风力发电原理第六章
- 格式:ppt
- 大小:2.41 MB
- 文档页数:48
风电机课程设计一、课程目标知识目标:1. 学生能够理解风能的基本概念,掌握风力发电的原理和过程。
2. 学生能够描述风电机组的主要构成部件及其作用。
3. 学生能够解释风电机的运行特性及影响因素。
技能目标:1. 学生能够运用所学知识分析风力发电的优缺点,并提出改进措施。
2. 学生能够设计简单风电机模型,并展示其工作原理。
3. 学生能够通过实际操作,学会使用相关工具和仪器进行风力发电实验。
情感态度价值观目标:1. 学生能够认识到风能作为一种清洁、可再生能源的重要性,培养环保意识。
2. 学生能够积极参与风力发电技术的学习和实践,形成探究精神和团队合作意识。
3. 学生能够关注风力发电行业的发展趋势,激发对新能源事业的热爱和责任感。
课程性质:本课程为自然科学领域的探究性课程,结合理论知识与实践操作,培养学生对风力发电技术的认识和理解。
学生特点:六年级学生具备一定的科学知识基础和动手操作能力,对新能源题材感兴趣,善于合作与分享。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的科学素养和创新能力,培养其环保意识和责任感。
通过分解课程目标为具体学习成果,为教学设计和评估提供明确方向。
二、教学内容1. 引言:介绍风能作为一种可再生能源的重要性和风力发电的概况。
- 教材章节:第一章《新能源概述》2. 风能基本概念:讲解风的产生、风能的转换和风力发电的原理。
- 教材章节:第二章《风能及其利用》3. 风电机组结构:分析风电机组的主要组成部分,包括叶片、塔架、发电机等。
- 教材章节:第三章《风力发电机组》4. 风电机工作原理:阐述风电机如何将风能转换为电能的过程。
- 教材章节:第四章《风力发电原理》5. 风电机运行特性及影响因素:探讨风速、风向等因素对风电机运行的影响。
- 教材章节:第五章《风力发电运行与管理》6. 风力发电优缺点及改进措施:分析风力发电的优势和局限性,并提出相应的改进方法。
- 教材章节:第六章《风力发电的挑战与未来》7. 实践操作:设计并制作简单风电机模型,进行风力发电实验。
风力发电的原理
风力发电是一种利用风能转化为电能的清洁能源技术。
风力发电原理主要是通
过风轮机转动带动发电机发电。
风力发电是一种可再生能源,具有环保、可持续等优点,受到越来越多的关注和应用。
首先,风力发电的原理是基于风能的转化。
风是地球上大气运动的结果,它是
由于地球的不均匀受热和自转而产生的。
当风吹过风轮机时,风的动能转化为机械能,驱动风轮机旋转。
风轮机是风力发电的核心部件,它将风的动能转化为机械能,为发电机提供动力。
其次,风力发电的原理是基于发电机的工作原理。
风轮机带动发电机旋转,发
电机内部的导体在磁场的作用下产生感应电动势,从而实现电能的转化。
发电机的工作原理是利用磁场和导体的相对运动产生感应电动势,将机械能转化为电能。
通过电力系统的调节和传输,最终将风能转化为可供人们使用的电能。
最后,风力发电的原理是基于电力系统的运行。
风力发电装置通过电力系统将
发电机产生的电能输送到电网中,供给用户使用。
电力系统包括输电线路、变电站等设备,它们将分布在各地的风力发电装置产生的电能集中起来,然后输送到用户所在地。
这样,风力发电就成为了一种可靠的电力资源,为人们的生产生活提供了稳定的电力支持。
总的来说,风力发电的原理是基于风能的转化、发电机的工作原理和电力系统
的运行。
风力发电技术的发展为人类提供了一种清洁、可持续的能源选择,对于减少化石能源的使用、改善环境质量具有重要意义。
随着科技的进步和风力发电技术的不断完善,相信风力发电将在未来发挥更加重要的作用,为人类社会的可持续发展做出更大的贡献。
风力发电机工作原理及原理图风力发电机工作原理及原理图风力发电机工作原理及原理图现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转距(风轮转动惯量),通过主轴传动链,经过齿轮箱增速到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网.如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电.最简单的风力发电机可由叶轮和发电机两部分构成,立在一定高度的塔干上,这是小型离网风机.最初的风力发电机发出的电能随风变化时有时无,电压和频率不稳定,没有实际应用价值.为了解决这些问题,现代风机增加了齿轮箱、偏航系统、液压系统、刹车系统和控制系统等.齿轮箱可以将很低的风轮转速(1500千瓦的风机通常为12-22转/分)变为很高的发电机转速(发电机同步转速通常为1500转/分).同时也使得发电机易于控制,实现稳定的频率和电压输出.偏航系统可以使风轮扫掠面积总是垂直于主风向.要知道,1500千瓦的风机机舱总重50多吨,叶轮30吨,使这样一个系统随时对准主风向也有相当的技术难度.风机是有许多转动部件的,机舱在水平面旋转,随时偏航对准风向;风轮沿水平轴旋转,以便产生动力扭距.对变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况而变桨距.在停机时,叶片要顺桨,以便形成阻尼刹车.早期采用液压系统用于调节叶片桨矩(同时作为阻尼、停机、刹车等状态下使用),现在电变距系统逐步取代液压变距.就1500千瓦风机而言,一般在4米/秒左右的风速自动启动,在13米/秒左右发出额定功率.然后,随着风速的增加,一直控制在额定功率附近发电,直到风速达到25米/秒时自动停机.现代风机的设计极限风速为60-70米/秒,也就是说在这么大的风速下风机也不会立即破坏.理论上的12级飓风,其风速范围也仅为32.7-36.9米/秒.风机的控制系统要根据风速、风向对系统加以控制,在稳定的电压和频率下运行,自动地并网和脱网;同时*齿轮箱、发电机的运行温度,液压系统的油压,对出现的任何异常进行报警,必要时自动停机,属于无人值守独立发电系统单元.风力发电机是将风能转换为机械功的动力机械,又称风车。
风力发电原理风力发电机工作原理是:风的动能(即空气的动能)转化成发电机转子的动能,转子的动能又转化成电能.风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。
依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。
风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。
风力发电在芬兰、丹麦等国家很流行;我国也在西部地区大力提倡。
小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。
风力发电机由机头、转体、尾翼、叶片组成。
每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体,定子绕组切割磁力线产生电能。
风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。
然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。
通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。
目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。
功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。
在内地,小的风力发电机会比大的更合适。
因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。
当无风时人们还可以正常使用风力带来的电能,也就是说一台200W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至1000W乃至更大的功率出。
使用风力发电机,就是源源不断地把风能变成我们家庭使用的标准市电,其节约的程度是明显的,一个家庭一年的用电只需20元电瓶液的代价。
第一章风及风能资源一、风的形成及影响因素1.风的产生:是由地球外表大气层由于太阳的辐射而引起的空气流动,大气压差是风产生的根本原因2.特性:周期性、多样性、复杂性3.风的分类:季风、山谷风、海陆风、台风、龙卷风二、风的测量1.风的测量包括风向和风速两种2.风向测量:风向测量是指测量风的来向风向测量装置:1)风向标:是测量风向最通用的装置,有单翼型、双翼型、流线型2)风向杆(安装方位指向正南)、风速仪(可测风向和风速,一般安装在离地面10米的高度)3.风向表示法:风向一般用16个方位表示,静风记为C。
4.风能密度:单位截面积的风所含的能量称为风能密度,常以W/m2表示。
三、风资源分布1.我国风资分布可划分为:风能丰富区、风能较丰富区、风能可利用区、风能贫乏区1)风能丰富区:有效风能密度>200W/m2。
2)风能较丰富区:有效风能密度为150~200W/m2,3~20m/s风速出现的全年累计时间为4000~5000h。
3)风能可利用区:有效风能密度在50~150W/m2之间,3~20m/s风速出现时数约在2000~4000h之间。
4)风能贫乏区:该区风能密度低于50W/m2,全年时间低于2000h第二章风力机的理论基础一、贝兹理论二、翼型的几何参数三、风车理论四、叶素理论气动效率五、葛劳渥漩涡理论六、葛劳渥轴线推力和扭矩计算有限长的叶片,叶片的下游存在尾迹涡,主要有两个漩涡区:一个在轮毂附近,一个在叶尖。
漩涡诱导速度可看成以下三个漩涡系叠加的合速:①中心涡,集中在转轴上②每个叶片的边界涡③每个叶片尖部形成的螺旋涡七、风力机的相似特性相似准则:所谓模型与风力机实物相似是指风轮与空气的能量传递过程以及空气在风轮内向流动过程相似,或者说它们在任一对应点的同名物理量之比保持常数。
流过风力机的气流属于不可压缩流体,理论上应满足几何相似、运动相似和雷诺数相等。
对风力机而言,后一个条件实际做不到,故一般仅以前两个条件作为模型和风力机实物的相似准则,并计及雷诺数。
风力发电工作原理风力发电是一种利用风能转换成电能的可再生能源发电方式。
它的工作原理主要是通过风轮转动驱动发电机发电。
下面我们将详细介绍风力发电的工作原理。
首先,风力发电的核心部件是风力发电机组,它由风轮、发电机、塔架和控制系统等组成。
当风力发电机组安装在合适的地理环境中,当风速达到一定的程度时,风力发电机组就会开始工作。
风力发电机组的风轮是通过风的能量驱动旋转,而风轮的旋转则会带动发电机转子的旋转。
发电机转子的旋转产生感应电动势,最终输出交流电。
其次,风力发电的工作原理基于气流动能的转化。
当气流通过风轮时,风轮受到气流的冲击而旋转,这就是风力发电的基本原理。
风力发电机组利用风能的转化过程中,通过控制系统调整叶片的角度和风轮的转速,使得风力发电机组在不同风速下都能够稳定工作,最大限度地转化风能为电能。
另外,风力发电的工作原理还涉及到风能的捕捉与转换。
风力发电机组的叶片设计得非常精巧,能够充分捕捉风能。
在风力发电机组内部,通过传动装置将风轮的旋转运动转换成发电机的旋转运动,最终产生电能。
而风力发电机组的塔架设计得非常坚固,能够确保发电机组在恶劣天气下依然能够安全运行。
最后,风力发电的工作原理基于风能资源的利用。
风力发电机组的选择和布局需要根据当地的气候条件和地理环境来确定,以充分利用当地的风能资源。
同时,风力发电的工作原理也需要考虑到发电机组的运行效率和稳定性,以确保风力发电系统能够持续稳定地发电。
总的来说,风力发电的工作原理是基于风能的转化和利用,通过风力发电机组的设计和运行,将风能转化成电能。
风力发电作为一种清洁、可再生能源,具有广阔的发展前景,将在未来发电领域发挥重要作用。
第六章: 制动系统风力发电机组是一种重型装备,工作在极其恶劣的条件下,因此对它安全性有着极高的要求。
除风力变化的不可预测性外,机件常年重载工作随时有损坏的可能性,在这些情况下风力发电机必须紧急停车,避免对风力发电机造成损害或故障扩大。
在进行正常维修时,也要求能进行停机检修。
风力发电机必须设计有制动系统,以实现对风力发电机进行保护。
制动系统是一种具有制止运动作用功能的零部件的总称。
风力发电机组的制动系统应符合GB/T18451.1风力发电机组安全要求相关条款的规定。
风力发电机组的制动系统应设计为独立的机构,当风力发电机组及零部件出现故障时制动系统能独立进行工作。
6.1 风力发电机的制动系统一、制动器的工作原理制动器俗称刹车或闸,是使机械中的运动部件停止或减速的机械零件。
制动器的工作原理是,利用与机架相连的非旋转元件和与传动轴相连的旋转元件之间的相互摩擦,来阻止轮轴的转动或转动的趋势。
使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。
制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。
制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。
摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。
摩擦材料分金属和非金属两类。
前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。
制动器主要由制动架、制动件和操纵装置等构成。
有些制动器还装有制动件间隙的自动调整装置。
为了减小制动力矩和结构尺寸,制动器通常装在设备的高速轴上,但对安全性要求较高的定浆距风力发电机,则应装在靠近风轮的低速轴上。
多数制动器已标准化和系列化,并由专业工厂制造以供选用。
一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都称为摩擦制动器。
摩擦制动器最常用的是鼓刹和盘刹,鼓刹因其外形像鼓而得名,盘刹因其外形是圆盘形而得名。