⎨<->⎩2或 解得实数m 的取值范围是(4,8]. (12)分19.解:A={}22x a x a -<<+ ………………………………4分B={}23x x -<< ………………………………8分若B A ⊆则:2223a a -≥-⎧⎨+≤⎩ ∴}{01a a ≤≤ ………………………………12分20.解:由A ⋂B φ≠知方程组,,2001202y x y x y mx x 消去内有解在≤≤⎩⎨⎧=+-+-+ 得x 2+(m-1)x=0 在0≤x 2≤内有解, ………………………………4分04)1(2≥--=∆m 即m ≥3或m ≤-1。
第一章会合与简略逻辑一.基础题组1. 【 2013 年一般高等学校招生全国一致考试(四川卷)文科】设会合A{1,2,3},会合B{ 2,2} ,则A B ()( A)( B){2}( C){2,2}( D){2,1,2,3}2.【 2013 年一般高等学校一致考试一试题纲领全国文科】设会合 U1,2,3,4,5 , 会合 A1,2 ,则e u A()( A)1,2( B)3,4,5( C)1,2,3,4,5( D)3.【 2013 年全国高考一致考试天津数学(文)卷】已知会合 A = { x∈R| |x| ≤2},A = { x∈ R| x≤1}, 则A B()(A) (,2](B) [1,2](C) [-2,2](D) [- 2,1]4.【 2013 年一般高等学校招生全国一致考试(北京卷)文】已知会合 A { 1,0,1} ,B { x | 1 x 1} ,则A B()( A){0}(B){1,0}(C){0,1}(D){1,0,1}5.【 2013 年一般高等学校招生全国一致考试(湖北卷)文科】已知全集 U{ 1,2,3,4,5} ,会合 A{1,2} , B{2,3,4} ,则 B e U AA .{2}B. {3,4}C. {1,4,5}D. {2,3,4,5}6. 【2013 年一般高等学校招生全国一致考试(湖南卷)文科】“ 1< x<2”是“x< 2”建立的()A. 充足不用要条件C.充足必需条件B.必需不充足条件D.既不充足也不用要条件7. 【2013 年一般高等学校招生全国一致考试(浙江卷)文科】设会合S{ x | x2}, T { x | 4 x 1} ,则S∩T=()A、 [-4,+∞)B、(-2, +∞)C、[-4,1]D、(-2,1]8. 【 2013 年高考新课标Ⅱ数学(文)卷】已知会合M= { x|-3<x<1 }, N= { -3 , -2 , -1 , 0 , 1 },则M ∩ N=()( A){ -2, -1, 0,1}(B){-3,-2,-1,0}(C){-2,-1,0}(D){-3,-2,-1 }9.【2013 年一般高等学校招生全国一致考试(辽宁卷)文科】已知会合A0,1,2,3,4 , B x | x 2 ,则 A B ()( A)0(B)0,1(C)0,2(D)0,1,210.【2013 年一般高等学校招生全国一致考试(广东卷)文科】设会合S{ x | x22x0, x R}, T{ x | x22x0, x R} ,则S T()A.{0} B .{0, 2}C.{2,0}D.{2,0, 2}11. 【 2013年一般高等学校招生全国一致考试(安徽卷文科)】已知A x | x 1 0 , B2, 1, 0,1,则(C R A) B()( A )2, 1( B )2( C)1,0,1( D)0,112.【2013 年一般高等学校招生全国一致考试(福建卷)文科】设点P x, y , 则“x2且y 1”是“点P在直线 l :xy10上”的()A .充足而不用要条件C.充足必需条件B.必需而不充足条件D.既不充足也不用要条件13. 【 2013 年一般高等学校招生全国一致考试(上海卷)文】钱大姐常说“好货不廉价”,她这句话的意思是:“好货”是“不廉价”的()( A)充足条件( B)必需条件( C)充足必需条件( D)既非充足又非必需条件14. 【2013 年一般高等学校一致考试江苏卷】会合{1,0,1} 共有个子集.15. 【 2013年一般高等学校招生全国一致考试(湖南卷)文科】已知会合U{2,3,6,8},A{2,3}, B{2,6,8},则 (C A) B________【答案】6,8【分析】 C U A 6,8 , C U A B6,8 .【考点定位】此题考察会合的基本运算,考察学生的的逻辑推理能力.二.能力题组16. 【2013年一般高等学校招生全国一致考试(四川卷)文科】设 x Z ,会合A是奇数集,会合B是偶数集.若命题 p : x A,2 x B ,则()( A)p :x A,2 x B( B)p : x A,2 x B( C)p :x A,2 x B( D)p : x A,2 x B17. 【2013 年全国高考新课标(I )文科】已知会合A= {1, 2, 3,4},B{x |x n n, 2A },则A∩B=()( A){ 1,4}(B){2,3}(C){9,16}(D){1,2}18. 【2013 年一般高等学校招生全国一致考试(江西卷)文科】若会合A x R ax2ax 1 中只有一个元素,则 a =()A.4B.2C.0D.0或419. 【2013 年一般高等学校招生全国一致考试(安徽卷文科)】“ (2 x 1)x 0 ”是“x 0”的( A )充足不用要条件( B)必需不充足条件( C)充足必需条件( D)既不充足也不用要条件20.【 2013 年一般高等学校招生全国一致考试(浙江卷)文科】若 a R ,则“0 ”是“ sincos ”的()A 、充足不用要条件B、必需不充足条件C 、充足必需条件D、既不充足也不用要条件21. 【 2013 年一般高等学校招生全国一致考试(山东卷)文科】已知会合 A、 B 均为全集U{ 1,2,3,4} 的子集,且e ( A B){4} ,B{1,2},则A e B ()U UA.3B.4C.3,4D.22. 【2013 年一般高等学校招生全国一致考试( 陕西卷 )文科】设全集为R, 函数 f (x) 1 x 的定义域为M, 则C R M 为()(A) (-∞ ,1)(B) (1, +∞)(C) (,1](D) [1, )23. 【2013 年一般高等学校招生全国一致考试(福建卷)文科】若会合A= 1,2,3,B= 1,3,4,则A B的子集个数为()A.2B.3C.4D.16三.拔高题组24. 【 2013 年一般高等学校招生全国一致考试(湖北卷)文科】在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲下降在指定范围”,q是“乙下降在指定范围”,则命题“起码有一位学员没有下降在指定范围”可表示为A . ( p) ∨ ( q )B.p∨ ( q)C. ( p) ∧ ( q)D.p∨q25. 【 2013 年一般高等学校招生全国一致考试(山东卷)文科】给定两个命题p, q,p是的必需而不充足条件,qq 的()则 p是A. 充足而不用要条件B.必需而不充足条件C.充要条件D. 既不充足也不用要条件的简单例子,进行转变比较,进而确立答案.26. 【2013年全国高考新课标(I )文科】已知命题p :x R ,2x3x;命题q :x R ,x3 1 x2,则以下命题中为真命题的是()( A)p q(B)p q(C)p q(D)p q。
决战2010:高考数学专题精练(一)集合与简易逻辑一、选择题1.已知a ,b 都是实数,则“b a >”是“22b a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件2.设x 是实数,则“0x >”是“||0x >”的 ( ) A .充分而不必要条件 B .必要而不充分条件C . 充要条件D . 既不充分也不必要条件3.已知不等式||1x m -<成立的一个充分非必要条件是2131<<x ,则实数m 的取值范围是 ( ) A .41,32⎡⎤-⎢⎥⎣⎦B .14,23⎡⎤-⎢⎥⎣⎦ C . 1,2⎛⎫-∞- ⎪⎝⎭ D . 4,3⎡⎫+∞⎪⎢⎣⎭4.闸北区09届高三数学(理)第11题)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为单调函数”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知相交直线l m 、都在平面α内,并且都不在平面β内,则“l m 、中至少有一条与β相交”是“α与β 相交的” ( )A .充分条件B .必要条件C .充要条件D .不是充分条件也不是必要条件6.已知a ,b 都是实数,则“b a >”是“22b a >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 7.“41=a ”是“对任意的正数,x 均有1≥+xa x ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件8.集合},{2R x x y y A ∈==,}2,1,1,2{--=B ,则下列结论正确的是( ) A .(0,)A B =+∞B .B AC R )(=]0,(-∞C .B C A R =),0[+∞D .B A C R )(=}1,2{--9.给定空间中的直线l 及平面α,条件“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的 ( ) A .充分非必要条件. B .必要非充分条件. C .充要条件. D .既非充分也非必要条件.10.在空间中,“两条直线没有公共点”是“这两条直线平行”的 ( ) A .充分不必要条件. B .必要不充分条件. C .充要条件. D .既不充分也不必要条件.11.若c b a 、、是常数,则“0402<->c a b a 且”是“对任意R ∈x ,有02>++c x b x a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息。
高考数学集合简易逻辑复习测试题(集合与简易逻辑)一、选择题1.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件.那么p 是q 成立的:( A )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件2.设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则N M 等于( A )(A ){|}x x <-2 (B ){|}x x -<<21 (C ){|}x x <1 (D ){|}x x -≤<213.设集合{}6,5,4,3,2,1=P ,{}62≤≤∈=x R x Q ,那么下列结 论正确的是( D ) (A )P Q P = (B )Q Q P ≠⊃ (C )Q Q P = (D )≠⊂Q P P4.M ={}4|2<x x ,N ={}032|2<--x x x ,则集合M N=( C )(A ){2|-<x x } (B ){3|>x x } (C ){21|<<-x x } (D ){32|<<x x }5.设集合P ={}01|<<-m m ,Q ={∈m R }044|2<-+mx mx 对任意实数x 恒成立,则下列关系中成立的是( A )(A )P Q (B )Q P (C )P =Q (D )P Q =∅ 6.设A ={15|+=k x x ,∈k N},B ={x x |≤6,∈x Q },则A B 等于( D )(A ){1,4} (B ){1,6} (C ){4,6} (D ){1,4,6} 7.设集合M =1|),{(22=+y x y x ,∈x R ,∈y R },N ={0|),(2=-y x y x ,∈x R ,∈y R },则集合N M 中元素的个数为( B )(A )1 (B )2 (C )3 (D )48.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是( B ) (A )(C I A ) B =I (B )(C I A ) (C I B )=I(C )A (C I B )=∅ (D )(C I A ) (C I B )=C I B9.不等式311<+<x 的解集为( D )(A )()2,0 (B )())4,2(0,2 - (C )()0,4- (D )())2,0(2,4 --10.命题p :若a 、b ∈R ,则||||b a +>1是||b a +>1的充分而不必要条件;命题q :函数2|1|--=x y 的定义域是(-∞,][31 -,+∞).则( D )(A )“p 或q ”为假 (B )“p 且q ”为真(C )p 真q 假 (D )p 假q 真11.“21s i n =A ”是“A=30º”的( B ) (A )充分而不必要条件 (B )必要而不充分(C )充分必要条件 (D )既不充分也必要条件12.不等式221x x +>+的解集是( A ) (A )(1,0)(1,)-+∞ (B )(,1)(0,1)-∞-(C )(1,0)(0,1)-(D )(,1)(1,)-∞-+∞13.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分 不必要条件是( C )(A )0a < (B )0a > (C )1a <- (D )1a >x ≥0, x <0. 14.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于 ( A )(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}15.设函数)(1)(R x xx x f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( A )(A)0个 (B)1个 (C)2个 (D)无数多个16.)若非空集合N M ⊂,则“M a ∈或N a ∈”是“N M a ∈”的 ( B )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 17. 已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q . 则q p 是的( B )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件18. 设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为( B )A 、1B 、2C 、3D 、419. 已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的( B )(A)必要而不充分条件 (B)充分而不必要条件 (C)充要条件 (D)既不充分也不必要条件20. 设集合}0|),{(},02|),{(},,|),{(≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x U ,那么点P (2,3)⋂∈A ()的充要条件是 ( A )A .5,1<->n mB .5,1<-<n mC .5,1>->n mD .5,1>-<n m二、选择题14.不等式|2|+x ≥||x 的解集是),1[+∞- . 15.设集合A ={5,)3(log 2+a },集合B ={a ,b }.若A B ={2}, 则A B = {}5,2,1 . 16.已知)(x f =⎩⎨⎧-,1,1 则不等式)2()2(+⋅++x f x x ≤5的解 集是 (-∞,23] . 17.设A 、B 为两个集合,下列四个命题:①A B ⇔对任意A x ∈,有B x ∉ ②A B ⇔=B A ∅③A B ⇔A⊇B ④A B ⇔存在A x ∈,使得B x ∉ 其中真命题的序号是 (4) .(把符合要求的命题序号都填上)18.二次函数c bx ax y ++=2(x ∈R )的部分对应值如下表:则不等式c bx ax ++2>0的解集是 {2x x <-或3}x > .13、设集合A={5,log 2(a+3)},集合B={a,b}.若A∩B={2},则A ∪B= {1,2,5} .。
第5课时 简易逻辑
一.课题:简易逻辑
二.教学目标:了解命题的概念和命题的构成;理解逻辑联结词“或”“且”“非”的含义;
理解四种命题及其互相关系;反证法在证明过程中的应用.
三.教学重点:复合命题的构成及其真假的判断,四种命题的关系.
四.教学过程:
(一)主要知识:
1.理解由“或”“且”“非”将简单命题构成的复合命题;
2.由真值表判断复合命题的真假;
3.四种命题间的关系.
(二)主要方法:
1.逻辑联结词“或”“且”“非”与集合中的并集、交集、补集有着密切的关系,解题时注
意类比;
2.通常复合命题“p 或q ”的否定为“p ⌝且q ⌝”、“p 且q ”的否定为“p ⌝或q ⌝”、
“全为”的否定是“不全为”、“都是”的否定为“不都是”等等;
3.有时一个命题的叙述方式比较的简略,此时应先分清条件和结论,该写成“若p ,则q ”
的形式;
4.反证法中出现怎样的矛盾,要在解题的过程中随时审视推出的结论是否与题设、定义、
定理、公理、公式、法则等矛盾,甚至自相矛盾.
(三)例题分析:
例1.指出下列命题的构成形式及构成它的简单命题,并判断复合命题的真假:
(1)菱形对角线相互垂直平分.
(2)“23≤”
解:(1)这个命题是“p 且q ”形式,:p 菱形的对角线相互垂直;:q 菱形的对角线相互平
分,
∵p 为真命题,q 也是真命题 ∴p 且q 为真命题.
(2)这个命题是“p 或q ”形式,:p 23<;:q 23=,
∵p 为真命题,q 是假命题 ∴p 或q 为真命题.
注:判断复合命题的真假首先应看清该复合命题的构成形式,然后判断构成它的简单命题的
真假,再由真值表判断复合命题的真假.
例2.分别写出命题“若220x y +=,则,x y 全为零”的逆命题、否命题和逆否命题.
解:否命题为:若220x y +≠,则,x y 不全为零
逆命题:若,x y 全为零,则220x y +=
逆否命题:若,x y 不全为零,则220x y +≠
注:写四种命题时应先分清题设和结论.
例3.命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题吗?证明你的结论.
解:方法一:原命题是真命题,
∵0m >,∴140m ∆=+>,
因而方程2
0x
x m +-=有实根,故原命题“若0m >,则20x x m +-=有实根”是真命题;
又因原命题与它的逆否命题是等价的,故命题“若0m >,则20x x m +-=有实根”的逆否命题是真命题. 方法二:原命题“若0m >,则2
0x x m +-=有实根”的逆否命题是“若20x x m +-=无
实根,则0m ≤”.∵20x x m +-=无实根
∴140m ∆=+<即104
m <-
≤,故原命题的逆否命题是真命题. 例4.已知命题p :方程210x mx ++=有两个不相等的实负根,命题q :方程
244(2)10x m x +-+=无实根;若p 或q 为真,p 且q 为假,求实数m 的取值范围.
分析:先分别求满足条件p 和q 的m 的取值范围,再利用复合命题的真假进行转化与讨论.
解:由命题p 可以得到:2400m m ⎧∆=->⎨>⎩
∴2m > 由命题q 可以得到:2[4(2)]160m ∆=--< ∴26m -<<
∵p 或q 为真,p 且q 为假 ∴,p q 有且仅有一个为真
当p 为真,q 为假时,262,6
m m m orm >⎧⇒≥⎨≤-≥⎩ 当p 为假,q 为真时,22226m m m ≤⎧⇒-<≤⎨-<<⎩
所以,m 的取值范围为{|6m m ≥或22}m -<≤.
例5.已知函数
()f x 对其定义域内的任意两个数,a b ,当a b <时,都有()()f a f b <,证明:()0f x =至多有一个实根.
解:假设()0f x =至少有两个不同的实数根12,x x ,不妨假设12x x <,
由方程的定义可知:12()0,()0f x f x ==
即12()()f x f x =①
由已知12x x <时,有12()()f x f x <这与式①矛盾
因此假设不能成立
故原命题成立.
注:反证法时对结论进行的否定要正确,注意区别命题的否定与否命题.
例6.用反证法证明命题:若整数系数一元二次方程:20(0)ax bx c a ++=≠有有理根,
那么,,a b c 中至少有一个是偶数,下列假设中正确的是( )
A.假设,,a b c 都是偶数
B.假设,,a b c 都不是偶数
C.假设,,a b c 至多有一个是偶数
D.假设,,a b c 至多有两个是偶数
(四)巩固练习:
1.命题“若p 不正确,则q 不正确”的逆命题的等价命题是 ( )
A .若q 不正确,则p 不正确 B. 若q 不正确,则p 正确
C. 若p 正确,则q 不正确
D. 若p 正确,则q 正确
2.“若240b ac -<,则
20a x b x c ++=没有实根”,其否命题是 ( )
A. 若240b ac ->,则20a x
b x
c ++=没有实根 B. 若240b ac ->,则20a x b x c ++=有
实根 C. 若240b ac -≥,则20a x b x c ++=有实根 D. 若240b
ac -≥,则20a x b x c ++=没
有实根
五.课后作业:《优化设计》P9-10 基础过关
教学反思:
1、逻辑虽研究思维形式及其规律的一门学科,学习此内容能够培养学生的推理技能,发展
学生的思维能力。
2、判定充要条件时常用到以下方法:
(1)从充分性和必要性两面三刀个方面来依据定义判断;
(2)将两个命题转化为相应的集合,依据集合间的包含关系来判断。
(3)交两个命题转化为等价命脉题材来判断
3、本节知识与其他章节知识联系较为密切,综合性较强。