电动汽车标准体系
- 格式:ppt
- 大小:264.00 KB
- 文档页数:24
电动汽车双向互动标准体系电动汽车双向互动标准体系是指为了实现电动汽车与电网之间的双向能量传输和信息交互而制定的一系列标准和规范。
这个标准体系的建立可以促进电动汽车的普及和发展,同时也可以提高电网的稳定性和效率。
以下是电动汽车双向互动标准体系的一些主要内容:
1. 通信协议:电动汽车与电网之间的通信需要遵循一定的协议和规范,以确保信息的传输和交互的准确性和可靠性。
2. 充电设施标准:充电设施是电动汽车与电网之间的接口,需要制定相应的标准和规范,以确保充电设施的安全性、可靠性和兼容性。
3. 能量传输标准:电动汽车与电网之间的能量传输需要遵循一定的标准和规范,以确保能量传输的效率和稳定性。
4. 数据安全标准:电动汽车与电网之间的信息交互涉及到大量的敏感数据,需要制定相应的标准和规范,以确保数据的安全性和保密性。
5. 智能电网标准:电动汽车可以作为智能电网的一部分,需要制定相应的标准和规范,以确保电动汽车与智能电网的协同工作。
建立电动汽车双向互动标准体系需要政府、企业和科研机构的共同努力。
政府需要制定相关的政策和法规,企业需要积极参与标准的制定和推广,科研机构需要开展相关的研究和技术创新。
只有通过各方的共
同努力,才能建立起完善的电动汽车双向互动标准体系,推动电动汽车的普及和发展,提高电网的稳定性和效率。
中国的电动汽车标准体系——2011《汽车与配件》-平安证券新能源汽车研讨会系列报告(二)何云堂:教授级高工,全国标委会电动车分委会委员、灯光分委会主任委员、全国燃料电池标分委委员、联合国《燃料电池汽车全球技术法规》(HFCV-GTR)专家组中方负责人、联合国灯光专家组(UN/ECE/WP29/GRE)中方负责人、ISO标准《电动摩托车术语》负责人、起草人。
电动汽车标准体系电动汽车标准体系由三部分组成。
一是整车标准,有纯电动车、混合动力车、燃料电池车和电动摩托车;二是电动汽车部件标准主要是储能装置——蓄电池、超级电容器、燃料电池,还有电机及控制器;第三部分是基础设施标准,有能源动力、站车通信及接口、能源补给(见图1)。
在制定我国电动汽车标准时应做一下分析:·电动汽车标准是汽车标准体系新的组成部分,传统燃油汽车及部件标准也在不同程度上适用于各类电动汽车。
·以现有的国际标准法规(ECE、ISO、IEC)和应用较广泛国外先进标准(如SAE、EN、JEVS)为参照,结合我国电动汽车产品研发情况制定。
·针对燃油汽车标准不适用电动汽车的结构、部件特点,除提出基础标准、结构安全要求及部分部件性能要求,大部分为测试方法标准,避免对产品设计和技术发展的限制。
·标准仍有待完善和提高,依赖于我国企业的技术创新。
·积极跟踪,参与国际标准法规的制定,如燃料电池汽车标准在国际上非常少,很多是国家自行制定的。
因此,制定电动汽车标准是环境保护及能源安全需要,是节约能源和发展新能源汽车的需要。
国家在“九·五”和“十·五”期间重点进行燃气汽车、电动汽车(纯电动汽车、混合动力汽车)标准的研究和制定工作,初步建立了我国技术标准体系,并进行了燃料电池汽车标准体系的研究,“十一五”期间重点进行燃料电池汽车、替代燃料标准的研究与制定工作及基础标准的完善。
我国在制定新能源汽车相关技术标准体系时得到国家科技部、发改委、国家标委会的高度重视和支持、国家多项政策制定,促进和推动新能源汽车的标准制定工作。
该文列出了美国汽车工程师学会(SAE)新能源汽车标准(混合动力车、纯电动车和燃料电池车)、日本电动车辆协会电动车、混合动力车及其关键零部件(蓄电池和电机)JEVS标准和中国新能源汽车标准。
新能源汽车应该安全、可靠、易用且成本低,而满足这些要求的一个重要保证就是它的标准化。
新能源汽车标准是新能源汽车产品质量的技术保证,其规范了新能源汽车生产企业的研发、制造等环节;降低了信息不对称,规范了市场秩序;促进了新能源汽车产业化发展;促进了产业延伸和拓展,加快产业结构优化。
正是因为新能源汽车标准对新能源汽车技术方案的选择、研制、商品化及产业化的巨大影响力,各国都在原有燃油车标准的基础上加快新能源汽车标准的制定与完善,如日本建立较为完善的电动汽车与混合动力汽车标准体系,美国建立燃料电池汽车标准体系。
美国汽车工程师学会(SAE)新能源汽车的标准针对纯电动汽车与混合动力汽车,美国汽车工程师学会(Society of Automotive Engineers,SAE)已发布了十九项技术标准,主要包括整车系统(Vehicle Systems)、蓄电池(Batteries)、充电接口(Interface)及基础设施(Infrastructure)四大类,内容具体包括各类电动车的术语和安全技术要求;整车动力性、经济性和排放、电磁场强度等的试验、测量方法;蓄电池和蓄电池组的各种试验规程及对电动车辆用的高压电线、线束与元器件、连接件的技术要求和试验方法。
SAE也在不断完善其标准体系,特别是在加快可外接充电式混合动力车整车及通信协议等相关标准的制定,如SAE J2894 Power Quality Requirements for Plug-In Vehicle Chargers等等(见表1)。
2001年美国成立了“SAE燃料电池标准委员会”,目前有6个工作组在工作。
他们分别负责排放和能耗、接口、性能、安全、可回收、术语这些方面的标准制定工作,已经发布了氢燃料的质量要求、氢燃料电池系统的性能试验和回收、氢燃料加注连接装置方面的15项标准(见表2),已形成世界上最完善的燃料电池汽车标准体系。
电动汽车动力电池系统国标最详解读来源:第一电动网发布时间:2015-08-28 09:56 设置字体:大中小关注度:4791 次分享到:摘要:国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等。
【高工锂电综合报道】国标针对动力电池系统,建立了常规性能和功能要求--容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等,建立了安全防护要求--操作安全、故障防护、人员触电防护、滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。
一、构建标准体系电动汽车早期的发展过程中,GB或GB/T国家标准的缺失在一定程度上造成了行业的良莠不齐和鱼龙混杂。
仅依靠汽车行业的QC/T推荐标准作为一种参考,并不具有权威性和广泛性,整车企业和电池企业要么茫无头绪,要么各行其是、各执一词,缺乏一个统一的衡量标准。
随着2015年新版GB/T国家推荐标准的陆续发布,我国电动汽车产业围绕动力电池系统已基本上构建了完整的标准体系,形成了行业的准入门槛,有利于行业的规范发展和优胜劣汰。
新国标在2015年5月颁布(部分标准将在10月份或年底颁布),与旧标准之间有一年的过渡期,从2016年开始,相关企业都将遵循新的标准进行相关检测。
新国标与工信部2015年3月发布的《汽车动力蓄电池行业规范条件》一起,将加速动力电池行业的洗牌,提高行业集中度水平。
新版国标则完整的围绕电能和化学能的防护做了严格的规定,并明确了测试规范,形成了较为完整的体系,从这方面来讲,产品安全设计与国标的检验要求,殊途同归。
本文将系统的论述各项标准所规定的内容,对比新标准与旧标准的差异等,希望能够为动力电池企业或整车企业的同仁,在标准的理解和运用方面提供一些帮助。
中国电动汽车标准体系及认证一、绪论1、研究背景与意义2、研究目的和方法二、中国电动汽车标准体系1、电动汽车标准体系概述2、电动汽车领域标准体系构成3、标准制定机构及制定程序三、电动汽车认证制度1、电动汽车认证体系2、认证标准和认证程序3、认证机构及认证服务四、电动汽车标准体系和认证的现状分析1、电动汽车标准体系的发展现状2、电动汽车认证的现状分析3、存在的问题及对策五、未来电动汽车标准体系和认证的展望1、行业发展趋势2、电动汽车标准体系和认证制度的改革与创新3、发展对策和建议。
备注:此为提纲,详细内容需要根据实际情况进行添加和编写。
一、绪论1.1 研究背景与意义随着人类生活水平的不断提高和环保意识的增强,环境保护已经成为各国普遍关注的问题。
在绿色出行节能减排的思潮渐渐兴起的背景下,电动汽车作为全新的能源汽车,以其零排放、低噪音和高效率的优点备受关注,在未来将成为最重要的竞争力之一,并且将成为人们日常出行的首选。
中国作为世界上最大的新能源汽车生产和销售国家之一,如何建立一套完善的标准体系和认证制度,已经成为未来新能源汽车市场发展的重要方向。
因此,本论文将针对中国电动汽车标准体系及认证问题展开研究,旨在探讨电动汽车相关标准体系及认证制度的发展现状和未来发展方向。
1.2 研究目的和方法本文旨在通过对中国电动汽车标准体系及认证制度的相关问题进行深入研究,总结其发展的主要趋势和存在的问题,重点探讨电动汽车标准的制定机构、标准的制定流程以及电动汽车认证的体系、标准和程序,并提出发展建议和对策。
为了达到上述目的,本文采用了文献资料的搜集、案例分析、调研等研究方法,并对国内外经典文献进行了系统地综合分析,对电动汽车标准体系和认证进行了深入的研究,从而得出了一系列有价值的结论和建议。
二、中国电动汽车标准体系2.1 电动汽车标准体系概述随着电动汽车技术的不断发展和电动汽车市场的日趋成熟,电动汽车的技术标准显得尤为重要。
电动汽车整车标准1. GBT 18384.1-2001 电动汽车安全要求第1部分:车载储能装置2. GBT 18384.2-2001 电动汽车安全要求第2部分:功能安全和故障防护3. GBT 18384.3-2001 电动汽车安全要求第3部分:人员触电防护4. GBT 18385-2005 电动汽车动力性能试验方法5. GBT 18386-2005 电动汽车能量消耗率和续驶里程试验方法6. GBT 18387-2008 电动车辆的电磁场发射强度的限值和测量方法,宽带,9kHz~30MHz7. GBT 18388-2005 电动汽车定型试验规程8. GBT 19596-2004 电动汽车术语9. GBT 19750-2005 混合动力电动汽车定型试验规程10. GBT 19751-2005 混合动力电动汽车安全要求11. GBT 19752-2005 混合动力电动汽车动力性能试验方法12. GBT 19753-2005 轻型混合动力电动汽车能最消耗量试验方法13. GBT 19754-2005 重型混合动力电动汽车能量消耗量试验方法14. GBT 19755-2005 轻型混合动力电动汽车污染物排放测量方法15. GBT 24548-2009 燃料电池电动汽车术语16. GBT 24549-2009 燃料电池电动汽车安全要求17. GBT 24554-2009 燃料电池发动机性能试验方法18. GBT 26779-2011 燃料电池电动汽车加氢口19. GB/T 26990-2011 燃料电池电动汽车车载氢系统技术条件20. GBT 26991-2011 燃料电池电动汽车最高车速试验方法21. GBT 27930-2011 电动汽车非车载传导式充电机与电池管理系统之间的通信协议22. GBT 28382-2012 纯电动乘用车技术条件23. GBT 4094.2-2005 电动汽车操纵件、指示器及信号装置的标志24. 燃料电池电动汽车车载氢系统试验方法25. 重型混合动力电动汽车污染物排放车载测量方法26. 节能与新能源汽车节油率与最大电功率比检验大纲27. QCT 816-2009 加氢车技术条件28. QCT 837-2010 混合动力电动汽车类型29. QCT 838-2010 超级电容电动城市客车30. QCT 842-2010 电动汽车电池管理系统与非车载充电机之间的通信协议31. QC/T 894-2011 重型混合动力电动汽车污染物排放车载测量方法32. CJT 5004-1993 无轨电车系列33. CJT 5007-1993 无轨电车技术条件34. CJT 5008-1993 无轨电车试验方法二、35. GBT 17938-1999 工业车辆_电动车辆牵引用铅酸蓄电池_优先选用的电压36. GBT 18332.1-2009 电动道路车辆用铅酸蓄电池37. GBT 18332.2-2001 电动道路车辆用金属氢化物镍蓄电池38. GBT 23645-2009 乘用车用燃料电池发电系统测试方法39. GBT 7169-1987 碱性蓄电池型号命名方法40. GBZ 18333.1-2001电动道路车辆用锂离子蓄电池41. GBZ 18333.2-2001电动道路车辆用锌空气蓄电池42. 电动汽车用锂离子动力蓄电池包和系统测试规程第2部分高能量应用43. 电动汽车用锂离子动力蓄电池系统测试规程第1部分:高功率应用44. QCT 741-2006 车用超级电容器45. QCT 742-2006 电动汽车用铅酸蓄电池46. QCT 743-2006 电动汽车用锂离子蓄电池47. QCT 744-2006 电动汽车用金属氢化物镍蓄电池48. QCT 840-2010 电动汽车用动力蓄电池产品规格尺寸49. QC/T 897-2011 电动汽车用电池管理系统技术条件50. 【201411】汽车动力蓄电池行业规范条件三、51. GBT 16318-1996 旋转牵引电机基本试验方法52. GBT 18488.1-2006 电动汽车用电机及控制器技术条件53. GBT 18488.2-2006 电动汽车用电机及控制器试验方法54. GBT 29307-2012 电动汽车用驱动电机系统可靠性试验方法55. GBT18488.1-201X 电动汽车驱动电机系统(第一部分)56. QC/T 896-2011 电动汽车用驱动电机系统接口57. QC/T 893-2011 电动汽车用驱动电机系统故障分类及判断四、58. GBT 19836-2005 电动汽车用仪表59. GBT 24347-2009 电动汽车DC∕DC变换器60. GBT 24552-2009 电动汽车风窗玻璃除霜除雾系统的性能要求及试验方法五、电动汽车充电标准61. GBT 电动汽车交流充电桩电能计量62. GBT 841- 汽车传导式充电接口标准63. GBT 18487.1-2001 电动车辆传导充电系统一般要求64. GBT 18487.2-2001 电动车辆传导充电系统电动车辆与交流直流电源的连接要求65. GBT 18487.3-2001 电动车辆传导充电系统电动车辆交流直流充电机(站)66. GBT 20234.1-2010 非车载传导式充电机与电池管理系统通信协议67. GBT 20234.1-2011 电动汽车传导充电用连接装置第1部分:通用要求68. GBT 20234.2-2011 电动汽车传导充电用连接装置第2部分:交流充电接口69. GBT 20234.3-2011 电动汽车传导充电用连接装置第3部分:直流充电接口70. QCT 839-2010 超级电容电动城市客车供电系统71. QCT 841-2010 电动汽车传导式充电接口72. QCT895-2011 电动汽车用传导式车载充电机73. GB/T 29781-2013 电动汽车充电站通用要求六、74. ISO 11898-1-2003 道路车辆.控制器局域网络.第1部分数据链层和物理信75. ISO 11898-2-2003 道路车辆.控制器局域网络.第2部分高速媒体存取单元76. ISO 11898-3-2006 道路车辆.控制器局域网络.第3部分容错收发器标准77. ISO 11898-4-2004 道路车辆.控制器局域网络.第4部分时间触发通信78. ISO 11898-5-2007 道路车辆.控制器区域网络.第5部分低功率模式的高速媒体访问单元七、01北京市79. DB11-Z 933.1.2013 电动汽车远程服务与管理系统技术规范(第一部分)80. DB11-Z 933.3.2013 电动汽车远程服务与管理系统技术规范(第三部分:车载终端通信协议及数据格式)81. DB11Z 728-2010 电动汽车电能供给与保障技术规范充电站82. DB11Z XXXX-2010电动汽车电能供给与保障技术规范非车载充电机能用要求83. DB11Z797-2011电动汽车电能供给与保障技术规范供电系统84. DB11Z798-2011电动汽车电能供给与保障技术规范_监控系统85. DB11Z799-2011电动汽车电能供给与保障技术规范__交流充电桩86. DB11Z800-2011电动汽车电能供给与保障技术规范_商用车动力蓄电池包87. DB11Z801-2011电动汽车电能供给与保障技术规范_动力蓄电池包编码88. DB11Z802-2011电动汽车电能供给与保障技术规范_计量系统89. DB11Z823-2011电动汽车电能供给与保障技术规范充电设施标志与设置90. DB11Z878-2012电动汽车电能供给与保障体系:电池维护、梯次利用与回收91. DB11Z879-2012电动汽车电能供给与保障技术规范_安全技术防范系统92. DB11/Z 993.2-2013 电动汽车远程服务与管理系统技术规范第2部分:车载终端02上海市93. (上海)电动乘用车示范运行安全和维护保障技术规范03深圳市94. SZDBZ 29.6-2010 电动汽车充电系统技术规范第6部分:充电站监控管理系统95. SZDBZ 29.9-2010 电动汽车充电系统技术规范第9部分:城市电动公共汽车充电站96. 深圳《电动汽车充电系统技术规范_第2部分:充电站及充电桩设计规范》97. 深圳《电动汽车充电系统技术规范_第3部分:非车载充电机》98. 深圳《电动汽车充电系统技术规范_第4部分:车载充电机》99. 深圳《电动汽车充电系统技术规范_第5部分:交流充电桩》100. 深圳《电动汽车充电系统技术规范_第7部分:非车载充电机电气接口》03山东省101. Q 3700 DSL 001-2011山东省低速电动汽车通用技术条件八、重要企业标准01国家电网102. QGDW 237-2009_电动汽车充电站布置设计导则及编制说明103. QGDW233-2009国家电网电动汽车非车载充电通用要求、接口标准及充电站典型设计104. QGDW485-2010 国家电网电动汽车交流充电桩技术条件105. QGDW_233-2009_电动汽车非车载充电机通用要求及编制说明106. QGDW_234-2009_电动汽车非车载充电机电气接口规范及编制说明107. QGDW_238-2009_电动汽车充电站供电系统规范及编制说明108. QGDW_478-2010电动汽车充电设施建设技术导则。
中国动力电池标准体系建设基本情况1.动力电池标准体系工作概述标准是经济活动和社会发展的技术支撑,是服务、引领和促进新能源汽车产业规范化、规模化和健康可持续发展的重要措施。
近年来在各方的共同努力下,我国新能源汽车产业发展取得重要进展,2017年产销量有望突破70万辆大关;与此同时,我国电动汽车标准体系也已初步建立,截止目前,在汽标委的归口和组织下,已发布电动车辆标准80余项,产业发展促进标准完善,标准体系也有力支撑了行业发展。
动力电池是电动汽车整车的核心零部件,对整车的安全性、成本、续驶里程、用户体验有着直接影响。
电动汽车与传统汽车的差异,关键在于车辆的高能量存储方式和高电压系统,而动力蓄电池正是高能量和高电压的主要来源,是电动汽车标准体系突出其区别于传统汽车的核心特殊性。
我国最新的动力电池标准体系包含20余项标准,涵盖电池单体、模块、电池包和系统,对电池电性能、循环寿命、安全性、互换性、回收利用以及关键附件进行了系统性规定,无论从数量上还是内容上都多于国际标准法规,引起国际关注,有力支撑了“新能源汽车生产企业和产品准入”和“汽车动力蓄电池行业规范”等行业管理政策的发布和实施。
随着技术进步和产业发展,今后在不断修订完善现有标准的基础上,还将重点推动锂离子电池回收利用、新型电池标准化等新标准制定工作。
2.动力电池标准体系基本情况概览如图1红色的部分所示,依据目前电动汽车产业化应用的情况,超级电容和锌空气电池也是动力电池的有益补充,因此也纳入作为动力电池标准化工作的一部分;同时对可充电储能系统和车载储能系统共同的关键附件,如电池管理系统、电池箱等制定了标准。
锌空气电池燃料电池超级电容储能飞轮动力蓄电池可充电储能系统车载储能系统电池管理系统电池箱…锂离子电池镍氢电池铅酸电池锂硫电池固态电池…图1动力电池标准化工作涉及的范畴(图中红色字体部分)图2 我国动力电池标准关键领域与典型标准图2所示为我国动力电池标准关键领域与典型标准,主要包括电池单体、模块、电池包和系统的电性能、循环寿命、安全性、互换性回收利用及关键附件相关的技术规范。