第三章-无失真信源编码(1)
- 格式:ppt
- 大小:205.00 KB
- 文档页数:27
信息论与编码理论习题答案LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第二章 信息量和熵八元编码系统,码长为3,第一个符号用于同步,每秒1000个码字,求它的信息速率。
解:同步信息均相同,不含信息,因此 每个码字的信息量为 2⨯8log =2⨯3=6 bit因此,信息速率为 6⨯1000=6000 bit/s掷一对无偏骰子,告诉你得到的总的点数为:(a) 7; (b) 12。
问各得到多少信息量。
解:(1) 可能的组合为 {1,6},{2,5},{3,4},{4,3},{5,2},{6,1})(a p =366=61得到的信息量 =)(1loga p =6log = bit (2) 可能的唯一,为 {6,6})(b p =361得到的信息量=)(1logb p =36log = bit 经过充分洗牌后的一副扑克(52张),问:(a) 任何一种特定的排列所给出的信息量是多少?(b) 若从中抽取13张牌,所给出的点数都不相同时得到多少信息量?解:(a) )(a p =!521信息量=)(1loga p =!52log = bit (b) ⎩⎨⎧⋯⋯⋯⋯花色任选种点数任意排列13413!13)(b p =1352134!13A ⨯=1352134C 信息量=1313524log log -C = bit 随机掷3颗骰子,X 表示第一颗骰子的结果,Y 表示第一和第二颗骰子的点数之和,Z 表示3颗骰子的点数之和,试求)|(Y Z H 、)|(Y X H 、),|(Y X Z H 、)|,(Y Z X H 、)|(X Z H 。
解:令第一第二第三颗骰子的结果分别为321,,x x x ,1x ,2x ,3x 相互独立,则1x X =,21x x Y +=,321x x x Z ++=)|(Y Z H =)(3x H =log 6= bit )|(X Z H =)(32x x H +=)(Y H=2⨯(361log 36+362log 18+363log 12+364log 9+365log 536)+366log 6= bit )|(Y X H =)(X H -);(Y X I =)(X H -[)(Y H -)|(X Y H ]而)|(X Y H =)(X H ,所以)|(Y X H = 2)(X H -)(Y H = bit或)|(Y X H =)(XY H -)(Y H =)(X H +)|(X Y H -)(Y H 而)|(X Y H =)(X H ,所以)|(Y X H =2)(X H -)(Y H = bit),|(Y X Z H =)|(Y Z H =)(X H = bit )|,(Y Z X H =)|(Y X H +)|(XY Z H =+= bit设一个系统传送10个数字,0,1,…,9。
《信息论基础》题目:常用无失真信源编码程序设计目录1. 引言 (2)2. 香农编码 (2)2.1 编码步骤 (3)2.2 程序设计 (3)2.3 运行结果 (3)3. 费诺编码 (4)3.1 编码步骤 (5)3.2 程序设计 (5)3.3 运行结果 (5)4. 哈夫曼编码 (6)4.1 编码步骤 (7)4.2 程序设计 (7)4.3 运行结果 (8)5. 结论 (9)6. 参考文献 (10)7. 附录 (11)7.1 香农编码Matlab程序 (11)7.2 费诺编码Matlab程序 (12)7.3 哈夫曼编码Matlab程序 (14)1. 引言信息论(Information Theory)是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。
信息系统就是广义的通信系统,泛指某种信息从一处传送到另一处所需的全部设备所构成的系统。
信息论是关于信息的理论,应有自己明确的研究对象和适用范围[1]。
信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。
信息传输和信息压缩是信息论研究中的两大领域。
这两个方面又由信息传输定理、信源-信道隔离定理相互联系。
信源编码是一种以提高通信有效性为目的而对信源符号进行的变换,或者说为了减少或消除信源冗余度而进行的信源符号变换。
具体说,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换为最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又能保证无失真地恢复原来的符号序列[2]。
在通信中,传送信源信息只需要具有信源极限熵大小的信息率,但在实际的通信系统中用来传送信息的信息率远大于信源极限熵。
为了能够得到或接近信源熵的最小信息率,必须解决编码的问题,而编码分为信源编码和信道编码,其中的信源编码又分为无失真信源编码和限失真信源编码。
由于无失真信源编码只适用于离散信源,所以本次作业讨论无失真离散信源的三种简单编码,即香农(Shannon)编码、费诺(Fano) 编码和哈夫曼(Huffman) 编码[3]。
第3章 无失真离散信源编码习题3.1 设信源1234567()0.20.190.180.170.150.10.01X a a a a a a a P X(1) 求信源熵H (X ); (2) 编二进制香农码;(3) 计算其平均码长及编码效率。
解: (1)()()log ()(.log ..log ..log ..log ..log ..log ..log .).7212222222=-020201901901801801701701501501010010012609 i i i H X p a p a bit symbol(2)a i p (a i ) p a (a i ) k i 码字 a 1 0.2 0 3 000 a 2 0.19 0.2 3 001 a 3 0.18 0.39 3 011 a 4 0.17 0.57 3 100 a 5 0.15 0.74 3 101 a 6 0.1 0.89 4 1110 a 70.010.9971111110(3)()3(0.2+0.19+0.18+0.17+0.15)+40.1+70.01=3.1471i i i K k p a()() 2.609=83.1%3.14H X H X R K3.2 对习题3.1的信源编二进制费诺码,计算其编码效率。
解:a i p (a i ) 编 码 码字 k i a 1 0.2 000 2 a 2 0.19 1 0 010 3 a 3 0.18 1 011 3 a 4 0.17 110 2 a 5 0.15 10 110 3 a 6 0.1 10 1110 4 a 70.011 11114()2(0.2+0.17)+3(0.19+0.18+0.15)+4(0.1+0.01)=2.7471i i i K k p a()() 2.609=95.2%2.74H X H X R K3.3 对习题3.1的信源分别编二进制和三进制赫夫曼码,计算各自的平均码长及编码效率。
第三章 离散信源无失真编码3.2离散无记忆信源,熵为H[x],对信源的L 长序列进行等长编码,码字是长为n 的D 进制符号串,问:(1)满足什么条件,可实现无失真编码。
(2)L 增大,编码效率 也会增大吗? 解:(1)当log ()n D LH X ≥时,可实现无失真编码;(2)等长编码时,从总的趋势来说,增加L 可提高编码效率,且当L →∞时,1η→。
但不一定L 的每次增加都一定会使编码效率提高。
3.3变长编码定理指明,对信源进行变长编码,总可以找到一种惟一可译码,使码长n 满足D X H log )(≤n <D X H log )(+L 1,试问在n >D X H log )(+L1时,能否也找到惟一可译码? 解:在n >D X H log )(+L1时,不能找到惟一可译码。
证明:假设在n >D X H log )(+L1时,能否也找到惟一可译码,则由变长编码定理当n 满足D X H log )(≤n <D X H log )(+L 1,总可以找到一种惟一可译码知:在n ≥DX H log )( ① 时,总可以找到一种惟一可译码。
由①式有:Ln ≥L X H )(logD ② 对于离散无记忆信源,有H(x)=LX H )( 代入式②得:n L≥ D x H log )(即在nL≥Dx H log )(时,总可以找到一种惟一可译码;而由定理给定熵H (X )及有D 个元素的码符号集,构成惟一可译码,其平均码长满足D X H log )(≤n L <DX H log )(+1 两者矛盾,故假设不存在。
所以,在n >D X H log )(+L1时,不能找到惟一可译码。
3.7对一信源提供6种不同的编码方案:码1~码6,如表3-10所示信源消息 消息概率 码1 码2 码3 码4 码5 码6 u1 1/4 0 001 1 1 00 000 u2 1/4 10 010 10 01 01 001 U3 1/8 00 011 100 001 100 011 u4 1/8 11 100 1000 0001 101 100 u5 1/8 01 101 10000 00001 110 101 u6 1/16 001 110 100000 000001 1110 1110 u71/161111111000000000000111111111(1) 这些码中哪些是惟一可译码? (2) 这些码中哪些是即时码?(3) 对所有唯一可译码求出其平均码长。
第一章自我测试题一、填空题1.在认识论层次上研究信息的时候,必须同时考虑到形式、_____和_____三个方面的因素。
2.如果从随机不确定性的角度来定义信息,信息是用以消除_____的东西。
3.信源编码的结果是_____冗余;而信道编码的手段是_____冗余。
4._____年,香农发表了著名的论文_____,标志着信息论诞生。
5.信息商品是一种特殊商品,它有_____性、_____性、_____性和知识创造性等特征。
二、判断题1.信息传输系统模型表明,噪声仅仅来源于信道()2.本体论层次信息表明,信息不依赖于人而存在()3.信道编码与译码是一对可逆变换()4.1976年,论文《密码学的新方向》的发表,标志着保密通信研究的开始()5.基因组序列信息的提取和分析是生物信息学的研究内容之一()三、选择题1.下列表述中,属于从随机不确定性的角度来定义信息的是_____A.信息是数据B.信息是集合之间的变异度C.信息是控制的指令D.信息是收信者事先不知道的报道2._____是最高层次的信息A.认识论B.本体论C.价值论D.唯物论3.下列不属于狭义信息论的是_____A.信息的测度B.信源编码C.信道容量D.计算机翻译4.下列不属于信息论的研究内容的是_____A.信息的产生B.信道传输能力C.文字的统计特性D.抗干扰编码5.下列关于信息论发展历史描述不正确的是_____A.偶然性、熵函数引进物理学为信息论的产生提供了理论前提。
B.1952年,香农发展了信道容量的迭代算法C.哈特莱用消息可能数目的对数来度量消息中所含有的信息量,为香农创立信息论提供了思路。
D.1959年,香农首先提出率失真函数和率失真信源编码定理,才发展成为信息率失真编码理论。
四、简答题给定爱因斯坦质能方程2Emc ,试说明该方程所传达的语法信息、语义信息和语用信息。
第一章 自我测试题参考答案一、填空题1. 语义,语用2. 随机不确定性3. 减小,增加4. 1948,通信的数学理论5. 保存性,共享性,老化可能性二、判断题1. ×;2.√;3.×;4.×;5.√三、选择题1. D ;2. B ;3. D ;4. A ;5. B四、简答题语法信息:就是该方程中各个字母、符号的排列形式。
信息论与编码理论习题解第二章-信息量和熵2.1解: 平均每个符号长为:1544.0312.032=⨯+⨯秒 每个符号的熵为9183.03log 3123log 32=⨯+⨯比特/符号所以信息速率为444.34159183.0=⨯比特/秒2.2 解: 同步信号均相同不含信息,其余认为等概,每个码字的信息量为 3*2=6 比特; 所以信息速率为600010006=⨯比特/秒2.3 解:(a)一对骰子总点数为7的概率是366 所以得到的信息量为 585.2)366(log 2= 比特 (b) 一对骰子总点数为12的概率是361 所以得到的信息量为 17.5361log 2= 比特 2.4 解: (a)任一特定排列的概率为!521,所以给出的信息量为 58.225!521log 2=- 比特 (b) 从中任取13张牌,所给出的点数都不相同的概率为13521313521344!13C A =⨯所以得到的信息量为 21.134log 1313522=C 比特.2.5 解:易证每次出现i 点的概率为21i,所以比特比特比特比特比特比特比特398.221log 21)(807.1)6(070.2)5(392.2)4(807.2)3(392.3)2(392.4)1(6,5,4,3,2,1,21log )(2612=-==============-==∑=i i X H x I x I x I x I x I x I i ii x I i2.6 解: 可能有的排列总数为27720!5!4!3!12= 没有两棵梧桐树相邻的排列数可如下图求得, Y X Y X Y X Y X Y X Y X Y X Y图中X 表示白杨或白桦,它有⎪⎪⎭⎫⎝⎛37种排法,Y 表示梧桐树可以栽种的位置,它有⎪⎪⎭⎫⎝⎛58种排法,所以共有⎪⎪⎭⎫ ⎝⎛58*⎪⎪⎭⎫⎝⎛37=1960种排法保证没有两棵梧桐树相邻,因此若告诉你没有两棵梧桐树相邻时,得到关于树排列的信息为1960log 27720log 22-=3.822 比特 2.7 解: X=0表示未录取,X=1表示录取; Y=0表示本市,Y=1表示外地;Z=0表示学过英语,Z=1表示未学过英语,由此得比特比特比特)01(log )01()0()00(log )00()0()(8113.04log 4134log 43)()(02698.04110435log 104354310469log 10469)1()01(log )01()0()00(log )00()0;(104352513/41)522121()0(/)1())11()1,10()10()1,00(()01(104692513/43)104109101()0(/)0())01()0,10()00()0,00(()00()(4512.04185log 854383log 83)1()01(log )01()0()00(log )00()0;(8551/4121)0(/)1()10()01(8351/43101)0(/)0()00()00()(,251225131)1(,2513100405451)10()1()00()0()0(,54511)1(,51101432141)10()1()00()0()0(,41)1(,43)0(222222222222+=====+=======+==+======+========⨯⨯+========+=========⨯⨯+========+=========+======+========⨯=========⨯=========-===⨯+====+======-===⨯+⨯====+=========x y p x y p x p x y p x y p x p X Y H X H c x p z x p z x p x p z x p z x p z X I z p x p x y p x y z p x y p x y z p z x p z p x p x y p x y z p x y p x y z p z x p b x p y x p y x p x p y x p y x p y X I y p x p x y p y x p y p x p x y p y x p a z p y z p y p y z p y p z p y p x y p x p x y p x p y p x p x p2.8 解:令{}{}R F T Y B A X ,,,,==,则比特得令同理03645.0)()(5.0,02.03.0)2.05.0(log 2.0)()2.05.0(log )2.05.0()2.03.0(log )2.03.0(5.0log 5.03.0log 3.0)5log )1(2.02log )1(5.0log )1(3.05log 2.0log 3.02log 5.0(2.0log 2.0)2.05.0(log )2.05.0()2.03.0(log )2.03.0()()();()(2.0)(,2.05.0)(2.03.0)1(3.05.0)()()()()(5.0max 2'2222223102231022222==∴==+-=---++-+=-+-+-+++-----++-=-===-=+=-⨯+=+==p p I p I p pp p I p p p p p p p p p p p p p p X Y H Y H Y X I p I R P p F P pp p B P B T P A P A T P T P2.9 & 2.12解:令X=X 1,Y=X 1+X 2,Z=X 1+X 2+X 3, H(X 1)=H(X 2)=H(X 3)= 6log 2 比特 H(X)= H(X 1) = 6log 2 =2.585比特 H(Y)= H(X 2+X 3)=6log 61)536log 365436log 364336log 363236log 36236log 361(2222222+++++ = 3.2744比特 H(Z)= H(X 1+X 2+X 3)=)27216log 2162725216log 2162521216log 2162115216log 2161510216log 216106216log 21663216log 2163216log 2161(222222222++++++= 3.5993比特 所以H(Z/Y)= H(X 3)= 2.585 比特 H(Z/X) = H(X 2+X 3)= 3.2744比特 H(X/Y)=H(X)-H(Y)+H(Y/X) = 2.585-3.2744+2.585 =1.8955比特H(Z/XY)=H(Z/Y)= 2.585比特 H(XZ/Y)=H(X/Y)+H(Z/XY) =1.8955+2.585 =4.4805比特 I(Y;Z)=H(Z)-H(Z/Y) =H(Z)- H(X 3)= 3.5993-2.585 =1.0143比特 I(X;Z)=H(Z)-H(Z/X)=3.5993- 3.2744 =0.3249比特 I(XY ;Z)=H(Z)-H(Z/XY) =H(Z)-H(Z/Y)=1.0143比特 I(Y;Z/X)=H(Z/X)-H(Z/XY) = H(X 2+X 3)-H(X 3) =3.2744-2.585 =0.6894比特 I(X;Z/Y)=H(Z/Y)-H(Z/XY) =H(Z/Y)-H(Z/Y) =02.10 解:设系统输出10个数字X 等概,接收数字为Y,显然101)(101)()()(919===∑∑==i j p i j p i Q j w i iH(Y)=log10比特奇奇奇奇偶18log 81101452log 211015)(log)()()(log )()(0)(log ),()(log ),()(22,2222=⨯⨯⨯⨯+⨯⨯⨯=--=--=∑∑∑∑∑∑∑≠====x y p x y p x p x x p x x p x p x y p y x p x y p y x p X Y H x y x i y x y x所以I(X;Y)= 3219.2110log 2=-比特2.11 解:(a )接收前一个数字为0的概率 2180)0()()0(==∑=i i i u p u q wbits p pw u p u I )1(log 11log )0()0(log )0;(2212121-+=-==(b )同理 418)00()()00(==∑=ii iu p u q wbits p p w u p u I )1(log 22)1(log )00()00(log )00;(24122121-+=-== (c )同理 818)000()()000(==∑=ii iu p u q wbits p p w u p u I )1(log 33)1(log )000()000(log )000;(28132121-+=-== (d )同理 ))1(6)1(()0000()()0000(4226818p p p p u p u q w ii i+-+-==∑=bitsp p p p p p p p p p w u p u I 42264242268142121)1(6)1()1(8log ))1(6)1(()1(log )0000()0000(log )0000;(+-+--=+-+--==2.12 解:见2.9 2.13 解: (b))/()/()/(1log)()/(1log)()/()/(1log)()/(1log)()/(XY Z H X Y H xy z p xyz p x y p xyz p xy z p x y p xyz p x yz p xyz p X YZ H x y z xyzxyzxyz+=+===∑∑∑∑∑∑∑∑∑∑∑∑(c))/()/(1log)/()()/(1log)/()()/(X Z H x z p xy z p xy p xy z p xy z p xy p XY Z H xyzxyz=≤=∑∑∑∑∑∑(由第二基本不等式) 或)1)/()/((log )/()()/()/(log)/()()/(1log)/()()/(1log)/()()/()/(=-⨯≤=-=-∑∑∑∑∑∑∑∑∑∑∑∑xy z p x z p e xy z p xy p xy z p x z p xy z p xy p x z p xy z p xy p xy z p xy z p xy p X Z H XY Z H xyzxyzxyzxyz(由第一基本不等式)所以)/()/(X Z H XY Z H ≤(a))/()/()/()/()/(X YZ H XY Z H X Y H X Z H X Y H =+≥+等号成立的条件为)/()/(x z p xy z p =,对所有Z z Y y X x ∈∈∈,,,即在给定X 条件下Y 与Z 相互独立。
第3章 信道容量习题解答3-1 设二进制对称信道的转移概率矩阵为2/31/31/32/3⎡⎤⎢⎥⎣⎦解: (1) 若12()3/4,()1/4P a P a ==,求(),(),(|),(|)H X H Y H X Y H Y X 和(;)I X Y 。
i i 2i=13311H(X)=p(a )log p(a )log()log()0.8113(/)4444bit -=-⨯-=∑符号111121*********j j j=132117p(b )=p(a )p(b |a )+p(a )p(b |a )=43431231125p(b )=p(a )p(b |a )+p(a )p(b |a )=4343127755H(Y)=p(b )log(b )=log()log()0.9799(/)12121212bit ⨯+⨯=⨯+⨯=---=∑符号 22i j j i j i j i ,H(Y|X)=p(a ,b )logp(b |a )p(b |a )logp(b |a )2211log()log()0.9183(/)3333i jjbit -=-=-⨯-⨯=∑∑符号I(X;Y)=H(Y)H(Y|X)=0.97990.91830.0616(/)bit --=符号 H(X|Y)=H(X)I(X;Y)=0.81130.06160.7497(/bit --=符号)(2)求该信道的信道容量及其达到信道容量时的输入概率分布。
二进制对称信息的信道容量H(P)=-plog(p)-(1-p)log(1-p)1122C =1-H(P)=1+log()+log()=0.0817(bit/)3333符 BSC 信道达到信道容量时,输入为等概率分布,即:{,}注意单位3-4 设BSC 信道的转移概率矩阵为112211Q εεεε-⎡⎤=⎢⎥-⎣⎦1)写出信息熵()H Y 和条件熵(|)H Y X 的关于1()H ε和2()H ε表达式,其中()log (1)log(1)H εεεεε=----。