专题04 函数实际问题之行程问题与函数解析式求解题型(原卷版)
- 格式:docx
- 大小:187.49 KB
- 文档页数:8
专题04基本不等式及其应用【考点预测】1.基本不等式如果00>>b a ,,那么2b a ab +≤,当且仅当b a =时,等号成立.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号;基本不等式2:若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号.注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致.【方法技巧与总结】1.几个重要的不等式(1)()()()2000,0.a a R a a a R ≥∈≥≥≥∈(2)基本不等式:如果,ab R +∈,则2a b+≥(当且仅当“a b =”时取“”).特例:10,2;2a ba a ab a>+≥+≥(,a b 同号).(3)其他变形:①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)2,112a ba b R a b++≤≤≤∈+即调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件).2.均值定理已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=(当且仅当“x y =”时取“=”).即积为定值,和有最小值”.3.常见求最值模型模型一:)0,0(2>>≥+n m mn xnmx ,当且仅当mnx =时等号成立;模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma ax na x m a x n mx ,当且仅当mna x =-时等号成立;模型三:)0,0(2112>>+≤++=++c a bac xc b ax c bx ax x ,当且仅当acx =时等号成立;模型四:0,0,0(421)()(22m n x n m m n mx n mx m m mx n mx mx n x <<>>=-+⋅≤-=-(,当且仅当mnx 2=时等号成立.【典例例题】题型一:基本不等式及其应用例1.下列不等式恒成立的是()A.12x x+≥B.a b +≥C.22222a b a b ++⎛⎫≥⎪⎝⎭D.222a b ab+≥例2.已知x ,y 都是正数,且x y ≠,则下列选项不恒成立的是()A.2x y+>B.2x y y x+>C.2xyx y<+D.12xy xy +>例3.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为()A.0,0)2a ba b +≥>>B.220,0)a b a b +≥>>C.20,0)aba b a b≤>>+D.0,0)2a b a b +≤>>例4.下列不等式中一定成立的是()A.()2111x x >∈+R B.()12,sin sin xx k x k π+>≠∈Z C.21ln ln (0)4x x x ⎛⎫+>> ⎪⎝⎭D.()212x x x +≥∈R 例5.(多选题)下列函数中最小值为6的是()A.9ln ln y x x=+B.36sin 2sin y x x=+C.233xxy -=+D.2y例6.(多选题)设0a >,0b >,下列结论中正确的是()A.()1229a b a b ⎛⎫++≥ ⎪⎝⎭B.()2221a b a b +≥++C.22b a a ba b+≥+D.22a b a b+≥+【方法技巧与总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.题型二:直接法求最值例7.若实数a ,b 满足1a b +=,则ab 的最大值为()A.2B.1C.12D.14例8.若x ,y 为实数,且26x y +=,则39x y +的最小值为()A.18B.27C.54D.90例9.已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为()A.4-B.4C.8D.8-例10.函数()1111642xx x f x -=++的最小值为()A.4B.C.3D.例11.(多选题)已知a ,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是()A.ab 的最小值是1B.ab 的最大值是1C.11a b+的最小值是94D.11a b+的最大值是92例12.若,R a b +∈,且11b a +=,则2b a的最大值是_______________.例13.已知正数x 、y 满足124x y +=,则yx的最小值是___________.【方法技巧与总结】直接利用基本不等式求解,注意取等条件.题型三:常规凑配法求最值例14.若11x -<<,则22222x x y x -+=-有()A.最大值1-B.最小值1-C.最大值1D.最小值1例15.函数131y x x =+-(1)x >的最小值是()A.4B.3-C.D.3+例16.若0x >,0y >且x y xy +=,则211x y x y +--的最小值为()A.3B.52C.3D.3+例17.若1x >,则函数211x x y x -+=-的最小值为___________.例18.已知1xy =,且102y <<,则22416x y x y -+最大值为______.例19.(1)求函数()411y x x x =+>-的最小值及此时x 的值;(2)已知函数25102x x y x ++=+,()2,x ∈-+∞,求此函数的最小值及此时x 的值.【方法技巧与总结】1.通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式.2.注意验证取得条件.题型四:消参法求最值例20.若直线30(0,0)ax by a b --=>>过点(1,1)-例21.设正实数x ,y ,z 满足22340x xy y z -+-=,则当xyz取得最大值时,212x y z +-的最大值为()A.0B.3C.94D.1例22.已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是()A.2B.2-C.2-D.6例23.若正实数a ,b 满足32+=b a ab ,则2+a bab 的最大值为______.例24.若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________.例25.若220,0,422>>+-=a b a b ab ,则12++ab a b的取值范围是_________.【方法技巧与总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!题型五:双换元求最值例26.设0a >,0b >,若221a b +=2ab -的最大值为()A.3B.C.1D.2例27.若0a >,0b >,0c >,2a b c ++=,则4a b a b c+++的最小值为______.例28.已知x+y=1,y>0,x>0,则121x x y ++的最小值为____________.例29.已知0a >,0b >,21a b +=,则11343a b a b+++取到最小值为________.例30.若,x y R +∈,且21x y +=,则22212x y x y +++的最小值为_________例31.若正实数x ,y 满足22x y +=,则224122x y y x +++的最小值是__________.【方法技巧与总结】若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系.1.代换变量,统一变量再处理.2.注意验证取得条件.题型六:“1”的代换求最值例32.已知正实数x ,y 满足211x y+=,则436xy x y --的最小值为()A.2B.4C.8D.12例33.设正项等差数列{}n a 的前n 项和为n S ,若20132013S =,则2201211a a +的最小值为()A.1B.2C.4D.8例34.若实数a ,b 满足123,12a b a b ⎛⎫+=>> ⎪⎝⎭,则2211a b a b +--的最小值为()A.6B.4C.3D.2例35.已知20,0,61a b a b >>+=,则162b a+的最小值为()A.13B.19C.21D.27例36.已知0a >,0b >且1a b +=,则1811a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是()A.49B.50C.51D.52例37.已知正数a ,b 满足0ab a b --=,则4a b +的最小值为___________.例38.设0x >,0y >,1x y +=,则212x xy+的最小值为______.例39.函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________.【方法技巧与总结】1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.1.根据条件,凑出“1”,利用乘“1”法.2.注意验证取得条件.题型七:齐次化求最值例40.已知0,0a b >>,满足222232390,a b a b --+=则32b aa b+的最小值是()A.B.C.D.例41.已知函数())f x a b =<的定义域为R ,则24b aa b c-++的最大值是___________.例42.若a ,b ,c 均为正实数,则2222ab bca b c +++的最大值为()A.12B.14C.2D.2例43.已知三次函数32()()f x ax bx cx d a b =+++<在R 上单调递增,则a b cb a ++-最小值为()例44.已知0a >,0b >,且21a b +=,则12bb a b++的最小值为____________.例45.已知x ,y ,z 为正实数,且240x y z +-=,则2xyz 的最大值为______.例46.若0,0x y >>且224log 3log 9log 81x y+=,则433x y x y++的最小值为___________.【方法技巧与总结】齐次化就是含有多元的问题,通过分子、分母同时除以得到一个整体,然后转化为运用基本不等式进行求解.题型八:利用基本不等式证明不等式例47.已知0a >,0b >.(1)若21a b +=,证明:2233348a b ≤+<;(2)若2a b ab +=,证明:410a b ab ++≥+例48.设函数()124f x x x =+--.(1)求不等式()23f x x ≥-的解集.(2)若()f x 的最大值为222a b c ++,证明:3ab bc ca ++≤.例49.已知正数a ,b ,c 满足3a b c ++=.(1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.例50.设a ,b ,c 为正实数,且1a b c ++=.证明:(1)11192a b b c c a ++≥+++;(2)33332ab bc ca abca b c ++-++≥.例51.已知a ,b ,c 都是正数.(1)证明:a b c ++(2)若3a b c ++=,证明:11132a b b c c a ++≥+++.【方法技巧与总结】类似于基本不等式的结构的不等式的证明可以利用基本不等式去组合、分解、运算获得证明.题型九:利用基本不等式解决实际问题例51.设计用232m 的材料制造某种长方体形状的无盖车厢,按交通部门的规定车厢宽度为2m ,则车厢的最大容积是()A.m3B.16m3m3D.14m3例53.如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.例54.根据不同的程序,3D 打印既能打印实心的几何体模型,也能打印空心的几何体模型.如图所示的空3cm 的球挖去一个三棱锥P ABC -后得到的几何体,其中PA AB ⊥,BC ⊥平面PAB ,1BC cm =.不考虑打印损耗,求当用料最省时,AC 的长.例55.为响应国家扩大内需的政策,某厂家拟在2019年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用t(t≥0)万元满足421kx t =-+(k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2019年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).(1)将该厂家2019年该产品的利润y 万元表示为年促销费用t 万元的函数;(2)该厂家2019年的年促销费用投入多少万元时厂家利润最大?【方法技巧与总结】1.理解题意,设出变量,建立函数模型,把实际问题抽象为函数的最值问题.2.注意定义域,验证取得条件.3.注意实际问题隐藏的条件,比如整数,单位换算等.【过关测试】一、单选题1.已知点E 是ABC 的中线BD 上的一点(不包括端点).若AE xAB y AC =+ ,则21x y+的最小值为()A.4B.6C.8D.92.已知,a b 为正实数,且196a b a b+=++,则a b +的最小值为()A.6B.8C.9D.123.若0a >,0b >,()lg lg lg 3a b a b +=+,则a b +的最小值为()A.B.4+C.6D.3+4.已知1e ,2e 为平面的单位向量,且其夹角为2π3,若)122,xe ye x y +=∈R ,则2x y +的最大值为()A.B.C.D.-5.设0a >,1b >,若2a b +=,则411a b +-的最小值为()A.6B.9C.D.186.已知等比数列{}n a 的公比为q ,且51a =,则下列选项不正确的是()A.372a a +≥B.462a a +≥C.76210a a -+≥D.191911a a a a +=+7.已知a ,R b ∈,满足e e 1a b +=,则下列错误的是()A.2ln 2a b +≤-B.e <0a b +C.1≥ab D.()222e e 1a b+≥8.已知a ,()0,b ∈+∞,且22347a ab b ++=,则2+a b 的最大值为()A.2B.3C.D.二、多选题9.已知,x y +∈R ,x y m +=(m 是常数),则下列结论正确的是()A.若141x y ++的最小值为1m +,则3m =B.若(1)x y +的最大值为4,则3m =的最大值为m ,则2m =D.若4m =,则29y x+的最小值为210.已知220,0,2a b a b >>+=,则以下不等式成立的是()A.2a b +>B.332a b +≥C.114a b b a ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭D.112a b +≥11.设a ,b 为两个正数,定义a ,b 的算术平均数为()2a bA a b +=,,几何平均数为()G a b ,纪五十年代,美国数学家D.H.Lehmer 提出了“Lehmer 均值”,即()11,p pp p p a b L a b a b --+=+,其中p 为有理数.下列结论正确的是()A.()()0.51,,L a b L a b ≤B.()()0,,L a b G a b ≤C.()()2,,L a b A a b ≤D.()()1,,n n L a b L a b +≤12.已知函数2()log x f x =,且正实数a ,b 满足()()1f a f b +=,则下列结论可能成立的是()A.2a b =B.1122a b --+的最大值为32C.2ab =D.2211a b +的最小值为三、填空题13.已知正实数x ,y 满足12e (2)e yxx y -=+,则22y xy x y++的最小值为__________.14.已知2x >,则42x x +-的最小值是______.15.已知0a >,0b >,且2233a b ab a b +=+,则3a b +的最小值为___________.16.已知正实数x ,y 满足:222xx xy y ++=,则232x y y++的最小值为_________.四、解答题17.已知函数()263f x x x =++-.(1)解不等式()10f x ≥的解集;(2)设()()3g x f x x =-+到的最小值为t ,若正数m ,n 满足2m n t +=,求11211m n +++的最小值.18.已知函数()24f x x x =-+-,已知不等式()()0f x kx k ≥>恒成立.(1)求k 的最大值0k ;(2)设0a >,0b >,求证:1223a b a b a b k +≥++.19.设函数()||()f x x a a =-∈R .(1)若关于x 的不等式()(2)4+-≥f x f x 恒成立,求a 的取值范围;(2)在平面直角坐标系xOy 中,()()1+≤f x f y 所围成的区域面积为S ,若正数b ,c ,d 满足()()++=b d c d S ,求23++b c d 的最小值.20.设函数()142a f x x x x a=-++-()0a >(1)当1a =时,求不等式()52f x ≤的解集;(2)已知不等式()1f x x a ≥+的解集为{}1xx ≤∣,0m >,0n >,m n a +=,求28m n+的最小值.21.设a ,b 为正数,且1a b +=.证明:(1)2≤:(2)()()222a b b a a ++>.22.设a ,b ,c 均为正数,且1a b c ++=.(1)求14a b c++的最小值;。
2020年领军高考数学一轮复习(文理通用)专题04函数及其表示最新考纲1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).基础知识融会贯通1.函数与映射于集合A 中的任意一个数x ,在集合B 2.(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (2)函数的三要素:定义域、对应关系和值域. (3)函数的表示法表示函数的常用方法有解析法、图象法和列表法. 3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 【知识拓展】 简单函数定义域的类型(1)f (x )为分式型函数时,定义域为使分母不为零的实数集合; (2)f (x )为偶次根式型函数时,定义域为使被开方式非负的实数的集合;(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合; (4)若f (x )=x 0,则定义域为{x |x ≠0}; (5)指数函数的底数大于0且不等于1;(6)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2,k ∈Z .重点难点突破【题型一】函数的概念【典型例题】若函数y =f (x )的定义域为M ={x |﹣2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )A .B .C .D .【解答】解:对A 不符合定义域当中的每一个元素都有象,即可排除; 对B 满足函数定义,故符合;对C 出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定; 对D 因为值域当中有的元素没有原象,故可否定. 故选:B .【再练一题】下列四组函数中,表示同一函数的是( ) A .B .y =arcsin (sin x )和y =sin (arcsin x )C .y =x 和y =arccos (cos x )D.y=x(x∈{0,1})和y=x2(x∈{0,1})【解答】解:A.y=log22x=x,函数的定义域为R,y x,函数的定义域为{x|x>0},两个函数的定义域不相同,不是同一函数B.y=sin(arcsin x)的定义域为[﹣1,1],y=arcsin(sin x)的定义域是R,两个函数的定义域不相同,不是同一函数.C.y=arccos(cos x)的值域是[,],y=x的值域是R,不是相同函数.D.y=x对应的点为(0,0),(1,1),y=x2对应的点为(0,0),(1,1),两个函数是同一函数,故选:D.思维升华函数的值域可由定义域和对应关系唯一确定;判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同.【题型二】函数的定义域问题命题点1求函数的定义域【典型例题】若函数f(x)ln(x+1),则函数g(x)=f(x)+f(﹣x)的定义域为()A.(﹣1,2] B.(﹣1,1)C.(﹣2,2)D.[﹣2,2]【解答】解:解得,﹣1<x≤2;∴要使g(x)有意义,则:;解得﹣1<x<1;∴g(x)的定义域为(﹣1,1).故选:B.【再练一题】已知函数f(x)的定义域为(1,2),则函数f(x2)的定义域是()A.(1,2)B.(1,4)C.R D.(,﹣1)∪(1,)【解答】解:∵数f(x)的定义域为(1,2),∴由1<x2<2,得x<﹣1或1<x.即函数f(x2)的定义域是(,﹣1)∪(1,).故选:D.命题点2已知函数的定义域求参数范围【典型例题】设函数f(x).(1)当a=5时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,试求a的取值范围.【解答】解:(1)当a=5时,f(x),由|x﹣1|+|x﹣2|﹣5≥0,得或或,解得:x≥4或x≤﹣1,即函数f(x)的定义域为{x|x≤﹣1或x≥4}.(2)由题可知|x﹣1|+|x﹣2|﹣a≥0恒成立,即a≤|x﹣1|+|x﹣2|恒成立,而|x﹣1|+|x﹣2|≥|(x﹣1)+(2﹣x)|=1,所以a≤1,即a的取值范围为(﹣∞,1].【再练一题】函数的定义域为R,则实数k的取值范围是.【解答】解:函数的定义域为R,∴关于x的不等式2kx2﹣kx0恒成立,k=0时,不等式为0恒成立;k≠0时,应满足△=k2﹣4×2k0,解得0<k<3,综上,实数k的取值范围是[0,3).故答案为:[0,3).思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,可借助于数轴,注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域. (3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.【题型三】求函数解析式【典型例题】 已知函数f (2)=x +45,则f (x )的解析式为( )A .f (x )=x 2+1 B .f (x )=x 2+1(x ≥2) C .f (x )=x 2 D .f (x )=x 2(x ≥2)【解答】解:;∴f (x )=x 2+1(x ≥2). 故选:B .【再练一题】若函数f (x )对于任意实数x 恒有f (x )﹣2f (﹣x )=3x ﹣1,则f (x )等于( ) A .x +1B .x ﹣1C .2x +1D .3x +3【解答】解:函数f (x )对于任意实数x 恒有f (x )﹣2f (﹣x )=3x ﹣1, 令x =﹣x ,则:f (﹣x )﹣2f (x )=3(﹣x )﹣1. 则:,解方程组得:f (x )=x +1. 故选:A .思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式; (4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).【题型四】分段函数命题点1 求分段函数的函数值 【典型例题】已知函数,则的值是()A.﹣1 B.3 C.D.【解答】解:由题意可得,f() 1∴f(f())=f(﹣1)=3﹣1故选:C.【再练一题】设f(x)则使得f(m)=1成立的m值是()A.10 B.0,10 C.0,﹣2,10 D.1,﹣1,11 【解答】解:当m<1时,f(m)=(m+1)2=1∴m=﹣2或m=0当m≥1时,f(m)=4 1∴m=10综上:m的取值为:﹣2,0,10故选:C.命题点2分段函数与方程、不等式问题【典型例题】已知f(x)则不等式x+(x+2)•f(x+2)≤5的解集是()A.[﹣2,1] B.(﹣∞,﹣2] C.D.【解答】解:①当x+2≥0时,即x≥﹣2,f(x+2)=1由x+(x+2)•f(x+2)≤5可得x+x+2≤5∴x即﹣2≤x当x+2<0即x<﹣2时,f(x+2)=﹣1由x+(x+2)•f(x+2)≤5可得x﹣(x+2)≤5即﹣2≤5∴x<﹣2综上,不等式的解集为{x|x}故选:D.【再练一题】函数,若f(a)=f(b)=f(c)且a,b,c互不相等,则abc的取值范围是()A.(1,10)B.(10,12)C.(5,6)D.(20,24)【解答】解:函数的图象如图:∵f(a)=f(b)=f(c)且a,b,c互不相等∴a∈(0,1),b∈(1,10),c∈(10,12)∴由f(a)=f(b)得|lga|=|lgb|,即﹣lga=lgb,即ab=1∴abc=c由函数图象得abc的取值范围是(10,12)故选:B.思维升华(1)分段函数的求值问题的解题思路①求函数值:当出现f(f(a))的形式时,应从内到外依次求值.②求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.(2)分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.基础知识训练1.下列图象中可作为函数图象的是()A.B.C.D.【答案】C【解析】∵函数要求对应定义域P中任意一个x都有唯一的y值与之相对应,也就是说函数的图象与任意直线x=c(c∈P)只有一个交点;选项A、B、D中均存在直线x=c,与图象有两个交点,故不能构成函数;故选:C.2.下列四个图象中,不能作为函数图象的是()A.B.C.D.【答案】C【解析】由函数的定义可知,对定义域内的任意一个自变量x的值,都有唯一的函数值y与其对应,故函数的图象与直线x=a至多有一个交点,图C中,当﹣2<a<2时,x=a与函数的图象有两个交点,不满足函数的“唯一性”,故C不是函数的图象.故选:C.3.函数的定义域为A.B.C.D.【答案】D【解析】解:要使函数有意义,则:;解得,且;该函数的定义域为:.故选:D.4.已知函数,则的定义域为A.B.C.D.【答案】B【解析】解:要使f(x)有意义,则4﹣x>0;∴x<4;∴f(x)的定义域为(﹣∞,4);∴函数g(x)满足:;∴x<2,且x≠1;∴g(x)的定义域为(﹣∞,1)∪(1,2).故选:B.5.函数的定义域为()A.B.C.D.【答案】C【解析】由,解得x≥0且x≠1.∴函数的定义域为[0,1)∪(1,+∞).故选:C.6.已知函数,则( )A.1 B.C.D.【答案】D【解析】依题意,故,解得.故,所以.故选D. 7.已知f()=,则f(x)的解析式为()A.B.C.D.【答案】D【解析】由可知,函数的定义域为{x|x≠0,x≠﹣1},将x换为,代入上式得:f(x),故选:D.8.设f(x)=,则下列结论错误的是()A.B.C.D.【答案】A【解析】根据题意,依次分析选项:对于A,=f(x),A错误;对于B,,B正确;对于C,,C正确;对于D,=f(x),D正确;故选:A.9.已知函数,则满足的t的取值范围是A.B.C.D.【答案】C【解析】函数,可得时,递增;时,递增,且,可得在R上为增函数,由,即,解得,即t的范围是.故选:C.10.已知函数,则函数的零点个数为A.B.C.D.【答案】B【解析】当时,,据此可得函数在区间上单调递增,在区间上单调递减,在区间上单调递增,由函数的解析式易知函数在区间上单调递减,绘制函数图像如图所示,注意到,故方程的解:,则原问题转化为求方程时解的个数之和,由函数图像易知满足题意的零点个数为7个.本题选择B选项.11.定义在上的奇函数,当时,则关于的函数的所有零点之和为()A.B.C.D.【答案】A【解析】因为当时,,即时,,当时,,当时,,画出时,的图象,再利用奇函数的对称性,画出时的图象,如图所示:则直线的图象有5个交点,则方程共有5个实根,最左边两根之和为,最右边两根之和为,因为时,,所以,又,所以,所以中间的一个根满足,即,解得,所以所有根的和为,故选A.12.设函数,若,则实数a的取值范围是( )A.B.C.D.【答案】C【解析】解:当时,不等式可化为,即,解得;当时,不等式可化为,所以.故的取值范围是,故选C.13.若函数的值域是,则实数a的取值范围是A.B.C.D.【答案】D【解析】当时,,要使的值域是,则当时,恒成立,即,若,则不等式不成立,当时,则由,则,,即,故选:D.14.已知f(x)为定义在R上的奇函数,当x>0时,, 则()A.4 B.-4 C.D.【答案】B【解析】结合奇函数的概念,可知,所以,故选B。
专题04 二次函数的实际应用知识网络重难突破知识点一根据实际问题列二次函数表达式根据实际问题确定二次函数表达式关键是读懂题意,建立二次函数的数学模型来解决问题.【典例1】某畅销书的售价为每本30元,每星期可卖出200本,书城准备开展“读书节活动”,决定降价促销.经调研,如果调整书籍的售价,毎降价2元,每星期可多卖出40本.设每件商品降价x元后,毎星期售出此畅销书的总销售额为y元,则y与x之间的函数关系为()A.y=(30﹣x)(200+40x)B.y=(30﹣x)(200+20x)C.y=(30﹣x)(200﹣40x)D.y=(30﹣x)(200﹣20x)【变式训练】1.长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)2.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是()A.y=﹣x2+50x B.y=﹣x2+24xC.y=﹣x2+25x D.y=﹣x2+26x3.某工厂今年一月份生产防疫护目镜的产量是20万件,计划之后两个月增加产量,如果月平均增长率为x,那么第一季度防疫护目镜的产量y(万件)与x之间的关系应表示为.知识点二二次函数的实际应用在实际生活中存在很多抛物线型问题,还有很多“利润最大”“用量最少”“面积最大”“路程最短”等问题,它们都会用到二次函数的图象和性质来描述问题,解决这类问题的步骤:(1)设出两个变量;(2)写出函数表达式或画出图象;(3)确定自变量的取值范围;(4)利用二次函数的性质求解;(5)用求得的解来解释实际问题.【典例2】2020年4月,我市某药店销售一种疫情防控物品,进价为50元/瓶.售价为60元/瓶时,当天的销售量为100瓶.在销售过程中发现:售价每上涨5元,当天的销售量就减少5瓶.设当天销售单价统一为x元/瓶(x≥60,且x是按5元的倍数上涨),当天销售利润为y元.(1)求y与x的函数关系式(不要求写出自变量的取值范围);(2)要使当天销售利润不低于2400元,求当天销售单价所在的范围;(3)若每瓶物品的利润不超过80%,要想当天获得利润最大,每瓶物品售价应定为多少元?当天的最大利润为多少元?【典例3】如图1,皮皮小朋友燃放一种手持烟花,这种烟花每隔2 秒发射一发花弹,每一发花弹的飞行路径、爆炸时的高度均相同.皮皮发射出的第一发花弹的飞行高度h(米)与飞行时间t(秒)之间的函数图象如图2所示.(1)求皮皮发射出的第一发花弹的飞行高度h(米)随飞行时间t(秒)的函数表达式.(2)第一发花弹发射3秒后,第二发花弹达到的高度为多少米?(3)为了安全,要求花弹爆炸时的高度不低于16米.皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,请通过计算说明花弹的爆炸高度是否符合安全要求?【典例4】某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长60米,设饲养场(长方形ABCD)的宽为x米.(1)求饲养场的长BC(用含x的代数式表示).(2)若饲养场的面积为270m2,求x的值.(3)当x为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少m2?【变式训练】1.在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为米.2.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+bx+c表示.在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4m D.4m3.某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?4.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=xm.(1)若矩形花园ABCD的面积为165m2,求x的值;(2)若在P处有一棵树,树中心P与墙CD,AD的距离分别是13m和6m,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD时,需将以P为圆心,1为半径的圆形区域围在内),求矩形花园ABCD面积S的最大值.5.把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=20t﹣5t2.(1)经过多少秒后足球回到地面?(2)圆圆说足球的高度能达到21米,方方说足球的高度能达到20米.你认为圆圆和方方的说法对吗?为什么?巩固训练1.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为()A.米B.8米C.米D.10米2.如图,跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.20m C.15m D.22.5m3.把一个足球垂直于地面向上踢,t(秒)后该足球的高度h(米)适用于公式h=20t﹣5t2.下列结论:①球踢出4秒后回到地面;②足球上升的高度可以为30米;③足球踢出3秒后高度第一次达到15米;④足球踢出2秒后高度到达最大.其中正确的结论是.4.如图,一位篮球运动员在离篮圈水平距离4m处跳起投篮,球运行的高度y(m)与运行的水平距离x(m)满足解析式y=ax2+x+c,当球运行的水平距离为1.5m时,球离地面高度为3.3m,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为3.05m.(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手,问球出手时,他跳离地面多高?5.如图,某农场准备围建一个中间隔有一道篱笆的矩形花圃,现有长为18米的篱笆,一边靠墙,若墙长a =6米,设花圃的一边AB为x米,面积为S米2.(1)求S与x的函数关系式及x值的取值范围;(2)若边BC不小于3米这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.6.小钉从某超市获得关于销售甲,乙两种品牌洗手液的信息如下:➢甲洗手液的进价为12元/瓶,每瓶利润不得高于进价的40%.➢乙洗手液每瓶的利润保持不变.➢当甲、乙两种洗手液每瓶的利润相同时,销售甲可获利150元.➢甲洗手液的日均销售量y瓶与每瓶售价x元的关系如表:x(元)…1313.51415.5…y(瓶)…70656045…请根据以上信息,解决以下问题:(1)利用学过的一次函数、二次函数、反比例函数的知识,选择一种模型来确定y与x的函数关系式.(2)求乙洗手液每瓶的利润为多少元?(3)据了解,该超市销售甲、乙两种洗手液获得的最大日均利润和不少于380元,请问该超市每日至少销售甲、乙两种洗手液共多少瓶?。
函数的实际应用-中考数学重难点题型专题汇总阶梯费及行程问题用类问题(专题训练)1.某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中4070x ≤≤,且x为整数)(1)直接写出y 与x 的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?【答案】(1)10700406052006070x x y x x -+≤≤⎧=⎨-<≤⎩;(2)当售价为70元时,商家所获利润最大,最大利润是4500元【分析】(1)利用待定系数法分段求解函数解析式即可;(2)分别求出当4060x ≤≤时与当6070x <≤时的销售利润解析式,利用二次函数的性质即可求解.【详解】解:(1)当4060x ≤≤时,设11y k x b =+,将()40,300和()60,100代入,可得11113004010060k b k b =+⎧⎨=+⎩,解得1110700k b =-⎧⎨=⎩,即10700y x =-+;当6070x <≤时,设22y k x b =+,将()70,150和()60,100代入,可得22221507010060k b k b =+⎧⎨=+⎩,解得225200k b =⎧⎨=-⎩,即5200y x =-;∴10700406052006070x x y x x -+≤≤⎧=⎨-<≤⎩;(2)当4060x ≤≤时,销售利润()()22301010002100010504000w y x x x x =⋅-=-+-=--+,当50x =时,销售利润有最大值,为4000元;当6070x <≤时,销售利润()()()2230150605500150005502500w y x x x x x =⋅---=-+=-+,该二次函数开口向上,对称轴为50x =,当6070x <≤时位于对称轴右侧,当70x =时,销售利润有最大值,为4500元;∵45004000>,∴当售价为70元时,商家所获利润最大,最大利润是4500元.【点睛】本题考查一次函数的应用、二次函数的性质,根据图象列出解析式是解题的关键.2.为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:进价(元/斤)售价(元/斤)鲢鱼a5草鱼b销量不超过200斤的部分销量超过200斤的部分87已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.(1)求a ,b 的值;(2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼x 斤(销售过程中损耗不计).①分别求出每天销售鲢鱼获利1y (元),销售草鱼获利2y (元)与x 的函数关系式,并写出x 的取值范围;②端午节这天,老李让利销售,将鲢鱼售价每斤降低m 元,草鱼售价全部定为7元斤,为了保证当天销售这两种鱼总获利W (元)的最小值不少于320元,求m 的最大值.【答案】(1) 3.56a b =⎧⎨=⎩;(2)①()1 1.580120y x x =≤≤;()()2500801002600100120x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩;②0.25【分析】(1)根据题意列出关于a,b 的二元一次方程组,进而即可求解;(2)①根据利润=(售价-进价)×销售量,列出函数解析式,即可;②根据题意列出W 关于x 的一次函数关系式,参数为m,结合一次函数的性质,得到关于m 的不等式,进而即可求解.【详解】解:(1)根据题意得:10201552010130a b a b +=⎧⎨+=⎩,解得 3.56a b =⎧⎨=⎩,(2)①()()15 3.5 1.580120y x x x =-=≤≤.当300200x -≤时,即:100120≤≤,()()2863002600y x x =--=-+;当300200x ->时,即:80100x ≤<,()()()28620076300200500y x x =-⨯+---=-+.∴()()2500801002600100120x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩,②由题意得()()()()5 3.5763000.5300W m x x m x =--+--=-+,其中80120x ≤≤.∵当0.50m -≤时,()0.5300300W m x =-+≤.不合题意.∴0.50m ->.∴W 随x 的增大而增大.∴当80x =时,W 的值最小,由题意得()0.580300320m -⨯+≥.解得:0.25m ≤.∴m 的最大值为0.25.【点睛】本题主要考查二元一次方程组以及一次函数的实际应用,根据数量关系;列出方程组以及一次函数解析式,是解题的关键.3.某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB 分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米(2)点B 的坐标是()3,120,s=60t-60(3)34小时【分析】(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时,根据路程两车行驶的路程相等得到()60401x x =+即可求解;(2)由(1)中轿车行驶的时间求出点B 的坐标是()3,120,进而求出直线AB 的解析式;(3)根据大巴车行驶路程与小轿车行驶路程相等即可得到()40 1.560 1.5a +=⨯,进而求出a 的值(1)解:设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时.根据题意,得:()60401x x =+,解得x=2.则60602120x =⨯=千米,∴轿车出发后2小时追上大巴,此时,两车与学校相距120千米.(2)解:∵轿车追上大巴时,大巴行驶了3小时,∴点B 的坐标是()3,120.由题意,得点A 的坐标为()1,0.设AB 所在直线的解析式为s kt b =+,则:3120,0,k b k b +=⎧⎨+=⎩解得k=60,b=-60.∴AB 所在直线的解析式为s=60t-60.(3)解:由题意,得()40 1.560 1.5a +=⨯,解得:34a =,故a 的值为34小时.【点睛】本题考查了一次函数的实际应用、待定系数法求一次函数的解析式,解题的关键是4.A,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ;(2)分别求出,y y 甲乙与x 之间的函数解析式;(3)求出点C 的坐标,并写点C 的实际意义.【答案】(1)60(2) 60y x =甲, 100100y x =-乙(3)点C 的坐标为()2.5,150,点C 的实际意义为:甲出发2.5h 时,乙追上甲,此时两人距A 地150km【分析】(1)观察图象,由甲先出发1h 可知甲从A 地到B 地用了5h ,路程除以时间即为速度;(2)利用待定系数法分别求解即可;(3)将,y y 甲乙与x 之间的函数解析式联立,解二元一次方程组即可.(1)解:观察图象,由甲先出发1h 可知甲从A 地到B 地用了5h ,∵A,B 两地相距300km ,∴甲的速度为3005=60 (km/h)÷,故答案为:60;(2)解:设y 甲与x 之间的函数解析式为11y k x b =+甲,将点()0,0,()5,300代入得11103005b k b =⎧⎨=+⎩,解得11060b k =⎧⎨=⎩,∴y 甲与x 之间的函数解析式为60y x =甲,同理,设y 乙与x 之间的函数解析式为22y k x b =+乙,将点()1,0,()4,300代入得222203004k b k b =+⎧⎨=+⎩,解得22100100b k =-⎧⎨=⎩,∴y 乙与x 之间的函数解析式为100100y x =-乙;(3)解:将,y y 甲乙与x 之间的函数解析式联立得,60100100y x y x =⎧⎨=-⎩,解得 2.5150x y =⎧⎨=⎩,∴点C 的坐标为()2.5,150,点C 的实际意义为:甲出发2.5h 时,乙追上甲,此时两人距A 地150km .【点睛】本题考查一次函数的实际应用,涉及到求一次函数解析式,求直线交点坐标等知识点,读懂题意,从所给图象中找到相关信息是解题的关键.5.因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km /h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?【答案】(1)1.5(2)s=100t-150(3)1.2【分析】(1)根据货车行驶的路程和速度求出a 的值;(2)将(a,0)和(3,150)代入s=kt+b 中,待定系数法解出k 和b 的值即可;(3)求出汽车和货车到达乙地的时间,作差即可求得答案.(1)由图中可知,货车a 小时走了90km,∴a=9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s=kt+b,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩,解得,100150k b =⎧⎨=-⎩,∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s=100t-150;(3)将s=330代入s=100t-150,解得t=4.8,两车相遇后,货车还需继续行驶:()330150603-÷=h,到达乙地一共:3+3=6h,6-4.8=1.2h,∴轿车比货车早1.2h 时间到达乙地.【点睛】本题考查了一次函数的应用,主要利用待定系数法求函数解析式,路程、速度、时间三者之间的关系,从图中准确获取信息是解题的关键.6.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km ,超市离学生公寓2km ,小琪从学生公寓出发,匀速步行了12min 到阅览室;在阅览室停留70min 后,匀速步行了10min 到超市;在超市停留20min 后,匀速骑行了8min 返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离km y 与离开学生公寓的时间min x 之间的对应关系.请根据相关信息,解答下列问题:(1)填表:离开学生公寓的时间/min 585087112离学生公寓的距离/km0.51.6(2)填空:①阅览室到超市的距离为___________km ;②小琪从超市返回学生公寓的速度为___________km /min ;③当小琪离学生公寓的距离为1km 时,他离开学生公寓的时间为___________min .(3)当092x ≤≤时,请直接写出y 关于x 的函数解析式.【答案】(1)0.8,1.2,2(2)①0.8;②0.25;③10或116(3)当012x ≤≤时,0.1y x =;当1282x <≤时, 1.2y =;当8292x <≤时,0.08 5.36y x =-【分析】(1)根据题意和函数图象,可以将表格补充完整;(2)根据函数图象中的数据,可以将各个小题中的空补充完整;(3)根据(2)中的结果和函数图象中的数据,可以写出当092x ≤≤时,y 关于x 的函数解析式.(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,故当x=8时,离学生公寓的距离为8×0.1=0.8;在1282x ≤≤时,离学生公寓的距离不变,都是1.2km 故当x=50时,距离不变,都是1.2km;在92112x ≤≤时,离学生公寓的距离不变,都是2km,所以,当x=112时,离学生公寓的距离为2km 故填表为:离开学生公寓的时间/min 585087112离学生公寓的距离/km0.50.81.21.62(2)①阅览室到超市的距离为2-1.2=0.8km ;②小琪从超市返回学生公寓的速度为:2÷(120-112)=0.25km /min ;③分两种情形:当小琪离开学生公寓,与学生公寓的距离为1km 时,他离开学生公寓的时间为:1÷0.1=10min ;当小琪返回与学生公寓的距离为1km 时,他离开学生公寓的时间为:112+(2-1)÷{2÷(120-112)}=112+4=116min;故答案为:①0.8;②0.25;③10或116(3)当012x ≤≤时,设直线解析式为y=kx,把(12,1.2)代入得,12k=1.2,解得,k=0.1∴0.1y x =;当1282x <≤时, 1.2y =;当8292x <≤时,设直线解析式为y mx n =+,把(82,1.2),(92,2)代入得,82 1.2922m n m n +=⎧⎨+=⎩解得,0.085.36m n =⎧⎨=-⎩∴0.08 5.36y x =-,由上可得,当092x ≤≤时,y 关于x 的函数解析式为()0.10121.2(1282)0.08 5.36(8292)y x x y x y x x ⎧=≤≤⎪=<≤⎨⎪=-<≤⎩.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.7.如图1,小刚家,学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离()m y 与他所用的时间()min x 的函数关系如图2所示.(1)小刚家与学校的距离为___________m ,小刚骑自行车的速度为________m/min ;(2)求小刚从图书馆返回家的过程中,y 与x 的函数表达式;(3)小刚出发35分钟时,他离家有多远?【答案】(1)3000,200;(2)()20090002045y x x =-+≤≤;(3)2000m 【分析】(1)从起点处为学校出发去处为图书馆,可求小刚家与学校的距离为3000m,小刚骑自行车匀速行驶10分钟,从3000m 走到5000m 可求骑自行车的速度即可;(2)求出从图书馆出发时的时间与路程和回到家是的时间与路程,利用待定系数法求解析式即可;(3)小刚出发35分钟,在返回家的时间内,利用函数解析式求出当35x =时,函数值即可.【详解】解:(1)小刚骑自行车匀速从学校到图书馆,从起点3000m 处为学校出发去5000m 处为图书馆,∴小刚家与学校的距离为3000m,小刚骑自行车匀速行驶10分钟,从3000m 走到5000m,行驶的路程为5000-3000=2000m,骑自行车的速度为2000÷10=200m/min,故答案为:3000,200;(2)小刚从图书馆返回家的时间:()500020025min ÷=.总时间:()252045min +=.设返回时y 与x 的函数表达式为y kx b =+,把()()20,5000,45,0代入得:205000450k b k b +=⎧⎨+=⎩,解得,2009000k b =-⎧⎨=⎩,()20090002045y x x ∴=-+≤≤.(3)小刚出发35分钟,即当35x =时,2003590002000y =-⨯+=,答:此时他离家2000m .【点睛】本题考查从函数图像中获取信息,求距离,自行车行驶速度,利用待定系数法求返回时解析式,用行驶的具体时间确定函数值解决问题,掌握从函数图像中获取信息,求距离,自行车行驶速度,利用待定系数法求返回时解析式,用行驶的具体时间确定函数值解决问题是解题关键.8.在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离()m y 与时间()min x 之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______m /min ;(2)求AB 的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.【答案】(1)1;(2)458y x =-+;(3)13.5min【分析】(1)根据图象得到“猫”追上“鼠”时的路程与它们的用时,再求平均速度差即可;(2)找出A 点和B 点坐标,运用待定系数法求出直线AB 的解析式即可;(3)令0y =,求出x 的值,再减去1即可得解.【详解】解:(1)从图象可以看出“猫”追上“鼠”时,行驶距离为30米,“鼠”用时6min,“猫”用时(6-1)=5min,所以,“猫”的平均速度与“鼠”的平均速度的差是3030651(m m 5n)6/i -=-=故答案为:1;(2)由图象知,A(7,30),B(10,18)设AB 的表达式()0y kx b k =+≠,把点A、B 代入解析式得,3071810k b k b=+⎧⎨=+⎩解得,4,58.k b =-⎧⎨=⎩∴458y x =-+.(3)令0y =,则4580x -+=.∴14.5x =.14.5-1=13.5(min)∴“猫”从起点出发到返回至起点所用的时间为13.5min .【点睛】本题考查了一次函数的应用、待定系数法求函数解析式以及坐标与图形,解题的关键是:结合实际找出该线段的意义,根据点的坐标,利用待定系数法求出函数表达式.9.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表离开学校的时间/h0.10.50.813离学校的距离/km212(Ⅱ)填空:①书店到陈列馆的距离为________km ;②李华在陈列馆参观学的时间为_______h;③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ;④当李华离学校的距离为4km 时,他离开学校的时间为_______h.(Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.【答案】(Ⅰ)10,12,20;(Ⅱ)①8;②3;③28;④15或316;(Ⅲ)当00.6x ≤≤时,20y x =;当0.61x <≤时,12y =;当1 1.5x <≤时,164y x =-.【分析】(Ⅰ)根据函数图象,利用待定系数法,分段写出函数解析式,根据表格中x,代入相应的解析式,得到y;(Ⅱ)①根据图象进行分析即可;②根据图象进行分析即可;③根据4.55x <≤时的函数解析式可求;④分00.6x ≤≤和5 5.5x <≤两种情况讨论,将距离为4km 代入相应的解析式求出时间x;(Ⅲ)根据函数图象,利用待定系数法,分段写出函数解析式即可.【详解】对函数图象进行分析:①当00.6x ≤≤时,设函数关系式为y kx =,由图象可知,当x=0.6时,y=12,则12=0.6k ,解得20k =∴当00.6x ≤≤时,设函数关系式为20y x=②由图象可知,当0.61x <≤时,12y =③当1 1.5x <≤时,设函数关系式为y kx b =+,由图象可知,当x=1时,y=12;当x=1.5时,y=20,则121.520k b k b +=⎧⎨+=⎩,解得164k b =⎧⎨=-⎩∴当1 1.5x <≤时,设函数关系式为164y x =-④由图象可知,当1.5 4.5x ≤≤时,20y =⑤当4.55x <≤时,设函数关系式为y kx b =+,由图象可知,当x=4.5时,y=20;当x=5时,y=6,则 4.52056k b k b +=⎧⎨+=⎩,解得28146k b =-⎧⎨=⎩∴当4.55x <≤时,设函数关系式为28146y x =-+⑥当5 5.5x <≤时,设函数关系式为y kx b =+,由图象可知,当x=5时,y=6;当x=5.5时,y=0,则565.50k b k b +=⎧⎨+=⎩,解得1266k b =-⎧⎨=⎩∴当5 5.5x <≤时,设函数关系式为1266y x =-+(Ⅰ)∵当00.6x ≤≤时,函数关系式为20y x=∴当x=0.5时,200.510y =⨯=.故第一空为10.当0.61x <≤时,12y =.故第二空为12.当1.5 4.5x ≤<时,20y =.故第二空为20.(Ⅱ)①李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆.由图象可知书店到陈列馆的距离2012=8-;②李华在陈列馆参观学习一段时间,然后回学校.由图象可知李华在陈列馆参观学的时间4.5 1.53-=;③当4.55x <≤时,设函数关系式为28146y x =-+,所以李华从陈列馆回学校途中,减速前的骑行速度为28;④当李华离学校的距离为4km 时,00.6x ≤≤或5 5.5x <≤由上对图象的分析可知:当00.6x ≤≤时,设函数关系式为20y x=令4y =,解得15x =当5 5.5x <≤时,设函数关系式为1266y x =-+令4y =,解得316x =∴当李华离学校的距离为4km 时,他离开学校的时间为15或316.(Ⅲ)由上对图象的分析可知:当00.6x ≤≤时,20y x =;当0.61x <≤时,12y =;当1 1.5x <≤时,164y x =-.【点睛】本题考查函数的图象与实际问题.解题的关键在于读懂函数的图象,分段进行分析.10.公路上正在行驶的甲车,发现前方20m 处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s 时,它行驶的路程是多少?(2)若乙车以10m/s 的速度匀速行驶,两车何时相距最近,最近距离是多少?【答案】(1)87.5m;(2)6秒时两车相距最近,最近距离是2米【分析】(1)根据图像分别求出一次函数和二次函数解析式,令v=9求出t,代入求出s 即可;(2)分析得出当v=10m/s 时,两车之间距离最小,代入计算即可.【详解】解:(1)由图可知:二次函数图像经过原点,设二次函数表达式为2s at bt =+,一次函数表达式为v kt c =+,∵一次函数经过(0,16),(8,8),则8816k c c =+⎧⎨=⎩,解得:116k c =-⎧⎨=⎩,∴一次函数表达式为16v t =-+,令v=9,则t=7,∴当t=7时,速度为9m/s,∵二次函数经过(2,30),(4,56),则423016456a b a b +=⎧⎨+=⎩,解得:1216a b ⎧=-⎪⎨⎪=⎩,∴二次函数表达式为21162s t t =-+,令t=7,则s=491672-+⨯=87.5,∴当甲车减速至9m/s 时,它行驶的路程是87.5m;(2)∵当t=0时,甲车的速度为16m/s,∴当10<v<16时,两车之间的距离逐渐变小,当0<v<10时,两车之间的距离逐渐变大,∴当v=10m/s 时,两车之间距离最小,将v=10代入16v t =-+中,得t=6,将t=6代入21162s t t =-+中,得78s =,此时两车之间的距离为:10×6+20-78=2m,∴6秒时两车相距最近,最近距离是2米.【点睛】本题考查了二次函数与一次函数的实际应用,理解题意,读懂函数图像,求出表达式是解题的基本前提.11.某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是203062403040x x y x x <≤⎧=⎨-+<≤⎩,,,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当030x <≤时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?【答案】(1)30(2)2100元(3)9天【分析】(1)将15x =直接代入表达式即可求出销售量;(2)设销售额为w 元,分类讨论,当020x ≤≤时,由图可知,销售单价40p =;当20x 30<≤时,有图可知,p 是x 的一次函数,用待定系数法求出p 的表达式;分别列出函数表达式,在自变量取值范围内求取最大值即可;(3)分类讨论,当20x 30<≤和030x <≤时列出不等式,解不等式,即可得出结果.(1)解:当15x =时,销售量230y x ==;故答案为30;(2)设销售额为w 元,①当020x ≤≤时,由图可知,销售单价40p =,此时销售额4040280w y x x=⨯=⨯=∵800>,∴w 随x 的增大而增大当20x =时,w 取最大值此时80201600w =⨯=②当20x 30<≤时,有图可知,p 是x 的一次函数,且过点(20,40)、(40,30)设销售单价()0p kx b k =+≠,将(20,40)、(40,30)代入得:20404030k b k b +=⎧⎨+=⎩解得1250k b ⎧=-⎪⎨⎪=⎩∴1502p x =-+∴()2215021005025002w py x x x x x ⎛⎫==-+⋅=-+=--+ ⎪⎝⎭∵10-<,∴当20x 30<≤时,w 随x 的增大而增大当30x =时,w 取最大值此时()2305025002100w =--+=∵16002100<∴w 的最大值为2100,∴当030x <≤时,日销售额的最大值为2100元;(3)当030x ≤≤时,248x ≥解得24≥x ∴2430x ≤≤当3040x <≤,624048x -+≥解得32x ≤∴3032x <≤∴2432x ≤≤,共9天∴日销售量不低于48件的时间段有9天.【点睛】本题考查一元一次方程、一次函数、一元一次不等式、二次函数,是初中数学应用题的综合题型,解题的关键在于利用题目中的等量关系、不等关系列出方程、不等式,求出函数表达式,其中自变量取值范围是易错点、难点.12.为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m 2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元/m 2)与种植面积x(m 2)之间的函数关系如图所示,乙种花卉种植费用为15元/m 2.(1)当x≤100时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于30m 2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.【答案】(1)()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元;②40x ≤或60360x ≤≤.【分析】(1)根据函数图像分两种情况,40x ≤时y 为常数,0x 40≤≤10时y 为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;(2)①设甲种花卉种植面积为m ,则乙种花卉种植面积为360m -,根据乙的面积不低于甲的3倍可求出90m 30≤≤,利用总费用等于两种花卉费用之和,将m 分不同范围进行讨论列出总费用代数式,根据m 的范围解出最小值进行比较即可;②将x 按图像分3种范围分别计算总费用的取值范围即可.(1)由图像可知,当甲种花卉种植面积40x ≤m 2时,费用y 保持不变,为30(元/m 2),所以此区间的函数关系式为:30(040)y x ≤=<,当甲种花卉种植面积0x 40≤≤10m 2时,函数图像为直线,设函数关系式为:(0)y kx b x =+40≤≤10,∵当x=40时,y=30,当x=100时,y=15,代入函数关系式得:304015100k b k b =+⎧⎨=+⎩,解得:1,404k b =-=,∴140(0)4y x x =-+40≤≤10∴当100x ≤时,y 与x 的函数关系式应为:()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①设甲种花卉种植面积为30m m ≥(),则乙种花卉种植面积为360m -,3倍,∴3603m m -≥,解得:90m ≤,∴m 的范围为:90m 30≤≤当3040m ≤≤时,3015(360)155400w m m m =+-=+,此时当m 最小时,w 最小,即当m=30时,w 有最小值153054005850⨯+=(元),当400m <≤9时,211(40)15(360)(50)602544w m m m m =-++-=--+,此时当m=90时,离对称轴m=50最远,w 最小,即当m=90时,w 有最小值21(9050)602556254--+=(元)∵5625<5850,∴当m=90时种植的总费用w 最少,为5625元,此时乙种花卉种植面积为360m -=270,故甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元.②由以上解析可知:(1)当40x ≤时,总费用=155400154054006000x +⨯+=≤(元),(2)当40100x <≤时,总费用=21(50)60254x --+,令21(50)602560004x --+≤,解得:40x ≤或60x ≥,又∵40100x <≤,∴60100x ≤≤(3)当100360x <≤时,总费用=360155400⨯=(元),综上,在40x ≤、60100x ≤≤和100360x <≤时种植总费用不会超过6000元,所以甲种花卉种植面积x 的取值范围为:40x ≤或60360x ≤≤.【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.13.小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离t(分钟)的函数关系的图象;图2中线段AB 表示小华和商店的距离1y (米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是___________米/分钟,妈妈在家装载货物所用时间是__________分钟,点M 的坐标是___________;(2)直接写出妈妈和商店的距离2y (米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t 为何值时,两人相距360米.【答案】(1)120,5,()20,1200;(2)2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩,见解析;(3)当t 为8,12或32(分钟)时,两人相距360米.【解析】【分析】(1)先求出小华步行的速度,然后即可求出妈妈骑车的速度;先求出妈妈回家用的时间,然后根据小华到达商店比妈妈返回商店早5分钟,即可求出装货时间;根据题意和图像可得妈妈在M 点时开始返回商店,然后即可求出M 的坐标;(2)分①当0≤t<15时,②当15≤t<20时,③当20≤t≤35时三段求出解析式即可,根据解析式画图即可;(3)由题意知,小华速度为60米/分钟,妈妈速度为120米/分钟,分①相遇前,②相遇后,③在小华到达以后三种情况讨论即可.【详解】解:(1)由题意可得:小华步行的速度为:180030=60(米/分钟),妈妈骑车的速度为:1800601010-⨯=120(米/分钟);妈妈回家用的时间为:1800120=15(分钟),∵小华到达商店比妈妈返回商店早5分钟,∴可知妈妈在35分钟时返回商店,∴装货时间为:35-15×2=5(分钟),即妈妈在家装载货物的时间为5分钟;由题意和图像可得妈妈在M 点时开始返回商店,∴M 点的横坐标为:15+5=20(分钟),此时纵坐标为:20×60=1200(米),∴点M 的坐标为()20,1200;故答案为:120,5,()20,1200;(2)①当0≤t<15时y 2=120t,②当15≤t<20时y 2=1800,③当20≤t≤35时,设此段函数解析式为y 2=kx+b,将(20,1800),(35,0),代入得180020035k b k b =+⎧⎨=+⎩,解得1204200k b =-⎧⎨=⎩,∴此段的解析式为y 2=-120x+4200,综上:2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩;其函数图象如图,;(3)由题意知,小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有601203601800t t ++=,解得8t =(分钟);②相遇后,依题意有601203601800t t +-=,解得12t =(分钟);③依题意,当20t =分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为180********-⨯=(米),只需10分钟,即30t =分钟时,小华到达商店,而此时妈妈距离商店为180010120600-⨯=(米)360>(米),∴()120536018002t -+=⨯,解得32t =(分钟),∴当t 为8,12或32(分钟)时,两人相距360米.【点睛】本题考查了一次函数的实际应用,由图像获取正确的信息是解题关键.。
练(原卷版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·浙江八年级期中)如图,直线1:12AB y x =+分别与x 轴、y 轴交于点A ,点B ,直线:CD y x b =+分别与x 轴,y 轴交于点C ,点D .直线AB 与CD 相交于点P ,已知4ABD S ∆=,则点P 的坐标是()A .5(3,)2B .(8,5)C .(4,3)D .1(2,5)42.(2021·浙江八年级期末)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A .20210x y y x +-=⎧⎨-+=⎩B .20210x y y x -+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩3.(2021·浙江)已知直线y =(3m+2)x +2和y =-3x +6交于x 轴上同一点,m 的值为()A .-2B .2C .-1D .04.(2021·浙江九年级专题练习)把直线53y x =-+向上平移m 个单位后,与直线二、填空题5.(2020·浙江)如图,直线1:2l y x =+与直线2:l y kx b =+相交于点(),4P m ,则方程组2y x y kx b=+⎧⎨=+⎩的解是____.6.(2020·浙江八年级期中)已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx b y mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.7.(2020·浙江)如图,直线1:22l y x =-+交x 轴于点A ,交y 轴于点B ,直线21:12y l x =+交x 轴于点D ,交y 轴于点C ,直线1l 、2l 交于点M .(1)点M 坐标为________;(2)若点E 在y 轴上,且BME 是以BM 为一腰的等腰三角形,则E 点坐标为________.8.(2021·浙江八年级期末)如图,已知直线1:l y kx b =+与直线21:2l y x m =-+都经过68,55C ⎛⎫- ⎪⎝⎭,直线1l 交y 轴于点()0,4B ,交x 轴于点A ,直线2l 为y 轴交于点D ,P 为y 轴上任意一点,连接PA 、PC ,有以下说法:①方程组12y kx b y x m =+⎧⎪⎨=+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩;②BCD △为直角三角形;③6ABD S = ;④当PA PC +的值最小时,点P 的坐标为()0,1.其中正确的说法是______.9.(第12讲一次函数的应用及综合问题(讲练)-备战2021年中考数学一轮复习讲练测(浙江))对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y =max{x+3,﹣x+1},则该函数的最小值是_____.三、解答题10.(2020·浙江八年级期末)如图,在平面直角坐标系中,直线210y x =-+与x 轴交于点B ,与y 轴交于点C ,与直线12y x =交于点A ,点M 是y 轴上的一个动点,设()0,M m .(1)若MA MB +的值最小,求m 的值;(2)若直线AM 将ACO △分割成两个等腰三角形,请求出m 的值,并说明理由.11.(2020·台州市外国语学校九年级月考)如图,直线l 1的解析式为y =﹣3x +3,且l 1与x 轴交于点D ,直线l 2经过点A 、B ,直线l 1、l 2交于点C .(1)求直线l 2的解析表达式;(2)求△ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请求出点P 的坐标.12.(2019·金华市第五中学八年级期中)如图,点A 、B 的坐标分别为(0,2),(1,0),直线y=12x−3与y 轴交于点C ,与x 轴交于点D ,(1)求直线AB 与CD 交点E 的坐标;(1)若函数y 1的图象经过点(﹣1,5),求函数y 1的表达式.(2)已知点P(x 1,m )和Q(﹣3,n )在函数y 1的图象上,若m >n ,求x 1的取值范围.(3)若一次函数y 2=ax+b (a≠0)的图象与y 1的图象始终经过同一定点,探究实数a ,b 满足的关系式.14.(2020·浙江翠苑中学八年级月考)已知直线1:l y kx b =+(k ,b 为常数且0k <),经过点()()4,1,B 2,4A -.(1)求直线1l 的函数解析式;(2)若直线2l 是由直线2y x =-向上平移8个单位得到,求直线1l ,直线2l 和x 轴围成图形的面积.15.(2020·浙江)设一次函数()11y m x =-,()21y n x =+(m ,n 是常数,且m≠0,m≠n ,n>0)(1)当m=3,n=2时,①求函数y 1,y 2图象的交点坐标.②若y 1>y 2,求自变量x 的取值范围.(2)在0<x<1的范围内,有且只有部分函数值满足y 1>y 2,求证:m+n<0.16.(2020·浙江八年级期末)平面直角坐标系中,已知直线1l 经过原点与点(),2P m m ,直线2l :23y mx m =+-(0)m ≠;(1)求证:点(23)--,在直线2l 上;(2)当2m =时,请判断直线1l 与2l 是否相交?17.(2020·浙江八年级期末)已知一次函数1y ax b =+,2y bx a =+(0ab ≠,且a b ¹)(1)若1y 过点(1,2)与点(23)b a --,,求1y 的函数解析式.(2)1y 与2y 的图像交于点(),A m n ,用含a ,b 的式子表示n .(3)设3y =12y y -,421y y y =-,当34y y >时,求x 的取值范围.18.(2021·浙江九年级专题练习)已知:如图,直线l 1:y 1=﹣x +n 与y 轴交于A (0,6),直线l 2:y =kx +1分别与x 轴交于点B (﹣2,0),与y 轴交于点C ,两条直线相交于点D ,连接AB .(1)直接写出直线l 1、l 2的函数表达式;19.(2020·浙江)如图,在平面直角坐标系中,一次函数y =kx +b 的图象与x 轴交于点A (﹣3,0),与y 轴交于点B ,且与正比例函数y =43x 的图象交点为C (m ,4).(1)求一次函数y =kx +b 的解析式;(2)求△BOC 的面积;(3)若点D 在第二象限,△DAB 为等腰直角三角形,则点D 的坐标为.20.(2021·浙江八年级期末)定义:函数()()2424x x m y x x m ⎧-+≥⎪=⎨+<⎪⎩叫做关于m 的对称函数,它与x 轴负半轴交点记为A ,与x 轴正半轴交点记为B .(1)关于1的对称函数()()241241x x y x x ⎧-+≥⎪=⎨+<⎪⎩与直线1x =交于点C ,如图.①(),0A ,(),0B ,()1,C .②P 为关于1的对称函数图象上一点(点P 不与点C 重合),当= ABC ABP S S 时,求点P 的坐标;(2)当直线y x =与关于m 的对称函数有两个交点时,求m 的取值范围.。
2016年高考数学 热点题型和提分秘籍 专题04 函数及其表示 理(含解析)新人教A 版【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. 【热点题型】题型一 考查函数的定义域 例 1.(1)(函数f (x )= 1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数y =ln ⎝⎛⎭⎪⎫1+1x + 1-x 2的定义域为________.【答案】(1)A (2)(0,1] 【解析】【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f (x )的定义域,求f (g (x ))的定义域. (3)已知定义域确定参数问题. 2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.【举一反三】已知f (x )的定义域为⎣⎢⎡⎦⎥⎤-12,12,求函数y =f ⎝⎛⎭⎪⎫x 2-x -12的定义域.题型二 考查函数的解析式例2、(1)已知f (1-cos x )=sin 2x ,求f (x )的解析式;(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.【解析】 (1)f (1-cos x )=sin 2x =1-cos 2x , 令t =1-cos x ,则cos x =1-t ,t ∈[0,2], ∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2], 即f (x )=2x -x 2,x ∈[0,2].(2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.解方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,得f (x )=23x -x3(x ≠0).【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值X 围.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).【举一反三】已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3 【答案】B题型三 考查分段函数例3、如图,点P 从点O 出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系分别记为y =f (x ),y =g (x ),定义函数h (x )=⎩⎪⎨⎪⎧fx ,f x ≤g x ,g x ,f x >g x .对于函数y =h (x ),下列结论正确的个数是( )①h (4)=10;②函数h (x )的图象关于直线x =6对称;③函数h (x )的值域为[0,13 ];④函数h (x )的递增区间为(0,5).A .1B .2C .3D .4 【答案】 C 【解析】【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的X 围求的变量值或自变量的取值X 围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值X 围.【举一反三】已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于________.【答案】4【解析】f ⎝ ⎛⎭⎪⎫43=2×43=83, f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=2×23=43,f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4. 【高考风向标】【2015高考某某,理7】存在函数()f x 满足,对任意x R ∈都有( ) A. (sin 2)sin f x x = B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+ 【答案】D. 【解析】(2014·某某卷)设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎪⎫23π6=( )A.12B.32 C .0 D .-12【答案】A【解析】由已知可得,f ⎝⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎪⎫5π6+sin 5π6+sin 11π6+sin 17π6=2sin 5π6+sin ⎝ ⎛⎭⎪⎫-π6=sin 5π6=12.(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D(2014·某某卷)函数f (x )=ln(x 2-x )的定义域为( )A .(0,1]B .[0,1]C .(-∞,0)∪(1,+∞) D.(-∞,0]∪[1,+∞) 【答案】C【解析】由x 2-x >0,得x >1或x <0. (2014·某某卷)函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C. ⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D. ⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 【答案】C【解析】根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C. (2013·某某卷)已知函数f(x)=a ⎝ ⎛⎭⎪⎫1-2⎪⎪⎪⎪⎪⎪x -12,a 为常数且a>0. (1)证明:函数f(x)的图像关于直线x =12对称;(2)若x 0满足f(f(x 0))=x 0,但f(x 0)≠x 0,则称x 0为函数f(x)的二阶周期点.如果f(x)有两个二阶周期点x 1,x 2,试确定a 的取值X 围;(3)对于(2)中的x 1,x 2和a ,设x 3为函数 f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0).记△A BC 的面积为S(a),讨论S(a)的单调性.【解析】当a>12时,有f(f(x))=⎩⎪⎪⎨⎪⎪⎧4a 2x ,x ≤14a,2a -4a 2x ,14a <x ≤12,2a (1-2a )+4a 2x ,12<x ≤4a -14a ,4a 2-4a 2x ,x>4a -14a.所以f(f(x))=x 有四个解0,2a 1+4a 2,2a 1+2a ,4a 21+4a 2,又f(0)=0,f ⎝ ⎛⎭⎪⎫2a 1+2a =2a 1+2a,f ⎝ ⎛⎭⎪⎫2a 1+4a 2≠2a 1+4a 2,f ⎝ ⎛⎭⎪⎫4a 21+4a 2≠4a 21+4a 2,故只有2a 1+4a 2,4a 21+4a 2是f(x)的二阶周期点. 综上所述,所求a 的取值X 围为a>12.(2013·某某卷)设函数f(x)在(0,+∞)内可导,且f(e x)=x +e x,则f′(1)=________. 【答案】2【解析】f(e x )=x +e x,利用换元法可得f(x)=ln x +x ,f′(x)=1x +1,所以f′(1)=2.(2013·某某卷)如图1-3所示,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧FG 的长为x(0<x<π),y =EB +BC +CD ,若l 从l 1平行移动到l 2,则函数y =f(x)的图像大致是( )图1-3图1-4 【答案】D 【解析】(2013·某某卷)函数y =xln(1-x)的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1] 【答案】B【解析】x≥0且1-x>0,得x∈[0,1),故选B.(2013·某某卷)已知函数f(x)=x 2-2(a +2)x +a 2,g(x)=-x 2+2(a -2)x -a 2+8.设H 1(x)=max {}f (x ),g (x ),H 2(x)=min {}f (x ),g (x )(max {}p ,q 表示p ,q 中的较大值,min {}p ,q 表示p ,q 中的较小值).记H 1(x)的最小值为A , H 2(x)的最大值为B ,则A -B =( )A .16B .-16C .a 2-2a -16 D .a 2+2a -16【答案】B【解析】由题意知当f(x)=g(x)时,即x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8, 整理得x 2-2ax +a 2-4=0,所以x =a +2或x =a -2,所以H 1(x)=max{f(x),g(x)}=⎩⎪⎨⎪⎧x 2-2(a +2)x +a 2(x≤a-2),-x 2+2(a -2)x -a 2+8(a -2<x<a +2),x 2-2(a +2)x +a 2(x≥a+2),H 2(x)=min{f(x),g(x)}=⎩⎪⎨⎪⎧-x 2+2(a -2)x -a 2+8(x≤a-2),x 2-2(a +2)x +a 2(a -2<x<a +2),-x 2+2(a -2)x -a 2+8(x≥a+2).由图形(图形略)可知,A =H 1(x)min =-4a -4,B =H 2(x)max =12-4a ,则A -B =-16. 故选B.(2013·全国卷)已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎪⎫-1,-12C .(-1,0) D.⎝ ⎛⎭⎪⎫12,1【答案】B【解析】对于f(2x +1),-1<2x +1<0,解得-1<x<-12,即函数f(2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12. (2013·某某卷)设函数f(x)=⎩⎨⎧⎝ ⎛⎭⎪⎫x -1x 6,x<0,-x ,x≥0,则当x>0时,f[f(x)]表达式的展开式中常数项为( )A .-20B .20C .-15D .15 【答案】A(2013·某某卷)函数y =x33x -1的图像大致是( )图1-5【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A;当x<0时,x3<0,3x-1<0,故y>0,排除选项B;当x→+∞时,y>0且y→0,故为选项C中的图像.(2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-4所示,经销商为下一个销售季度购进了130 t该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的数学期望.【解析】(3)依题意可得T 的分布列为T 45 000 53 000 61 000 65 000 P0.10.20.30.4所以E(T)=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400. 【高考押题】1. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )【答案】B【解析】注意定义域和值域的限制,只有B 正确.2.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于 ( )A. 12 B. 45C. 2D. 9【答案】C3. 函数f (x )=2x -1log 3x 的定义域为 ( )A. (0,+∞)B. (1,+∞)C. (0,1)D. (0,1)∪(1,+∞)【答案】D【解析】由log 3x ≠0得x >0且x ≠1,因此,函数f (x )=2x -1log 3x 的定义域是(0,1)∪(1,+∞),选D.4.已知映射f :A →B ,其中A =B =R ,对应法则f :x →y =|x |12,若对实数k ∈B ,在集合A 中不存在元素x 使得f :x →k ,则k 的取值X 围是( )A. k ≤0B. k >0C. k ≥0D. k <0【答案】D【解析】由题易知y =|x |12的值域为[0,+∞),要使集合A 中不存在元素x 使得f :x →k ,只需k 不在此值域中,即k <0.5.如右图,是X 大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示X 大爷家的位置,则X 大爷散步行走的路线可能是( )【答案】D【解析】6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A. x -1B. x +1C. 2x +1D. 3x +3【答案】B【解析】在2f (x )-f (-x )=3x +1① 将①中x 换为-x ,则有 2f (-x )-f (x )=-3x +1② ①×2+②得3f (x )=3x +3, ∴f (x )=x +1. 7. 已知函数f (x )=1x +1,则函数f [f (x )]的定义域是________. 【答案】{x |x ≠-1,且x ≠-2} 【解析】由x +1≠0且1x +1+1≠0,得x ≠-1,且x ≠-2. ∴定义域为{x |x ≠-1,且x ≠-2}. 8.若函数f (x )=⎩⎪⎨⎪⎧2x x <3,3x -m x ≥3,且f (f (2))>7,则实数m 的取值X 围为________.【答案】m <5【解析】因为f (2)=4,所以f (f (2))=f (4)=12-m >7,解得m <5. 9.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =________.【答案】±1【解析】若a ≥0,则a +1=2,得a =1;若a <0,则-a +1=2,得a =-1.故a =±1. 10. 根据下列条件分别求出函数f (x )的解析式: (1)f (x +1)=x +2x ;(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ).解:(1)令t =x +1,∴t ≥1,x =(t -1)2. 则f (t )=(t -1)2+2(t -1)=t 2-1, 即f (x )=x 2-1,x ∈[1,+∞). (2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴a =2,b =7,故f (x )=2x +7.11. 已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0,(1)求f [g (2)]与g [f (2)]. (2)求f [g (x )]与g [f (x )]的表达式.12.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (分)的关系.试写出y =f (x )的函数解析式.。
行程问题例题摘要:一、行程问题例题的背景和意义1.行程问题的来源和定义2.行程问题在实际生活中的应用二、行程问题例题的具体内容1.基本行程问题类型及公式2.复合行程问题类型及公式3.典型行程问题例题解析三、解决行程问题的方法和技巧1.利用基本公式求解2.画图分析法3.比例法4.其它辅助方法四、总结与展望1.行程问题的核心思想2.学习行程问题的意义3.未来研究方向和应用前景正文:一、行程问题例题的背景和意义行程问题例题是数学中的一种典型问题,主要研究物体在运动过程中的各种性质和规律。
这类问题起源于古希腊时期的数学家,经过几千年的发展,已经成为现代数学、物理、工程等领域的重要组成部分。
在我国,行程问题例题被广泛应用于各种考试和竞赛,旨在培养学生的逻辑思维能力和解决问题的能力。
二、行程问题例题的具体内容1.基本行程问题类型及公式基本行程问题主要涉及匀速运动和变速运动两种情况。
对于匀速运动,我们可以直接使用速度等于位移除以时间的公式进行计算。
而对于变速运动,我们需要根据不同情况分别使用相应的公式。
2.复合行程问题类型及公式复合行程问题是指在行程过程中,物体需要经历多个阶段,每个阶段的运动方式可能不同。
在这种情况下,我们需要根据各个阶段的特点,分别使用相应的公式进行计算,最后将结果进行整合。
3.典型行程问题例题解析为了更好地理解行程问题的解题方法,我们来看一个典型的例题:甲、乙两人同时从同一地点出发,甲以60 千米/小时的速度向东行驶,乙以80 千米/小时的速度向北行驶。
请问甲、乙两人行驶4 小时后,距离原出发点多远?解析:首先,我们可以将甲、乙两人的运动分解为东西方向和南北方向的两个分运动。
由于这两个分运动是相互独立的,因此我们可以分别计算。
甲向东行驶4 小时,位移为60×4=240 千米。
乙向北行驶4 小时,位移为80×4=320 千米。
然后,我们将这两个位移向量相加,得到甲、乙两人行驶4 小时后距离原出发点的总位移。
专题04 高分必刷题-二次函数的文字题、应用题重难点题型分类 (原卷版)专题简介:本份资料包含二次函数的文字题和应用题两类题型,从各名校期中、期末试题中逐类选取代表性较强的优质试题,适合于给学生进行专题复习时使用,由于初三的各次考试也经常考查二次函数的利润问题应用题,因此本专题也适用于初三学生在每一次考试前临阵磨枪之用。
题型一: 二次函数的文字题二次函数的六种解析式①2ax y =;②c ax y +=2;③2)(h x a y -=;④顶点式k h x a y +-=2)(;⑤一般式c bx ax y ++=2;⑥交点式(两根式)))((21x x x x a y --=.1.在平面直角坐标系中,抛物线y =ax 2+bx +3经过点A (3,0)和点B (4,3). (1)求这条抛物线所对应的二次函数的表达式. (2)直接写出该抛物线开口方向和顶点坐标. (3)直接在所给坐标平面内画出这条抛物线.2.已知:二次函数y =ax 2+bx +c (a ≠0)中的x 和y 满足下表:x … 0 1 2 3 4 5 … y…3﹣1m8…(1)可求得m 的值为 ;(2)求出这个二次函数的解析式 ; (3)当0<x <3时,则y 的取值范围为 .3.关于x的二次函数y=ax2﹣bx+c的图象与x轴交于点A(﹣1,0)和点B(3,0),与y 轴交于点C(0,3).(1)求二次函数的解析式;(2)求二次函数的对称轴和顶点坐标.4.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标;(3)点M是抛物线在第一象限内图象上的任意一点,求当△BCM的面积最大时点M的坐标.5.如图:已知直线y=x+2与二次函数y=x2的图象交于A、B两点,与x轴、y轴交于点C、D.(1)求点A、B的坐标;(2)求△OAB的面积;(3)试判断△OAB的形状并证明.6.已知:抛物线y=x2+4x+4+m的图象与y轴交于点C,点B与点C的纵坐标相同,一次函数y=kx+b与二次函数交于A、B两点,且A点坐标为(﹣1,0).(1)求二次函数与一次函数的解析式;(2)若抛物线对称轴上存在一点P,使得△P AC的周长最小,求P点坐标及△P AC周长的最小值.题型九二次函数的应用题考向1:面积问题7.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),这时要使得花园面积为180m2,求x的值.8.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式;(2)如果要围成面积为45m2的花圃,AB的长是多少米?(3)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.考向2:利润问题9.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?考向2:利润问题9.某商场销售A,B两款书包,已知A,B两款书包的进货价格分别为每个30元,50元,商场用3600元的资金购进A,B两款书包共100个.(1)求A,B两款书包分别购进多少个.(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?10.某水果专卖店销售樱桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每千克降低1元,则平均每天的销售可增加10千克,请回答:(1)写出售价为50元时,每天能卖樱桃千克,每天获得利润元.(2)若该专卖店销售这种樱桃要想平均每天获利2240元,每千克樱桃应降价多少元?(3)若该专卖店销售这种樱桃要想平均每天获利最大,每千克樱桃应售价多少元?11.小雨、小华、小星暑假到某超市参加社会实践活动,在活动中他们参加了某种水果的销售工作,已知该水果的进价为8元/千克.他们通过市场调查发现:当销售单价为10元时,那么每天可售出300千克;销售单价每上涨1元,每天的销售量就减少50千克.(1)求该超市销售这种水果,每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式;(2)一段时间后,发现这种水果每天的销售量均不低于250千克,则此时该超市销售这种水果每天获取的利润w(元)最大是多少?(3)为响应政府号召,该超市决定在暑假期间每销售1千克这种水果就捐赠a元利润(a ≤2.5)给希望工程.公司通过销售记录发现,当销售单价不超过13元时,每天扣除捐赠后的日销售利润随销售单价x(元/千克)的增大而增大,求a的取值范围.12.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,则该漆器笔筒销售单价x的范围为.13.某公司生产某环保产品的成本为每件40元,经过市场调研发现这件产品在未来两个月(60天)的日销量m(件)与时间t(天)的关系图象如图所示(第一个月,第二个月销量与时间满足一次关系).未来两个月(60天)该商品每天的价格y(元/件)与时间t(天)的函数关系式为:y=根据以上信息,解决以下问题:(1)请分别确定1≤t≤30和31≤t≤60时该产品的日销量m(件)与时间t(天)之间的函数关系式;(2)请预测未来第一个月日销售利润W1(元)的最小值是多少?第二个月日销售利润W2(元)的最大值是多少?(3)为创建“两型社会”,政府决定大力扶持该环保产品的生产和销售,从第二个月开始每销售一件该产品就补贴a元,有了政府补贴以后,第二个月内该产品日销售利润W3(元)随时间t(天)的增大而增大,求a的取值范围.。
专题04 函数实际问题之行程问题与函数解析式求解题型学习函数过程中除了掌握其图象和性质外,还要能利用函数图象解决实际应用问题,在真正意义上理解数形结合的含义. 解决行程问题的关键是读懂题意,根据题意求得函数解析式,进而解答.
实际问题的函数解析式求解中,要看清题目中平面直角坐标系是如何建立的,根据不同的图象设出符合要求的解析式,代入点求解.
下面几个实例,帮助同学们体会此类问题的做法.
题型一、一次函数与行程类问题
1. (2019·浙江台州中考)
某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=
﹣
3
10
x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图所示.(1)求y关于x的函数解析式;
(2)请通过计算说明甲、乙两人谁先到达一楼地面.
2.(2019·山东济宁中考)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x (h)之间的函数关系.
请你根据图象进行探究:
(1)小王和小李的速度分别是多少?
(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.
3.(2019·浙江绍兴中考)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.
(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.
(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.
4.(2019·重庆市中考)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.
5.(2019·浙江宁波中考)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.
(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.
(2)求第一班车从入口处到达塔林所需的时间.
(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)
6.(2019·湖北咸宁中考)小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿着原路匀速跑步6min返回家中.
(1)小慧返回家中的速度比去文具店的速度快多少?
(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图像.
(3)根据图象回答,小慧从家出发后多少分钟离家距离为720m?
题型二、一次函数与相遇(交点)问题
7.(2019·浙江金华中考)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.
8.(2019·山东聊城中考)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来搅
收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()
A.9:15B.9:20C.9:25D.9:30
题型三、一次函数与收费问题
9.(2019·湖北宜昌中考)《人民日报》点赞湖北宜昌“智慧停车平台”.作为“全国智慧城市”试点,我市通过“互联网”、“大数据”等新科技,打造“智慧停车平台”,着力化解城市“停车难”问题.市内某智慧公共停车场的收费标准是:停车不超过30分钟,不收费;超过30分钟,不超过60分钟,计1小时,收费3元;超过1小时后,超过1小时的部分按每小时2元收费(不足1小时,按1小时计).
(1)填空:若市民张先生某次在该停车场停车2小时10分钟,应交停车费元.
若李先生也在该停车场停车,支付停车费11元,则停车场按小时(填整数)计时收费.
(2)当x取整数且x≥1时,求该停车场停车费y(单位:元)关于停车计时x(单位:小时)的函数解析式.
题型四、一次函数与销售问题
10.(2019·江苏泰州中考)小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y (元/kg)与质量x(kg)的函数关系.
(1)求图中线段AB所在直线的函数表达式;
(2)小李用800元一次可以批发这种水果的质量是多少?
11.(2019·湖北仙桃中考)某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x 千克,付款金额为y 元.
(1)求y 关于x 的函数解析式;
(2)某农户一次购买玉米种子30千克,需付款多少元?
题型五、二次函数与运动实际问题
12.(2019·四川巴中月考)一足球从地面上被踢出,它距地面高度y (米)可以用二次函数y =-4.9x 2+19.6x
来刻画,其中x (秒)表示足球被踢出后经过的时间,则足球被踢出后到离开地面达到最高点所用的时间是 秒.
13.(2019·四川巴中月考)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其
身体(看成一个点)的路线是抛物线y =-35
x 2+3x +1的一部分,如图. (1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.
题型六、实际问题解析式求解问题
14. (2019·山西中考)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为.
图1 图2
15.(2019·江苏泰州中考)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交于⊙O点B、C.设PB=x,PC=y,则y与x的函数表达式为.。