人教版必修2高中数学全册单元检测卷及答案
- 格式:doc
- 大小:2.47 MB
- 文档页数:33
第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。
人教版高中数学选择性必修第二册全册模块综合检测2(原卷版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f(x)=e2x+1,则f′(0)=()A.0B.eC.2e D.e22.在等差数列{a n}中,a1+a4+a7=36,a2+a5+a8=33,则a3+a6+a9的值为() A.27B.30C.33D.363.已知a>0,b>0,a,b的等比中项为2,则a+1b+b+1a的最小值为()A.3B.4 C.5D.424.函数y=x-12x+1在(1,0)处的切线与直线l:y=ax垂直,则a=() A.-3B.3C.13D.-135.已知等差数列{a n}的前n项和S n满足:S37-S23=a,则S60=()A.4a B.307aC.5a D.407a6.函数f(x)=(x2+2x)e2x的图象大致是()7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸8.已知函数f(x)=x3-x和点P(1,-1),则过点P与该函数图象相切的直线条数为() A.1B.2C.3D.4二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+211.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1<0,则下列结论正确的是()a7-1A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T612.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=ln x,f(1)=12,则下列结论正确的是()A.xf(x)在(1,+∞)单调递增B.xf(x)在(0,1)单调递减C.xf(x)在(0,+∞)上有极大值12D.xf(x)在(0,+∞)上有极小值12三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n}中,a4=8,a8=4,则其通项公式a n=________.a1a9,则a n=________,数列14.已知正项等比数列{a n}满足a1=1,a2a6a7=116{log2a n}的前n项和为________.15.函数f(x)=12x2-ln x的单调递减区间是________.16.已知函数f(x)=ln x+mx,若函数f(x)的极小值不小于0,则实数m的取值范围为________.四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n}中,已知a1=2,a4=16.(1)求数列{a n}的通项公式a n;(2)若a3,a5分别是等差数列{b n}的第4项和第16项,求数列{b n}的通项公式及前n项和S n.18.(12分)已知函数f(x)=12x2-3ln x.(1)求f(x)在(1,f(1))处的切线方程;(2)试判断f(x)在区间(1,e)上有没有零点.若有,判断零点的个数.19.(12分)设数列{a n}是等差数列,其前n项和为S n,且a3=2,S9=54.(1)求数列{a n}的通项公式;(2)证明:1a1+3+1a2+3+1a3+3+…+1a100+3>13.20.(12分)设函数f(x)=e x-ax-1(a∈R).(1)若a=2,求函数f(x)在区间[0,2]上的最大值和最小值;(2)当x≥0时,f(x)≥0,求a的取值范围.21.(12分)等差数列{a n}中,S3=21,S6=24,(1)求数列{a n}的前n项和公式S n;(2)求数列{|a n|}的前n项和T n.22.(12分)已知a,b∈R,设函数f(x)=e x-ax-b x2+1.(1)若b=0,求f(x)的单调区间;(2)当x∈[0,+∞)时,f(x)的最小值为0,求a+5b的最大值.注:e=2.71828…为自然对数的底数.人教版高中数学选择性必修第二册全册模块综合检测2(解析版)(时间:120分钟,分值:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.已知函数f (x )=e 2x +1,则f ′(0)=()A .0B .e C .2e D .e 2C解析:∵f (x )=e 2x +1,∴f ′(x )=2e 2x +1,∴f ′(0)=2e.故选C .2.在等差数列{a n }中,a 1+a 4+a 7=36,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为()A .27B .30C .33D .36B解析:因为a 1+a 4+a 7=3a 4=36,所以a 4=12.因为a 2+a 5+a 8=33,所以a 5=11.所以d=a 5-a 4=-1,所以a 3+a 6+a 9=3a 6=3(a 5+d )=30.故选B .3.已知a >0,b >0,a ,b 的等比中项为2,则a +1b +b +1a 的最小值为()A .3B .4C .5D .42C解析:∵a +1b +b +1a =(a +b )+a +b ab=(a +b =54(a +b )≥54·2ab =5,等号成立当且仅当a =b =2,原式的最小值为5.4.函数y =x -12x +1在(1,0)处的切线与直线l :y =ax 垂直,则a =()A .-3B .3C .13D .-13A解析:∵y ′=3(2x +1)2,∴y ′|x =1=13,∴函数在(1,0)处的切线的斜率是13,所以,与此切线垂直的直线的斜率是-3,∴a =-3.故选A .5.已知等差数列{a n }的前n 项和S n 满足:S 37-S 23=a ,则S 60=()A .4aB .307a C .5aD .407aB 解析:因为S 37-S 23=a 24+a 25+…+a 37=a 24+a 372×14=7(a 24+a 37)=a .所以S 60=a 1+a 602×60=30(a 24+a 37)=307a .故选B .6.函数f (x )=(x 2+2x )e 2x 的图象大致是()A 解析:由于f ′(x )=2(x 2+3x +1)·e 2x ,而y =x 2+3x +1的判别式Δ=9-4=5>0,所以y=x 2+3x +1开口向上且有两个根x 1,x 2.不妨设x 1<x 2,所以f (x )在(-∞,x 1),(x 2,+∞)上递增,在(x 1,x 2)上递减.所以C ,D 选项不正确.当x <-2时,f (x )>0,所以B 选项不正确.由此得出A 选项正确.故选A .7.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,则芒种日影长为()A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸B解析:由题知各节气日影长依次成等差数列,设为{a n },S n 是其前n 项和,则S 9=9(a 1+a 9)2=9a 5=85.5,所以a 5=9.5,由题知a 1+a 4+a 7=3a 4=31.5,所以a 4=10.5,所以公差d =a 5-a 4=-1.所以a 12=a 5+7d =2.5尺.故选B .8.已知函数f (x )=x 3-x 和点P (1,-1),则过点P 与该函数图象相切的直线条数为()A .1B .2C .3D .4B解析:因为f (1)=13-1=0,所以点P (1,-1)没有在函数的图象上.设切点坐标为(x 0,y 0),则y 0=x 30-x 0,则f ′(x )=3x 2-1.由导数的几何意义可知,过切点的斜率为k =3x 20-1,过P (1,-1)和切点的斜率表示为k =y 0+1x 0-1,-x0,3x20-1,化简可得x20(2x0-3)=0,所以x0=0或x0=32.所以切点有两个,因而有两条切线方程.故选B.二、多项选择题(本题共4小题,每小题5分,共20分)9.已知数列{a n}的前n项和为S n,S n=2a n-2,若存在两项a m,a n,使得a m a n=64,则() A.数列{a n}为等差数列B.数列{a n}为等比数列C.a21+a22+…+a2n=4n-13D.m+n为定值BD解析:由题意,当n=1时,S1=2a1-2,解得a1=2,当n≥2时,S n-1=2a n-1-2,所以S n-S n-1=a n=2a n-2-(2a n-1-2)=2a n-2a n-1,所以a na n-1=2,数列{a n}是以a1=2为首项,q=2为公比的等比数列,a n=2n,故选项A错误,选项B正确;数列{a2n}是以a21=4为首项,q1=4为公比的等比数列,所以a21+a22+…+a2n=a21(1-q n1)1-q1=4×(1-4n)1-4=4n+1-43,故选项C 错误;a m a n=2m2n=2m+n=64=26,所以m+n=6为定值,故选项D正确.故选BD.10.若函数e x f(x)(e=2.7182…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数为()A.f(x)=2-x B.f(x)=3-xC.f(x)=x3D.f(x)=x2+2AD解析:对于选项A,f(x)=2-x,则g(x)=e x f(x)=e x·2-x为实数集上的增函数;对于选项B,f(x)=3-x,则g(x)=e x f(x)=e x·3-x为实数集上的减函数;对于选项C,f(x)=x3,则g(x)=e x f(x)=e x·x3,g′(x)=e x·x3+3e x·x2=e x(x3+3x2)=e x·x2(x+3),当x<-3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于选项D,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2x e x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.故选AD.11.设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并且满足条件a1>1,a6a7>1,a6-1a7-1<0,则下列结论正确的是()A.0<q<1B.a6a8>1C.S n的最大值为S7D.T n的最大值为T6AD 解析:易知q >0,若q >1,则a 6>1,a 7>1,与a 6-1a 7-1>0矛盾,故0<q <1.所以0<a 7<1.所以a 6a 8=a 27<1.因为a 7>0,a 8>0,所以S n 的最大值一定不为S 7.因为0<a 7<1,a 6>1,所以T n 的最大值为T 6,故选AD .12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (1)=12,则下列结论正确的是()A .xf (x )在(1,+∞)单调递增B .xf (x )在(0,1)单调递减C .xf (x )在(0,+∞)上有极大值12D .xf (x )在(0,+∞)上有极小值12ABD解析:由x 2f ′(x )+xf (x )=ln x 得x >0,则xf ′(x )+f (x )=ln x x ,由[xf (x )]′=ln xx .设g (x )=xf (x ),即g ′(x )=ln xx>0得x >1.由g ′(x )<0得0<x <1,即xf (x )在(1,+∞)单调递增,在(0,1)单调递减,即当x =1时,函数g (x )=xf (x )取得极小值g (1)=f (1)=12.故选ABD .三、填空题(本题共4小题,每小题5分,共20分)13.已知等差数列{a n }中,a 4=8,a 8=4,则其通项公式a n =________.12-n 解析:∵等差数列{a n }中,a 4=8,a 8=4,4=a 1+3d =8,8=a 1+7d =4,解得a 1=11,d =-1,∴a n =11+(n -1)×(-1)=12-n .14.已知正项等比数列{a n }满足a 1=1,a 2a 6a 7=116a 1a 9,则a n =________,数列{log 2a n }的前n 项和为________.2-n +1-n (n -1)2解析:由a 1=1,a 2a 6a 7=1161a 9得a 5=a 1q 4=116,q =12,a n -1=2-n+1.而log 2a n =-n +1,所以{log 2a n }的前n 项和为-n (n -1)2.15.函数f (x )=12x 2-ln x 的单调递减区间是________.(0,1]解析:f (x )=12x 2-ln x ,则f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x≤0,故0<x ≤1.16.已知函数f (x )=ln x +mx,若函数f (x )的极小值不小于0,则实数m 的取值范围为________.1e,+∞解析:由f (x )=ln x +m x 得f ′(x )=1x -m x 2=x -mx2,定义域为(0,+∞).当m ≤0时,f ′(x )>0,函数y =f (x )单调递增,函数无极值;当m >0时,令f ′(x )=0⇒x =m ,当x ∈(0,m )时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(m ,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以当x =m 时,函数y =f (x )取极小值,且为f (m )=ln m +1.依题意有ln m +1≥0⇒m ≥1e ,因此,实数m 的取值范围是1e ,+∞四、解答题(本题共6小题,共70分)17.(10分)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式a n ;(2)若a 3,a 5分别是等差数列{b n }的第4项和第16项,求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2,所以a n =2n .(2)由(1)得a 3=8,a 5=32,则b 4=8,b 16=32.设{b n }的公差为d b 1+3d =8,b 1+15d =32,b 1=2,d =2.从而b n =2+2(n -1)=2n .所以数列{b n }的前n 项和S n =(2+2n )n2=n 2+n .18.(12分)已知函数f (x )=12x 2-3ln x .(1)求f (x )在(1,f (1))处的切线方程;(2)试判断f (x )在区间(1,e)上有没有零点.若有,判断零点的个数.解:(1)由已知得f ′(x )=x -3x ,有f ′(1)=-2,f (1)=12,∴在(1,f (1))处的切线方程为y -12=-2(x -1),化简得4x +2y -5=0.(2)由(1)知f ′(x )=(x -3)(x +3)x ,因为x >0,令f ′(x )=0,得x = 3.所以当x ∈(0,3)时,有f ′(x )<0,则(0,3)是函数f (x )的单调递减区间;当x ∈(3,+∞)时,有f ′(x )>0,则(3,+∞)是函数f (x )的单调递增区间;当x ∈(1,e)时,函数f (x )在(1,3)上单调递减,在(3,e)上单调递增.又因为f (1)=12,f (e)=12e 2-3>0,f (3)=32(1-ln 3)<0,所以f (x )在区间(1,e)上有两个零点.19.(12分)设数列{a n }是等差数列,其前n 项和为S n ,且a 3=2,S 9=54.(1)求数列{a n }的通项公式;(2)证明:1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.(1)解:设数列{a n }的公差为d ,∵S 9=9a 5=54,∴a 5=6,∴d =a 5-a 35-3=2,∴a n =a 3+(n -3)d =2n -4.(2)证明:∵1a n +3=12n -1>22n -1+2n +1=2n +1-2n -1,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>(3-1)+(5-3)+…+(201-199)=201-1>14-1=13,∴1a 1+3+1a 2+3+1a 3+3+…+1a 100+3>13.20.(12分)设函数f (x )=e x -ax -1(a ∈R ).(1)若a =2,求函数f (x )在区间[0,2]上的最大值和最小值;(2)当x ≥0时,f (x )≥0,求a 的取值范围.解:(1)f (x )=e x -2x -1,取f ′(x )=e x -2=0,即x =ln 2,函数在[0,ln 2]上单调递减,在(ln 2,2]上单调递增,且f (0)=0,f (2)=e 2-5,f (ln 2)=1-2ln 2,故函数的最大值为f (2)=e 2-5,最小值为f (ln 2)=1-2ln 2.(2)f (x )=e x -ax -1,f ′(x )=e x -a ,f (0)=0.当a ≤0时,f ′(x )=e x -a >0,函数单调递增,故f (x )≥f (0)=0,成立;当a >0时,f ′(x )=e x -a =0,即x =ln a ,故函数在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (ln a )<f (0)=0,不成立.综上所述,a 的取值范围为(-∞,0].21.(12分)等差数列{a n }中,S 3=21,S 6=24,(1)求数列{a n }的前n 项和公式S n ;(2)求数列{|a n |}的前n 项和T n .解:(1)设{a n }首项为a 1,公差为d ,由S 3=21,S 6=24,a 1+3×22d =21,a 1+6×52d =24,1=9,=-2.∴S n =n ×9+n (n -1)2×(-2)=-n 2+10n .(2)由(1)知,a n =9+(n -1)×(-2)=-2n +11,由a n ≥0得-2n +11≥0,即n ≤112.当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n ;当n ≥6时,T n =|a 1|+…+|a 5|+|a 6|+…+|a n |=(a 1+a 2+…+a 5)-(a 6+…+a n )=S 5-(S n -S 5)=n 2-10n +50.综上,T nn 2+10n (n ≤5),2-10n +50(n ≥6).22.(12分)已知a ,b ∈R ,设函数f (x )=e x -ax -b x 2+1.(1)若b =0,求f (x )的单调区间;(2)当x ∈[0,+∞)时,f (x )的最小值为0,求a +5b 的最大值.注:e =2.71828…为自然对数的底数.解:(1)f (x )=e x -ax ,f ′(x )=e x -a ,当a ≤0时,f ′(x )=e x -a ≥0恒成立,函数单调递增;当a >0时,f ′(x )=e x -a =0,x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0,函数单调递减;当x ∈(ln a ,+∞)时,f ′(x )>0,函数单调递增.综上所述,a ≤0时,f (x )在R 上单调递增;a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)f (x )=e x-ax -bx 2+1≥0在x ∈[0,+∞)上恒成立,=e -12a -52b ≥0,故a +5b ≤2e ,现在证明存在a ,b ,a +5b =2e ,使f (x )的最小值为0.取a =3e 4,b =5e 4(此时可使f 0),f ′(x )=e x -a -bx x 2+1,f ″(x )=e x -b (x 2+1)x 2+1,b =5e 4<1,故当x ∈[0,+∞)时,(x 2+1)x 2+1≥1,e x ≥1,故f ″(x )≥0,f ′(x )在[0,+∞)上单调递增,f 0,故f (x )在0f (x )min =0.综上所述,a +5b 的最大值为2 e.。
一、选择题1.已知复数z 满足2||230z z --=的复数z 的对应点的轨迹是( ) A .1个圆B .线段C .2个点D .2个圆2.在下列命题中,正确命题的个数是( ). ①两个复数不能比较大小;②复数i 1z =-对应的点在第四象限;③若()()22132i x x x -+++是纯虚数,则实数1x =; ④若()()2212230z z z z -+-=,则123z z z ==. A .0B .1C .2D .33.已知复数z 满足:21z -=,则1i z -+的最大值为( )A .2B 1C 1D .34.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=( )A .-16B .0C .16D .325.213(1)ii +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 6.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( ) A .i B .i - C .2i D .2i - 7.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --8.已知i 为虚数单位,复数32i2iz +=-,则以下命题为真命题的是( ) A .z 的共轭复数为74i 55- B .z 的虚部为75-C .3z =D .z 在复平面内对应的点在第一象限9.已知i 是虚数单位,复数z 满足()341z i i +=+,则z 的共轭复数在复平面内表示的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限10.下列命题中,正确的命题是( ) A .若1212,0z z C z z ∈->、,则12z z > B .若z R ∈,则2||z z z ⋅=不成立C .1212,,0z z C z z ∈⋅=,则10z =或20z =D .221212,0z z C z z ∈+=、,则10z =且20z =11.复数252i +i z =的共轭复数z 在复平面上对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.复数z 满足()234(i z i i --=+为虚数单位),则(z = ) A .2i -+B .2i -C .2i --D .2i +二、填空题13.已知虚数(),2z x yi x yi =+-+(x ,y R ∈)的模为4,则23z i +-的取值范围为________.14.计算:8811i i -⎛⎫-= ⎪+⎝⎭______________. 15.已知复数342iz i-=-(i 是虚数单位),则复数z 在复平面内对应的点位于第_____象限.16.复数1z 、2z 分别对应复平面内的点1M 、2M ,且1212z z z z +=-,线段12M M 的中点M 对应的复数为43i +(i 是虚数单位),则2212z z +=________.17.在复平面内,复数(3)a z =-+表示的点在直线y x =上,则z =_______. 18.已知复数[(1)]z a ai i =++(i 是虚数单位)是虚数,且||1z =,则实数a 的值是______19.已知复数032z i =+,其中i 是虚数单位,复数z 满足003z z z z ⋅=+,则复数z 的模等于__________.20.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________.三、解答题21.复数1z 、2z 满足120z z ⋅≠,1212||||z z z z +=-,证明:21220z z <.22.已知复数2(1)2(5)3i i z i++-=+.(1)求||z ;(2)若()z z a b i +=+,求实数a ,b 的值. 23.(1)已知()232z z z i i ++=-,求复数z ; (2)已知复数z 满足2z z-为纯虚数,且1z i -=,求复数z . 24.在复平面内,A B C ,,分别对应复数1231i 5i 33i z z z =+=+=+,,,以AB,AC 为邻边作一个平行四边形ABCD ,求D 点对应的复数4z 及AD 的长.25.设复数z :满足432243z i z i +--=-+-,求z 的最大值和最小值. 26.已知关于x 的方程2(21)30x i x m i --+-=有实数根,求实数m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【详解】因为2||230z z --=,所以3z =,3z = (负舍)因此复数z 的对应点的轨迹是以原点为圆心以3为半径的圆,选A.2.B解析:B 【分析】根据复数121,2z z ==,可得①是错误的;根据复数的表示,可得②是错误的;根据复数的分类,列出方程组,可得③是正确的;根据1231,,1z z i z ===-,可得④错误的. 【详解】对于①中,例如复数121,2z z ==,此时12z z <,所以①是错误的;对于②中,复数i 1z =-对应的点坐标为(1,1)-位于第二象限,所以②是错误的;对于③中,若()()22132i x x x -+++是纯虚数,则满足2210320x x x ⎧-=⎨++≠⎩,解得1x =,所以③是正确的;对于④中,例如1231,,1z z i z ===-,则()()22110i i -++=,所以④错误的. 故选:B. 【点睛】本题主要考查了复数的基本概念,以及复数的表示与复数的运算的综合应用,其中解答中熟记复数的概念与运算,逐项判定是解答的关键,着重考查推理与运算能力.3.B解析:B 【分析】复数方程|2|1z -=转化成实数方程()2221x y -+=,再由复数模定义|1|z i -+表示(1,1)-与圆上任一点(,)x y 间距离.【详解】解:设z x yi =+,由|2|1z -=得圆的方程()2221x y -+=,又|1|z i -+(1,1)-与圆上任一点(,)x y 间距离.则由几何意义得x ma |1|11z i -+==,故选:B . 【点睛】本题主要考查复数模的计算和几何意义,属于中档题.4.B解析:B 【分析】先求出(4,4)OA =,(4,4)OB =-,再利用平面向量的数量积求解. 【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x ⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-,则44z i =+,(4,4)OA =,(4,4)OB =-, ∴444(4)0OA OB ⋅=⨯+⨯-=. 故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.A解析:A 【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果. 【详解】()21313312221ii i i i ++==-+, 故选A. 【点睛】该题考查的是有关复数的运算,属于简单题目.6.A解析:A 【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-. 7.B解析:B 【解析】试题分析:设i z b a =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.8.D解析:D 【分析】利用复数的除法运算,化简32i2iz +=-,利用共轭复数,虚部,模长的概念,运算求解,进行判断即可. 【详解】()()()()32i 2i 32i 47i2i 2i 2i 55z +++===+--+, z ∴的共扼复数为47i 55-,z 的虚部为75,22476555z ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,在第一象限. 故选:D. 【点睛】本题考查了复数的四则运算,共轭复数,虚部,模长等概念,考查了学生概念理解,数学运算的能力,属于基础题.9.A解析:A 【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出. 【详解】复数z 满足()341z i i +=+,∴()()()()3434134z i i i i +-=+-,∴257z i =-,∴712525z i =-. ∴712525z i =+. 则复平面内表示z 的共轭复数的点71,2525⎛⎫⎪⎝⎭在第一象限. 故选:A . 【点睛】此题考查复数的运算和几何意义,涉及共轭复数概念辨析,关键在于熟练掌握运算法则,根据几何意义确定点的位置.10.C解析:C 【分析】A .根据复数虚部相同,实部不同时,举例可判断结论是否正确;B .根据实数的共轭复数还是其本身判断2||z zz ⋅=是否成立;C .根据复数乘法的运算法则可知是否正确;D .考虑特殊情况:12,1z i z ==,由此判断是否正确. 【详解】A .当122,1i z z i =+=+时,1210z z -=>,此时12,z z 无法比较大小,故错误;B .当0z =时,0z z ==,所以20z z z ⋅==,所以此时2||z z z ⋅=成立,故错误;C .根据复数乘法的运算法则可知:10z =或20z =,故正确;D .当12,1z i z ==时,2212110z z +=-+=,此时10z ≠且20z ≠,故错误.故选:C. 【点睛】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若z C ∈,则有2z z z ⋅=.11.C解析:C 【解析】 【分析】根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案. 【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+, 则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C . 【点睛】本题主要考查了复数的运算,以及复数的表示,其中解答中熟记复数的运算法则,以及复数的表示是解答的关键,着重考查了推理与运算能力,属于基础题.12.C解析:C 【解析】 【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案. 【详解】由()2345i z i --=+=,得()()()5252222i z i i i i -+===-+-----+, 2z i ∴=--. 故选C . 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.二、填空题13.【分析】由模长公式易得设()表示的几何意义为点到点的距离结合图形求出距离的范围即可得解【详解】因为虚数()的模为4所以有故点的轨迹是以圆心半径为的圆设()表示的几何意义为点到点的距离由图可知点到点的 解析:[]1,9【分析】由模长公式易得()22216x y -+=,设z x yi =+(x ,y R ∈),23z i +-表示的几何意义为点(,)x y 到点(2,3)B -的距离,结合图形求出距离的范围即可得解. 【详解】因为虚数()2x yi -+(x ,y R ∈)的模为4,所以有()22216x y -+=,故点(,)x y 的轨迹是以圆心(2,0)A ,半径为4r =的圆,设z x yi =+(x ,y R ∈),23z i +-表示的几何意义为点(,)x y 到点(2,3)B -的距离, 由图可知,点(,)x y 到点(2,3)B -的距离的最大值为AB r +,最小值为AB r -,又因为5AB ==,所以点(,)x y 到点(2,3)B -的距离的最大值为9,最小值为1, 则23z i +-的取值范围为[]1,9. 故答案为[]1,9.【点睛】本题考查复数的模和复数的几何意义,解题关键是根据复数的模长公式,得到x 和y 关系式,根据条件作出图形利用数形结合求解,考查逻辑思维能力和运算求解能力,考查数形结合思想,属于常考题.14.【分析】先利用复数的运算法则将和化简然后计算出及的值然后得出的值【详解】故答案为: 解析:0【分析】先利用复数的运算法则将11i i -+和22化简,然后计算出811i i -⎛⎫ ⎪+⎝⎭及82的值,然后得出88112i i -⎛⎫- ⎪+⎝⎭的值. 【详解】()()()()842284881111101122i i i i i i i ⎡⎤⎡⎤-=-=--=-=⎢⎥⎢⎥+-⎢-⎛⎫- ⎪+⎝⎭⎥⎥⎢⎣⎦⎣⎦. 故答案为:0.15.一【分析】化简得到得到复数对应象限【详解】复数在复平面内对应的点的坐标为(21)故复数在复平面内对应的点位于第一象限故答案为:一【点睛】本题考查了复数的模复数除法复数对应象限意在考查学生对于复数知识解析:一 【分析】化简得到2z i =+,得到复数对应象限. 【详解】()()()3452522222i i z i i i i i -+====+---+,复数z 在复平面内对应的点的坐标为(2,1), 故复数z 在复平面内对应的点位于第一象限. 故答案为:一.本题考查了复数的模,复数除法,复数对应象限,意在考查学生对于复数知识的综合应用.16.【解析】【分析】设为坐标原点根据可知以线段为邻边的平行四边形是矩形且线段的中点为由此可计算出的值【详解】设为坐标原点由知以线段为邻边的平行四边形是矩形即为直角又是斜边的中点且所以所以故答案为:【点睛 解析:100【解析】 【分析】设O 为坐标原点,根据1212z z z z +=-可知以线段1OM 、2OM 为邻边的平行四边形是矩形,且线段12M M 的中点为()4,3M ,由此可计算出2212z z +的值.【详解】设O 为坐标原点,由1212z z z z +=-知,以线段1OM 、2OM 为邻边的平行四边形是矩形,即12M OM ∠为直角,又M 是斜边12M M 的中点,且245OM ==,所以12210M M OM ==,所以22222121212100z z OM OM M M =+=+=.故答案为:100. 【点睛】本题考查复数的几何意义,涉及复数模的计算,解题的关键就是要分析出以线段1OM 、2OM 为邻边的平行四边形的形状,考查分析问题和解决问题的能力,属于中等题.17.【分析】根据复数几何意义列方程解方程得再根据共轭复数概念得结果【详解】解:由题意可得解得∴∴故答案为:【点睛】本题考查复数几何意义以及共轭复数概念考查基本分析求解能力属基础题 解析:66i -【分析】根据复数几何意义列方程,解方程得9a =,再根据共轭复数概念得结果. 【详解】解:由题意可得3a =-,解得9a =,∴66z i =+,∴66z i =-. 故答案为:66i - 【点睛】本题考查复数几何意义以及共轭复数概念,考查基本分析求解能力,属基础题.18.【解析】【分析】计算复数根据结合模长公式即可解出实数的值【详解】由题:复数是虚数则即解得或(舍)所以故答案为:【点睛】此题考查复数的运算和模长的计算并求参数取值注意概念辨析一个复数是虚数则虚部不为零 解析:0【分析】计算复数2[(1)](1)(1)z a ai i a i ai a a i =++=++=-++,根据||1z =,结合模长公式即可解出实数a 的值. 【详解】由题:复数2[(1)](1)(1)z a ai i a i ai a a i =++=++=-++,是虚数,则10a +≠,||1z ==,即2220a a +=,解得0a =或1a =-(舍) 所以0a =. 故答案为:0 【点睛】此题考查复数的运算和模长的计算并求参数取值,注意概念辨析,一个复数是虚数,则虚部不为零,此题的易错点在于漏掉考虑为虚数的限制条件.19.【分析】可设出复数z 通过复数相等建立方程组从而求得复数的模【详解】由题意可设由于所以因此解得因此复数的模为:【点睛】本题主要考查复数的四则运算相等的条件比较基础【分析】可设出复数z ,通过复数相等建立方程组,从而求得复数的模. 【详解】由题意可设z a bi =+,由于003z z z z ⋅=+,所以(32)(23)(33)(23)a b a b i a b i -++=+++,因此32332323a b a a b b -=+⎧⎨+=+⎩,解得132a b =⎧⎪⎨=-⎪⎩,因此复数z2=. 【点睛】本题主要考查复数的四则运算,相等的条件,比较基础.20.【解析】分析:由可得代入利用复数乘法运算法则整理后直接利用求模公式求解即可详解:因为所以故答案为点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算属于中档题解题时一定要注意和【解析】分析:由1i z =--,可得1i z =-+,代入()1z z -⋅,利用复数乘法运算法则整理后,直接利用求模公式求解即可.详解:因为1i z =--,所以1i z =-+,()()()()()111121z z i i i i ∴-⋅=++⋅-+=+⋅-+3i =-+==.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++三、解答题21.见解析.【分析】通过复数的模相等,判断两个复数对应的向量垂直,然后设出复数比证明即可.【详解】设复数1z 、2z 在复平面上对应的点为1Z 、2Z ,由1212||||z z z z +=-知,以1OZ 、2OZ 为邻边的平行四边形为矩形,∴12OZ OZ ⊥,故可设12z ki z =(k ∈R 且0k ≠),∴22221220z k i k z ==-<. 【点睛】本题关键之处在于模长相等的处理,可以得到1OZ 、2OZ 为邻边的平行四边形为矩形. 22.(1;(2)7a =-,13b =-.【解析】试题分析:(1)利用复数的计算法则将其化简,即可求得z ;(2)利用复数的计算法则将等号左边化简,再根据等号左右两边实部虚部相等即可求解.试题(1)∵21021010(3)33310i i i z i i i +--====-++,∴z = (2)∵2(3)(3)(3)(3)83(6)i i a i i a a a i b i --+=-+-=+-+=+,∴837{{(6)113a b a a b +==-⇒-+==-. 考点:复数的计算.23.(1)1-±;(2)2z i =或1z i =-+或1z i =+.【分析】(1)设复数(),z a bi a b R =+∈,根据复数的运算法则和复数相等得出关于a 、b 的方程组,解出这两个未知数,即可得出复数z ;(2)设复数(),z a bi a b R =+∈,根据2z z-为纯虚数和1z i -=列出关于a 、b 的方程组,解出这两个未知数,可得出复数z .【详解】(1)设复数(),z a bi a b R =+∈,由()232z z z i i ++=-,得()22232a b ai i ++=-,根据复数相等得22322a b a ⎧+=⎨=-⎩,解得12a b =-⎧⎪⎨=±⎪⎩,因此,12z i =-±; (2)设复数(),z a bi a b R =+∈,则()()()222222222a bi a b z a bi a bi a b i z a bi a bi a bi a b a b -⎛⎫⎛⎫-=+-=+-=-++ ⎪ ⎪++-++⎝⎭⎝⎭, 由题意可得2220a a a b -=+,2220b b a b +≠+. ()11z i a b i -=+-=,得()2211a b +-=,所以有()()()2222222222202011a a b a b b a b a b a b ⎧+-⎪=+⎪⎪++⎪≠⎨+⎪⎪+-=⎪⎪⎩,解得02a b =⎧⎨=⎩或11a b =±⎧⎨=⎩. 因此,2z i =或1z i =-+或1z i =+.【点睛】本题考查复数的求解,常将复数设为一般形式,根据复数的相关运算列举出方程组进行求解,考查运算求解能力,属于中等题.24.z 4=7+3i ,210AD =【分析】由复数的几何意义得到AC 对应复数z 3-z 1,AB 对应复数z 2-z 1,AD 对应复数z 4-z 1,AD AB AC =+,z 4-z 1=(z 2-z 1)+(z 3-z 1),再由复数的加法运算和模长的公式得到结果.【详解】如图所示:AC 对应复数z 3-z 1,AB 对应复数z 2-z 1,AD 对应复数z 4-z 1.由复数加减运算的几何意义,得AD AB AC =+,∴z 4-z 1=(z 2-z 1)+(z 3-z 1).∴z 4=z 2+z 3-z 1=(5+i)+(3+3i)-(1+i)=7+3i.∴AD 的长为41AD z z =-=()()73i 1i 62i +-+=+= 【点睛】在复平面上,点,()Z a b 和复数z a bi =+(),a b ∈R 一一对应,所以复数可以用复平面上的点来表示,这就是复数的几何意义.复数几何化后就可以进一步把复数与向量沟通起来,从而使复数问题可通过画图来解决,即实现了数与形的转化.由此将抽象问题变成了直观的几何图形,更直接明了.25.最大值7;最小值3.【分析】先根据绝对值定义得不等式,再根据绝对值三角不等式求最值.【详解】 由已知等式得()4320z i --+-≤ ()|||43|4322||523||7z i z i z z ∴--+≤--+≤∴-≤-≤∴≤≤所以z 最大值为7; z 最小值为3.【点睛】本题考查复数模、绝对值三角不等式,考查基本分析求解能力,属中档题.26.112m =【解析】 分析:先设方程的实根为0x ,再整理原方程为()()20003210x x m x i ++-+=,再根据复数相等的概念求m 的值.详解:设方程的实根为0x ,则()2002130x i x m i --+-=, 因为0x m R ∈、,所以方程变形为()()20003210x x m x i ++-+=, 由复数相等得200030210x x m x ⎧++=⎨+=⎩,解得012112x m ⎧=-⎪⎪⎨⎪=⎪⎩, 故112m =. 点睛:(1)本题主要考查复数方程的解法,意在考查学生对该知识的掌握水平和分析转化的能力.(2) 关于x 的方程()22130x i x m i --+-=,由于x 是复数,不一定是实数,所以不能直接利用求根公式求解.。
人教版高中数学必修第二册第九章统计单元测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A.抽签法B.按性别分层随机抽样C.按学段分层随机抽样D.随机数法2.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下表:身高[100,110)[110,120)[120,130)[130,140)[140,150]频数535302010由此表估计这100名学生身高的中位数为(结果保留4位有效数字)()A.119.3B.119.7C.123.3D.126.73.高二(1)班某宿舍有7人,他们的身高(单位:cm)分别为170,168,172,172,175,176,180,则这7个数据的第60百分位数为()A.168B.175C.172D.1764.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中的一组.已知该组的频率为m,该组上的频率分布直方图的高为h,则|a-b|等于()A.mhB.C.D.m+h5.2020年2月8日,在韩国首尔举行的四大洲花样滑冰锦标赛双人自由滑比赛中,中国组合隋文静、韩聪以总分217.51分拿下四大洲赛冠军,这也是他们第六次获得四大洲冠军.中国另一对组合彭程、金杨以213.29分摘得银牌.花样滑冰锦标赛有9位评委进行评分,首先这9位评委给出某对选手的原始分数,评定该对选手的成绩时从9个原始成绩中去掉一个最高分、一个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差6.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到如图C4-1所示的频率分布直方图,由于不慎将部分数据丢失,但知道后5组频数之和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()图C4-1A.64B.54C.48D.277.某商场一年中各月份的收入、支出情况的统计如图C4-2所示,则下列说法中正确的是()图C4-2A.支出最高值与支出最低值的比是8∶1B.4至6月份收入的平均数为50万元C.利润最高的月份是2月份D.2至3月份的收入的变化率与11至12月份的收入的变化率相同8.为了研究一种新药的疗效,选100名患者随机分成两组,每组50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成图C4-3,其中“*”表示服药者,“+”表示未服药者.则下列说法中,错误的是()图C4-3A.服药组的指标x的平均数和方差比未服药组的都小B.未服药组的指标y的平均数和方差比服药组的都大C.以统计的频率作为概率,估计患者服药一段时间后指标x低于100的概率为0.94D.这种疾病的患者的生理指标y基本都大于1.5二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.“悦跑圈”是一款基于社交型的跑步应用,用户通过该平台可查看自己某时间段的运动情况.某人根据2019年1月至2019年11月期间每月跑步的里程(单位:十公里)的数据绘制了如图C4-4所示的折线图,根据该折线图,下列结论正确的是()图C4-4A.月跑步里程逐月增加B.月跑步里程的最大值出现在9月C.月跑步里程的中位数为8月份对应的里程D.1月至5月的月跑步里程相对于6月至11月波动性更小,变化比较平稳10.某学校为了调查学生在一周生活方面的支出(单位:元)情况,抽取了一个容量为n的样本,将样本数据按[20,30),[30,40),[40,50),[50,60]分组后所得频率分布直方图如图C4-5所示,其中支出在[50,60]内的学生有60人,则下列说法正确的是()图C4-5A.样本中支出在[50,60]内的频率为0.03B.样本中支出不少于40元的人数有132C.n的值为200D.若该校有2000名学生,则一定有600人支出在[50,60]内11.统计某校n名学生某次数学同步练习的成绩(单位:分,满分150分),根据成绩依次分成六组[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],得到频率分布直方图如图C4-6所示,若不低于140分的人数为110,则下列说法正确的是()图C4-6A.m=0.031B.n=800C.100分以下的人数为60D.成绩在区间[120,140)内的人数超过50%12.某市12月17日至21日期间空气质量呈现重度及以上污染水平,经市政府批准,该市启动了空气重污染红色预警,期间实行机动车“单双号”限行等措施.某社会调查中心联合问卷网,对2400人进行问卷调查,并根据调查结果得到如图C4-7所示的扇形图,则下列结论正确的是()图C4-7A.“不支持”部分所占的比例是10%B.“一般”部分对应的人数是800C.扇形图中如果圆的半径为2,则“非常支持”部分对应扇形的面积是65πD.“支持”部分对应的人数是1080请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.一组数据按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x=.14.某校为了了解学生收看“空中课堂”的方式,对该校500名学生进行了调查,并把结果绘制成如图C4-8所示的扇形图,那么该校通过手机收看“空中课堂”的学生人数是.图C4-815.国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是17,20,16,18,19,则这五位同学答对题数的方差是.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图C4-9所示).由图中数据可知a=.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用比例分配的分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.图C4-9四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)将一组数据按从小到大的顺序排列,得到-1,0,4,x,7,14,已知这组数据的中位数为5,求这组数据的平均数与方差.18.(12分)某车站在春运期间为了了解旅客的购票情况,随机调查了100名旅客从开始在售票窗口排队到购到车票所用的时间t(以下简称为购票用时,单位为min).下面是对所得数据进行统计分析后得到的频率分布表和频率分布直方图.频率分组频数[5,10)100.10[10,15)10②[15,20)①0.50[20,25]300.30合计1001.00解答下列问题:(1)在表中填写出缺失的数据并补全频率分布直方图(如图C4-10所示);(2)估计旅客购票用时的平均数.图C4-1019.(12分)某班主任利用周末时间对该班2019年最后一次月考的语文作文分数进行了统计,发现分数都位于20~55之间,现将分数情况按[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55]分成七组后,作出频率分布直方图如图C4-11所示,已知m=2n.(1)求频率分布直方图中m,n的值;(2)求该班这次月考语文作文分数的平均数和中位数.(每组数据用该组区间的中点值作为代表)图C4-1120.(12分)已知甲、乙两人在相同条件下各射靶10次,每次射击的命中环数如图C4-12所示.(1)求甲、乙两人射击命中环数的平均数和方差;(2)请根据甲、乙两人射击命中环数的平均数和方差,分析谁的射击水平高.图C4-1221.(12分)某地区100位居民的人均月用水量(单位:t)的分组及各组的频数分别为[0,0.5],4;(0.5,1],8;(1,1.5],15;(1.5,2],22;(2,2.5],25;(2.5,3],14;(3,3.5],6;(3.5,4],4;( 4,4.5],2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的平均数、中位数、众数.(3)当地政府制定了人均月用水量不超过3t的标准,若超过3t则加倍收费,当地政府说,85%以上的居民不超过这个标准,这个解释对吗?为什么?22.(12分)我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100户家庭的月均用水量(单位:t),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图C4-13所示的频率分布直方图.(1)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(2)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).图C4-13参考答案与解析1.C[解析]由题意得,最合理的抽样方法是按学段分层随机抽样,故选C.2.C[解析]设中位数为t,则有5100+35100+30100× -12010=0.5,解得t≈123.3.故选C.3.B[解析]将这7人的身高从小到大排序,可得168,170,172,172,175,176,180.∵7×60%=4.2,∴第5个数据为所求的第60百分位数,即这7个数据的第60百分位数为175.故选B.,所以h= | - |,则|a-b|= ,故选C.4.C[解析]在频率分布直方图中小长方形的高等于频率组距5.A[解析]根据题意可知,不变的数字特征是中位数.故选A.6.B[解析]前两组的频数为100×(0.05+0.11)=16.因为后五组的频数之和为62,所以前三组的频数之和为38,所以第三组的频数为38-16=22.又最大频率为0.32,故第四组的频数为0.32×100=32.所以a=22+32=54.故选B.7.D[解析]由图可知,支出最高值为60万元,支出最低值为10万元,其比是6∶1,故A错误;4至6月份的平均收入为13×(50+30+40)=40(万元),故B错误;利润最高的月份为3月份和10月份,故C 错误;由图可知2至3月份的收入的变化率与11至12月份的收入的变化率相同,故D正确.故选D.8.B[解析]服药组的指标x的取值相对集中,方差较小,且服药组的指标x的平均数小于未服药组的指标x的平均数,故选项A中说法正确;未服药组的指标y的取值相对集中,方差较小,故选项B 中说法错误;服药组的指标x值有3个大于100,所以估计患者服药一段时间后指标x低于100的概率为0.94,故选项C中说法正确;未服药组的指标y值只有1个数据比1.5小,则这种疾病的患者的生理指标y基本都大于1.5,故选项D中说法正确.故选B.9.BCD[解析]2月跑步里程比1月的小,故A错误;月跑步里程9月最大,故B正确;月跑步里程从小到大对应的月份依次为2月、7月、3月、4月、1月、8月、5月、6月、11月、10月、9月,故月跑步里程的中位数为8月份对应的里程,故C正确;1月至5月的月跑步里程相对于6月至11月,波动性更小,变化比较平稳,故D正确.故选BCD.10.BC[解析]由频率分布直方图得,样本中支出在[50,60]内的频率为1-(0.01+0.024+0.036)×10=0.3,故A错误;样本中支出不少于40元的人数为0.0360.3×60+60=132,故B正确;n=600.3=200,故C正确;在D中,若该校有2000名学生,则大约有600人支出在[50,60]内,故D错误.故选BC.11.AC[解析]由图可知10×(m+0.020+0.016+0.016+0.011+0.006)=1,解得m=0.031,故A正确;因为不低于140分的频率为0.011×10=0.11,所以n=1100.11=1000,故B错误;因为100分以下的频率为0.006×10=0.06,所以100分以下的人数为1000×0.06=60,故C正确;对选项D,成绩在区间[120,140)内的频率为0.031×10+0.016×10=0.47<0.5,人数不超过50%,故D错误.故选AC.12.ACD[解析]“不支持”部分所占的比例是1-45%-30%-15%=10%,A正确;“一般”部分对应的人数是2400×15%=360,B不正确;“非常支持”部分对应扇形的面积是π×22×30%=65π,C正确;“支持”部分对应的人数为2400×45%=1080,D正确.故选ACD.13.15[解析]由中位数的定义知 +172=16,∴x=15.14.25[解析]∵该校通过手机收看“空中课堂”的学生人数所占的百分比为1-(25%+70%)=5%,∴该校通过手机收看“空中课堂”的学生人数是500×5%=25.15.2[解析]这五位同学答对题数的平均数 =17+20+16+18+195=18,则方差s2=15×[(17-18)2+(20-18)2+(16-18)2+(18-18)2+(19-18)2]=2.16.0.0303[解析]因为10×(0.035+0.020+0.010+0.005+a)=1,所以a=0.030.身高在[120,130),[130,140),[140,150]三组内的学生人数为100×(0.030+0.020+0.010)×10=60,其中身高在[140,150]内的学生中人数为100×0.010×10=10,所以从身高在[140,150]内的学生中选取的人数应为1060×18=3.17.解:因为数据-1,0,4,x,7,14的中位数为5,所以4+ 2=5,解得x=6.设这组数据的平均数为 ,方差为s2,则 =16×(-1+0+4+6+7+14)=5,s2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18.解:(1)表中缺失的数据分别为①50,②0.10.补全后的频率分布直方图如图所示.(2)估计旅客购票用时的平均数为7.5×0.10+12.5×0.10+17.5×0.50+22.5×0.30=17.5(min).19.解:(1)由频率分布直方图,得=2 ,(0.01+0.03+0.06+ +0.03+ +0.01)×5=1,解得 =0.04, =0.02.(2)该班这次月考语文作文分数的平均数为22.5×0.05+27.5×0.15+32.5×0.3+37.5×0.2+42.5×0.15+47.5×0.1+52.5×0.05=36.25.因为(0.01+0.03+0.06)×5=0.5,所以该班这次月考语文作文分数的中位数为35.20.解:(1)由折线图可知甲射击10次命中的环数分别为9,5,7,8,7,6,8,6,7,7.乙射击10次命中的环数分别为2,4,6,8,7,7,8,9,9,10.则x 甲=110×(9+5+7+8+7+6+8+6+7+7)=7(环).x 乙=110×(2+4+6+8+7+7+8+9+9+10)=7(环),甲2=110×[(9-7)2+(5-7)2+(7-7)2×4+(6-7)2×2+(8-7)2×2]=1.2,乙2=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=5.4.(2)因为x 甲=x 乙, 甲2< 乙2,所以甲的射击稳定性比乙好,故甲的射击水平高.21.解:(1)作出频数分布表,如下.分组频数频率[0,0.5]40.04(0.5,1]80.08(1,1.5]150.15(1.5,2]220.22(2,2.5]250.25(2.5,3]140.14(3,3.5]60.06(3.5,4]40.04(4,4.5]20.02合计1001.00(2)由频率分布表画出频率分布直方图,如图所示.由频率分布直方图得这组数据的平均数=0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.∵人均月用水量在[0,2]内的频率为0.04+0.08+0.15+0.22=0.49,在(2,2.5]内的频率为0.25,∴中位数为2+0.5−0.490.25×0.5=2.02.众数为2+2.52=2.25.(3)月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约有12%的居民月用水量在3t以上,88%的居民月用水量不超过3t,因此政府的解释是正确的.22.解:(1)因为0.06×2×1+0.11×2×3+0.18×2×5+0.09×2×7+0.06×2×9=4.92.因此全市家庭月均用水量平均数的估计值为4.92t.(2)频率分布直方图中,用水量低于2t的频率为0.06×2=0.12.用水量低于4t的频率为0.06×2+0.11×2=0.34.故全市家庭月均用水量的25%分位数的估计值为2+0.25−0.120.11≈3.18(t).。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
一、选择题1.已知复数1z ,2z 满足()1117i z i +=-+,21z =,则21z z -的最大值为( ) A .3B .4C .5D .6 2.若复数(1a i z i i +=-是虚数单位)为纯虚数,则实数a 的值为( ) A .-2 B .-1 C .1 D .23.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i 4.已知复数2a i i +-是纯虚数(i 是虚数单位),则实数a 等于 A .-2 B .2 C .12 D .-15.若复数z 满足()11z i i --⋅=+,则z =( )A B C .D .36.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个7.已知(,)a bi a b R +∈是11i i +-的共轭复数,则a b +=( ) A .1- B .12- C .12 D .18.复数252i +i z =的共轭复数z 在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b 的值为( ) A .32- B .23- C .23 D .3210.设复数z 满足()1i i z +=,则z =( )A .2B .12CD .2 11.在下列命题中,正确命题的个数是( )①两个复数不能比较大小;②复数1z i =-对应的点在第四象限;③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±;④若221223()()0z z z z -+-=,则123z z z ==.A .0B .1C .2D .3 12.复数21i z i +=-,i 是虚数单位,则下列结论正确的是 A .5z = B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1 D .z 在复平面内的对应点位于第一象限二、填空题13.已知复数1510z i =+ ,234z i =-,复数z 满足12111z z z =+,则z =_____________.14.若复数z 满足|3|1z i -+,则32z i +-(i 为虚数单位)的最小值为______. 15.若复数72ai z i+=-的实部为3,其中a 是实数,i 是虚数单位,则2z 的虚部为______. 16.复数2021111i z i +⎛⎫=-+ ⎪-⎝⎭的辐角主值为________.17.如果虚数z 满足38z =,那么3222z z z +++的值是________.18.已知复数()()()4231234a i z i i -=-+⋅-,且1z =,则实数a =_________. 19.已知复数z 满足43(z i i i+=为虚数单位),则z 的共轭复数z =____. 20.如果复数z 的模不大于1,而z 的虚部的绝对值不小于,则复平面内复数z 的对应点组成图形的面积是___.三、解答题21.(1101032213122132i i i ⎛⎫⎛⎫++-+ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭; (2)若复数z 满足112z z -=,1arg 3z z π-⎛⎫= ⎪⎝⎭,求复数3(2||)32z z z --的三角形式.22.已知i 是虚数单位,复数11()z ai a R =-∈,复数2z 的共轭复数234z i =-. (1)若12z z R +∈,求实数a 的值;(2)若12z z 是纯虚数,求1z . 23.i 是虚数单位,且2(1)2(5)3i i a bi i-+++=+(,a b ∈R ). (1)求,a b 的值;(2)设复数1()z yi y R =-+∈,且满足复数()a bi z +⋅在复平面上对应的点在第一、三象限的角平分线上,求||z .24.已知复数1sin 2i z x λ=+,2()i z m m x =+(,,m x λ∈R ),且12z z =. (1)若0λ=且0πx <<,求x 的值;(2)设()f x λ=;①求()f x 的最小正周期和单调递减区间;②已知当x α=时,12λ=,试求cos(4)3πα+的值. 25.已知m ∈R ,复数z =()()22211m m m m i m +++--,当m 为何值时: (1)z ∈R ;(2)z 是虚数;(3)z 是纯虚数.26.已知复数12i z m =-,复数21i z n =-,其中i 是虚数单位,m ,n 为实数. (1)若1m =,1n =-,求12z z +的值;(2)若212z z =,求m ,n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先求得1z ,设出2z ,然后根据几何意义求得21z z -的最大值.【详解】 由()()()()11711768341112i i i i z i i i i -+--++====+++-,令2z x yi =+,x ,y R ∈,由 222||11z x y =⇒+=,()()2134z z x y i -=-+-=2z 对应点在单位圆上,所以21z z -表示的是单位圆上的点和点()3,4的距离, ()3,4到圆心()0,05=,单位圆的半径为1, 所以21max 516z z -=+=.故选:D【点睛】 本小题主要考查复数除法运算,考查复数模的最值的计算.2.C解析:C【分析】 利用复数代数形式的除法运算化简复数1a i z i+=-,再根据实部为0且虚部不为0求解即可. 【详解】 ()()()()i 1i i 11i 1i 1i 1i 22a a a a z +++-+===+-+-为纯虚数, 1010a a +≠⎧∴⎨-=⎩,即1a =,故选C. 【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题. 复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.B解析:B【分析】利用复数的运算法则解得1z i =-+,结合共轭复数的概念即可得结果.【详解】∵复数z 满足21i i z=-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.4.C解析:C【解析】2a i i +-21255a a i -+=+是纯虚数,所以21210,0552a a a -+=≠∴=,选C. 5.A解析:A【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】由()11z i i --⋅=+,得()()21111i i i z i i i +-+--===--,则2z i =-+,∴z ==故选:A【点睛】本题主要考查了复数的除法运算,复数的模的运算,属于中档题. 6.C解析:C【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.7.A解析:A【解析】【分析】先利用复数的除法运算法则求出11i i+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】 ()()21(1)21112i i i i i i ++===-+-i ,∴a +bi =﹣i ,∴a =0,b =﹣1,∴a +b =﹣1,故选:A .【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题. 8.C解析:C【解析】【分析】根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+, 则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C .【点睛】本题主要考查了复数的运算,以及复数的表示,其中解答中熟记复数的运算法则,以及复数的表示是解答的关键,着重考查了推理与运算能力,属于基础题.9.B解析:B【分析】先根据复数乘法计算,再根据复数概念求a,b 比值.【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=,因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi10.A解析:A【解析】由()1i z i +=,得()()()i 1i i 11i 1i 1i 1i 22z -=+++-==,z ∴=故选A . 11.A解析:A【解析】对于选项①,不能说两个复数不能比较大小,如复数3和4就可比较大小,所以该命题是错误的.对于选项②,复数1z i =-对应的点在第二象限,所以该命题是错误的.对于选项③,若()()22132x x x i -+++是纯虚数,则21x -=0且232x x ++≠0,所以x=1,所以该命题是错误的. 对于选项④,若()()2212230z z z z -+-=,可以123,0,1z i z z ===, 所以该命题是错误的. 故选A. 12.D解析:D【分析】 利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】 由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则2z ==,z 的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D .【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.二、填空题13.【分析】根据复数的四则运算公式求得再结合复数的模的计算公式即可求解【详解】由题意复数则所以所以故答案为:【点睛】本题主要考查了复数的四则运算以及复数模的计算其中解答中熟记复数的四则运算公式以及复数模【分析】根据复数的四则运算公式,求得552z i =-,再结合复数的模的计算公式,即可求解. 【详解】 由题意,复数1510z i =+ ,234z i =-, 则()()()()1211111510344251034510510343425i i i z z z i i i i i i -++=+=+=+=+-+--+, 所以()()()254225554242422i z i i i i ⨯-===-++-,所以z ==.故答案为:2. 【点睛】本题主要考查了复数的四则运算,以及复数模的计算,其中解答中熟记复数的四则运算公式,以及复数模的计算公式,准确运算是解答的关键,着重考查推理与运算能力. 14.【分析】设由知点在以为圆心1为半径的圆上及圆的内部表示点与点的距离数形结合即可得到答案【详解】设由可得此式表示复平面上的点在以为圆心1为半径的圆上及圆的内部此式表示点与点的距离故所以的最小值为故答案1【分析】设,,z a bi a b R =+∈,由||1z i +,知点(,)P a b在以1)A -为圆心,1为半径的圆上及圆的内部,2z i =(,)P a b与点(2)B 的距离,数形结合即可得到答案.【详解】设,,z a bi a b R =+∈,由||1z i +可得22((1)1a b -++≤,此式表示复平面上 的点(,)P a b在以1)A -为圆心,1为半径的圆上及圆的内部,2z i =(,)P a b与点(2)B 的距离,故min 11PB AB =-==1.所以2z i +-1.1【点睛】本题考查复数的几何意义,考查学生数形结合思想以及数学运算求解能力,是一道中档题. 15.6【分析】化简复数实部为3求出a 进而求出【详解】解:由题意知的虚部为6故答案为:6【点睛】本题考查复数的基础知识和含参复数的运算属于基础题解析:6【分析】化简复数,实部为3,求出a ,进而求出2z .【详解】 解:7(7)(2)2(2)(2)ai ai i z i i i +++==--+(14)(72)1472555a a i a a i -++-+==+. 由题意知1435a -=,1a ∴=-, 3z i ∴=+,286z i ∴=+,2z ∴的虚部为6.故答案为:6.【点睛】本题考查复数的基础知识和含参复数的运算,属于基础题.16.【分析】先化简再根据辐角主值的定义求解即可【详解】因为所以所以所以复数z 的辐角主值为故答案为:【点睛】本题主要考查了复数的基本运算与辐角主值的辨析属于基础题 解析:34π 【分析】 先化简2021111i z i +⎛⎫=-+ ⎪-⎝⎭再根据辐角主值的定义求解即可.【详解】 因为11i i i +=-,所以2021202111i i i i +⎛⎫== ⎪-⎝⎭所以331cos sin 44z i i ππ⎫=-+=+⎪⎭,所以复数z 的辐角主值为34π. 故答案为:34π 【点睛】 本题主要考查了复数的基本运算与辐角主值的辨析,属于基础题.17.6【分析】利用立方差公式由得再将所求式子进行等价变形为最后利用整体代入计算求值【详解】由得又z 为虚数得∴故答案为:6【点睛】本题考查立方差公式的应用复数的四则运算考查转化与化归思想考查逻辑推理能力和 解析:6【分析】利用立方差公式,由38z =,得()2(2)240z z z -++=,再将所求式子进行等价变形为()323222242z z z z z z +++=+++-,最后利用整体代入计算求值.【详解】由38z =,得()2(2)240z z z -++=.又z 为虚数,得2240z z ++=.∴()3232222428026z z z z z z +++=+++-=+-=.故答案为:6【点睛】本题考查立方差公式的应用、复数的四则运算,考查转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体代入法的灵活运用. 18.【分析】化简的表达式根据列方程由此求得的值【详解】依题意由于即即即即解得故填:【点睛】本小题主要考查复数的除法乘法和乘方运算考查复数模的运算考查运算求解能力属于中档题解析:2±【分析】化简z 的表达式,根据1z =列方程,由此求得a 的值.【详解】依题意,()()()433434a i z i i -=--⋅-()()()()44343434i i a i i ---⋅-=-42534a i i -⎛⎫=-⋅ ⎪-⎝⎭()()()()434253434a i i i i ⎡⎤-+=-⋅⎢⎥-+⎣⎦()434432525a a i ++-⎡⎤=-⋅⎢⎥⎣⎦,由于1z =,即()4344325125a a i ++-⎡⎤-⋅=⎢⎥⎣⎦,即()()44344334431252525a a i a a i ++-++-⎡⎤==⎢⎥⎣⎦,即()24334125255a a i -++=,即223443125255a a +-⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,22525125a +=,24a =,解得2a =±. 故填:2±【点睛】本小题主要考查复数的除法、乘法和乘方运算,考查复数模的运算,考查运算求解能力,属于中档题. 19.【分析】利用复数的运算法则共轭复数的定义即可得出结果【详解】由可得即所以故答案是:【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的运算法则以及共轭复数的概念属于简单题目解析:34i -+【分析】利用复数的运算法则、共轭复数的定义即可得出结果.【详解】 由43z i i +=可得34z i i =-,即23434z i i i =-=--, 所以34z i =-+,故答案是:34i -+.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的运算法则以及共轭复数的概念,属于简单题目.20.【解析】分析:先根据复数的模以及复数的虚部列不等式再根据扇形面积减去三角形面积得弓形面积详解:设则如图因此复平面内复数z 的对应点组成图形为两个弓形其面积为扇形面积减去三角形面积是点睛:本题重点考查复 解析:23-3π 【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积得弓形面积.详解:设(,)z x yi x y R =+∈,则2211,2x y y +≤≥ ,如图,2.3AOB π∠=因此复平面内复数z 的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是21212232(111sin )23233πππ⨯⋅-⨯⨯⨯=- 点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 22a b +(,)a b 、共轭为.-a bi三、解答题21.(1)122-;(2)22(cos sin )233i ππ+; 【分析】(1)由(1)cos sin 244i i ππ+=+,1cos()sin()2233i i ππ-+=-+-,结合复数的三角形式的乘方运算即可求值;(2)由题意得11(cos sin )233z i z ππ-=+,进而得到z 、z 代入目标式化简后转化为三角形式即可.【详解】(11010101011(1)122222i i i i i ⎛⎫⎛⎫⎛⎫⎛++-+=-+++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ -⎝⎭⎝⎭⎝⎭⎝⎭,而101010101(1)(cos sin )[cos()sin()]2224433i i i i i i ππππ⎛⎫⎛-+++-+=-+++-+- ⎪ ⎪ ⎝⎭⎝⎭∴原式551010221(cossin )[cos()sin()]cos sin 2233332i i i i i i ππππππ=-+++-+-=-+++=-; (2)由题意知:11(cos sin )233z i z ππ-=+,所以(cos sin )333z i ππ=+,sin )33z i ππ=-,∴322(2||)3sin )233z z i i z ππ--+=-=+ 【点睛】本题考查了复数的三角形式,利用复数三角形式的乘方运算化简求值,并由已知复数的模、复角求目标复数的三角形式.22.(1)4;(2)54. 【分析】(1)先求出124(4)z +z =+a i -,再根据12z z R +∈,求出实数a 的值;(2)由已知得1234(34)25z a a i z --+=,再根据12z z 是纯虚数求出a 的值即得解. 【详解】 223434z i z i =-∴=+(1)由已知得12(1)(34)4(4)z +z =ai ++i =+a i --12,40z z R a +∈-=∴4a ∴=(2)由已知得121(1)(34)34(34)34(34)(34)25z ai ai i a a i z i i i -----+===++- 12z z 是纯虚数,340340a a -=⎧∴⎨+≠⎩, 解得34a =,135144z i ∴=-==. 【点睛】本题主要考查复数的计算和复数的概念,考查复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.23.(1)3,1a b ==-(2【解析】分析:(1)由复数的四则运算可化简复数,再由复数相等可知实部与虚部都要相等,可求得,a b .(2)由复数的乘法运算可化简复数式为标准式,再由复数在第一、三象限的角平分线上可知复数实部等于虚部,求得参数y,再由复数模公式求得复数模.详解:(1)∵()()21253i i a bi i -+++=+ 1033i i==-+ , 又∵,a b R ∈ ∴3,1a b ==-(2)()()()31a bi z i yi +⋅=--+()()331y y i =-+++由题意可知:331y y -+=+,解得2y =-∴z ==点睛:本题主要考查复数四则运算与乘方综合运算和复数相等,及复数与坐标对应关系,及复数的模.24.(1)6π,23π;(2)①周期T π=,单调减区间511[,]1212k k ππππ++,k ∈Z ;②78- 【分析】根据复数相等的概念列方程,求得关于,,sin 2,cos 2m x x λ的关系式.(1)将0λ=代入上述求得的关系式,由此解出x 的值.(2)由上述求得的关系式,求得()f x λ=的表达式.①利用辅助角公式和三角函数最小正周期和的单调减区间的求法,求得()f x 的最小正周期和单调递减区间.②利用二倍角公式和诱导公式,求得cos(4)3πα+的值.【详解】 由于12z z =,所以sin 22x m m xλ=⎧⎪⎨=⎪⎩,故sin 22x x λ=. (1)当0λ=时,sin 220x x -=,则tan 2x =0πx <<所以022πx <<,所以π23x =或4π23x =,所以π6x =或2π3x =. (2)由于sin 22x x λ=,故()πsin 222sin 23f x x x x ⎛⎫=-=-⎪⎝⎭. ①函数()f x 的最小正周期为2ππ2T ==.由ππ3π2π22π232k x k +≤-≤+,解得5π11πππ1212k x k +≤≤+,所以函数()f x 的单调递减区间为511[,]1212k k ππππ++,k ∈Z . ②依题意π1sin 222sin 232x αα⎛⎫=-= ⎪⎝⎭,所以π1sin 234α⎛⎫-=- ⎪⎝⎭.所以ππcos 4cos 2236αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭22ππ2cos 212sin 2163αα⎛⎫⎛⎫=+-=-- ⎪ ⎪⎝⎭⎝⎭1721168=⨯-=-. 【点睛】本小题主要考查复数相等的概念,考查辅助角公式,考查三角函数最小正周期、单调区间的求法,考查二倍角公式和诱导公式,考查运算求解能力,属于中档题.25.(1)1m =-+1m =-2)1m ≠-+1m ≠-1m ≠;(3)0m =或2m =-.【分析】(1)解221m m +-=0,1m ≠,即可得解;(2)虚部不为0,则该复数为虚数,则2210m m +-≠,1m ≠即可得解;(3)复数是纯虚数,则实部为0,虚部不为0,根据()20m m +=,2210m m +-≠,1m ≠即可得解.【详解】(1)z ∈R ,所以221m m +-=0,1m ≠,212m -±==-所以,当1m =-+1m =--z ∈R ;(2)z 是虚数,则2210m m +-≠,1m ≠,当1m ≠-+1m ≠--1m ≠时,z 是虚数;(3)z 是纯虚数,()20m m +=,2210m m +-≠,1m ≠,所以0m =或2m =-时,z 是纯虚数.【点睛】此题考查复数的概念,根据复数的分类求解参数的取值,需要熟练掌握复数的概念,准确求解.26.(1(2)0,1.m n =⎧⎨=⎩ 【分析】(1)根据题意求出()()121212i z i z i +=-++=-,即可得到模长;(2)根据212z z =,化简得()2212m i n ni -=--,列方程组即可求解. 【详解】(1)当1m =,1n =-时112z i =-,21z i =+,所以()()121212i z i z i +=-++=-,所以12z z +==. (2)若212z z =,则()221m i ni -=-,所以()2212m i n ni -=--,所以2122m n n ⎧=-⎨-=-⎩解得0,1.m n =⎧⎨=⎩ 【点睛】此题考查复数模长的计算和乘法运算,根据两个复数相等,求参数的取值范围.。
(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。
分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。
招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。
高中数学必修第二册全册各章测验汇总章末质量检测(一) 平面向量及其应用 ............................................................................... 1 章末质量检测(二) 复数 ....................................................................................................... 8 章末质量检测(三) 立体几何初步 ..................................................................................... 14 章末质量检测(四) 统计 ..................................................................................................... 23 章末质量检测(五)概率 (32)章末质量检测(一) 平面向量及其应用一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由图可知OB →,OC →,AO →是模相等的向量,其模均等于圆的半径,故选C. 答案:C2.若A (2,-1),B (4,2),C (1,5),则AB →+2BC →等于( ) A .5 B .(-1,5) C .(6,1) D .(-4,9)解析:AB →=(2,3),BC →=(-3,3),∴AB →+2BC →=(2,3)+2(-3,3)=(-4,9). 答案:D3.设向量a ,b 均为单位向量,且|a +b |=1,则a 与b 的夹角θ为( ) A.π3 B.π2 C.2π3 D.3π4解析:因为|a +b |=1,所以|a |2+2a ·b +|b |2=1,所以cos θ=-12.又θ∈[0,π],所以θ=2π3.答案:C4.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A .-3 B .-1 C .1 D .3解析:AB →∥BC →,(1-x,4)∥(1,2),2(1-x )=4,x =-1,故选B. 答案:B5.已知向量a ,b 满足a +b =(1,3),a -b =(3,-3),则a ,b 的坐标分别为( ) A .(4,0),(-2,6) B .(-2,6),(4,0) C .(2,0),(-1,3) D .(-1,3),(2,0)解析:由题意知,⎩⎪⎨⎪⎧a +b =1,3,a -b =3,-3,解得⎩⎪⎨⎪⎧a =2,0,b =-1,3.答案:C6.若a =(5,x ),|a |=13,则x =( ) A .±5 B.±10 C .±12 D.±13解析:由题意得|a |=52+x 2=13, 所以52+x 2=132,解得x =±12. 答案:C7.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( ) A .50 2 m B .50 3 m C .25 2 m D.2522m解析:由正弦定理得AB =AC ·sin∠ACB sin B=50×2212=502(m).答案:A8.已知平面内四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b+d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形 解析:由题意知a -b =d -c , ∴BA →=CD →,∴四边形ABCD 为平行四边形,故选D. 答案:D9.某人在无风条件下骑自行车的速度为v 1,风速为v 2(|v 1|>|v 2|),则逆风行驶的速度的大小为( )A .v 1-v 2B .v 1+v 2C .|v 1|-|v 2| D.v 1v 2解析:题目要求的是速度的大小,即向量的大小,而不是求速度,速度是向量,速度的大小是实数,故逆风行驶的速度大小为|v 1|-|v 2|.答案:C10.已知O 为坐标原点,点A 的坐标为(2,1),向量AB →=(-1,1),则(OA →+OB →)·(OA→-OB →)等于( )A .-4B .-2C .0D .2解析:因为O 为坐标原点,点A 的坐标为(2,1), 向量AB →=(-1,1), 所以OB →=OA →+AB →=(2,1)+(-1,1)=(1,2), 所以(OA →+OB →)·(OA →-OB →)=OA →2-OB →2=(22+12)-(12+22) =5-5=0.故选C. 答案:C11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b+c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形 解析:∵sin A sin B =a c ,∴a b =ac,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.答案:C12.在△ABC 中,若|AB →|=1,|AC →|=3,|AB →+AC →|=|BC →|,则AB →·BC→|BC →|=( )A .-32 B .-12C.12D.32解析:由向量的平行四边形法则,知当|AB →+AC →|=|BC →|时,∠A =90°.又|AB →|=1,|AC →|=3,故∠B =60°,∠C =30°,|BC →|=2,所以AB →·BC →|BC →|=|AB →||BC →|cos 120°|BC →|=-12.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC 是共线向量,则m =________.解析:∵A ,B ,C 不共线,∴AB →与BC →不共线.又m 与AB →,BC →都共线,∴m =0. 答案:014.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 解析:方法一:设OB →=(x ,y ),由|OA →|=|OB →|知x 2+y 2=10,又OA →·OB →=x -3y=0,所以x =3,y =1或x =-3,y =-1.当x =3,y =1时,|AB →|=25;当x =-3,y =-1时,|AB →|=2 5.故|AB →|=2 5.方法二:由几何意义知,|AB →|就是以OA →,OB →为邻边的正方形的对角线长,又|OA →|=10,所以|AB →|=10×2=2 5.答案:2 515.给出以下命题:①若a ≠0,则对任一非零向量b 都有a·b ≠0; ②若a ·b =0,则a 与b 中至少有一个为0; ③a 与b 是两个单位向量,则a 2=b 2. 其中正确命题的序号是________.解析:上述三个命题中只有③正确,因为|a |=|b |=1,所以a 2=|a |2=1,b 2=|b |2=1,故a 2=b 2.当非零向量a ,b 垂直时,有a·b =0,显然①②错误.答案:③16.用两条成120°角的等长绳子悬挂一个灯具,已知灯具重量为10 N ,则每根绳子的拉力大小为________N.解析:如图,由题意得,∠AOC =∠COB =60°,|OC →|=10,则|OA →|=|OB →|=10,即每根绳子的拉力大小为10 N.答案:10三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,OF →=f ,试用a ,b ,c ,d ,e ,f 表示:(1)AD →-AB →; (2)AB →+CF →; (3)EF →-CF →.解析:(1)因为OB →=b ,OD →=d , 所以AD →-AB →=BD →=OD →-OB →=d -b . (2)因为OA →=a ,OB →=b ,OC →=c ,OF →=f , 所以AB →+CF →=(OB →-OA →)+(OF →-OC →)=b +f -a -c . (3)EF →-CF →=EF →+FC →=EC →=OC →-OE →=c -e .18.(12分)已知|a |=2,|b |=3,a 与b 的夹角为60°,c =5a +3b ,d =3a +k b ,当实数k 为何值时,(1)c ∥d ;(2)c ⊥d .解析:由题意得a ·b =|a ||b |cos 60°=2×3×12=3.(1)当c ∥d ,c =λd ,则5a +3b =λ(3a +k b ). ∴3λ=5,且kλ=3,∴k =95.(2)当c ⊥d 时,c ·d =0,则(5a +3b )·(3a +k b )=0. ∴15a 2+3k b 2+(9+5k )a ·b =0, ∴k =-2914.19.(12分)已知向量a =(1,3),b =(m,2),c =(3,4),且(a -3b )⊥c . (1)求实数m 的值; (2)求向量a 与b 的夹角θ.解析:(1)因为a =(1,3),b =(m,2),c =(3,4), 所以a -3b =(1,3)-(3m,6)=(1-3m ,-3).因为(a -3b )⊥c ,所以(a -3b )·c =(1-3m ,-3)·(3,4) =3(1-3m )+(-3)×4 =-9m -9=0, 解得m =-1.(2)由(1)知a =(1,3),b =(-1,2), 所以a ·b =5,所以cos θ=a ·b |a ||b |=510×5=22.因为θ∈[0,π],所以θ=π4.20.(12分)已知向量a =(1,3),b =(2,-2). (1)设c =2a +b ,求(b -a )·c ; (2)求向量a 在b 方向上的投影.解析:(1)由a =(1,3),b =(2,-2),可得c =(2,6)+(2,-2)=(4,4),b -a=(1,-5),则(b -a )·c =4-20=-16.(2)向量a 在b 方向上的投影为a ·b |b |=-422=- 2. 21.(12分)已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC→+CB →=0,(1)用OA →,OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. 解析:(1)因为2AC →+CB →=0, 所以2(OC →-OA →)+(OB →-OC →)=0, 2OC →-2OA →+OB →-OC →=0, 所以OC →=2OA →-OB →.(2)证明:如图, DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →).故DA →=12OC →.故四边形OCAD 为梯形.22.(12分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )·cos C=c (3cos B -cos A ).(1)求sin B sin A的值;(2)若c =7a ,求角C 的大小.解析:(1)由正弦定理得,(sin A -3sin B )cos C =sin C (3cos B -cos A ), ∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B , 即sin(A +C )=3sin(C +B ),即sin B =3sin A ,∴sin Bsin A=3.(2)由(1)知b =3a ,∵c =7a ,∴cos C =a 2+b 2-c 22ab =a 2+9a 2-7a 22×a ×3a =3a 26a 2=12,∵C ∈(0,π),∴C =π3.章末质量检测(二) 复数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数i -i 2的实部为( ) A .0 B .1 C .i D .-2 解析:i -i 2=1+i. 答案:B2.用C ,R 和I 分别表示复数集、实数集和虚数集,那么有( ) A .C =R ∩I B .R ∩I ={0}C .R =C ∩ID .R ∩I =∅解析:由复数的概念可知R ⊂C ,I ⊂C ,R ∩I =∅. 答案:D3.下列说法正确的是( )A .如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等B .a i 是纯虚数(a ∈R )C .如果复数x +y i(x ,y ∈R )是实数,那么x =0,y =0D .复数a +b i(a ,b ∈R )不是实数解析:两个复数的实部的差和虚部的差都等于0,则它们的实部、虚部分别相等,所以A 正确;B 中,当a =0时,a i =0是实数,所以B 不正确;要使复数x +y i(x ,y ∈R )是实数,则只需y =0,所以C 不正确;D 中,当b =0时,复数a +b i 是实数,所以D 不正确.答案:A4.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:由题意得复数z 的实部为-1,虚部为-2,因此在复平面内对应的点为(-1,-2),位于第三象限.答案:C5.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:z 1-z 2=5-7i. 答案:D6.复数1-7i 1+i 的虚部为( )A .0 B. 2 C .4 D .-4 解析:∵1-7i1+i=1-7i 1-i 1+i1-i =-6-8i2=-3-4i ,∴复数1-7i1+i 的虚部为-4,选D.答案:D7.复数z =(a 2-2a -3)+(a +1)i 为纯虚数,实数a 的值是( ) A .-1 B .3C .1D .-1或3解析:由题意知⎩⎪⎨⎪⎧a 2-2a -3=0,a +1≠0,解得a =3.故选B.答案:B8.已知z-1+i =2+i ,则复数z =( )A .-1+3iB .1-3iC .3+iD .3-i解析:由题意知z -=(1+i)(2+i)=2-1+3i =1+3i ,从而z =1-3i ,选B. 答案:B9.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞) D.(-∞,-3)解析:由已知可得复数z 在复平面内对应的点的坐标为(m +3,m -1),且该点在第四象限,所以⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1.答案:A10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值是( )A .1B .2C .3D .4解析:依题意3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i ,∴⎩⎪⎨⎪⎧μ-λ=32λ-μ=-4,∴⎩⎪⎨⎪⎧λ=-1μ=2,∴λ+μ=1.答案:A11.复数z =x +y i(x ,y ∈R )满足条件|z -4i|=|z +2|,则|2x+4y|的最小值为( )A .2B .4C .4 2D .16解析:由|z -4i|=|z +2|得x +2y =3. 则2x+4y≥22x +2y=2·23=4 2.12.已知f (n )=i n -i -n (i 2=-1,n ∈N ),集合{f (n )}的元素个数是( ) A .2个 B .3个 C .4个 D .无数个 解析:f (0)=i 0-i 0=0,f (1)=i -i -1=i -1i=2i ,f (2)=i 2-i -2=0, f (3)=i 3-i -3=-2i.∴{f (n )}={0,-2i,2i}. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若复数z =(m -1)+(m +2)i 对应的点在直线y =2x 上,则实数m 的值是________.解析:由已知得2(m -1)-(m +2)=0,∴m =4. 答案:414.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则z 的实部是________. 解析:设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +1+b i)=-b +(a +1)i =-3+2i , 所以a =1,b =3,复数z 的实部是1. 答案:115.在复平面内,复数1+i 与-1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|=________.解析:∵AB →=(-1+3i)-(1+i)=-2+2i , ∴|AB →|=2 2. 答案:2 216.设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为________. 解析:先利用复数的运算法则将复数化为x +y i(x ,y ∈R )的形式,再由纯虚数的定义求a .因为a -103-i =a -103+i 3-i 3+i=a -103+i10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)实数m 为何值时,复数z =m +6m -1+(m 2+5m -6)i 是实数? 解析:复数z 为实数,则虚部为0,由于实部是分式,因此要求分式有意义,则⎩⎪⎨⎪⎧m 2+5m -6=0,m ≠1,解得m =-6.所以当m =-6时,复数z 是实数. 18.(12分)计算⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220.解析:⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220=[(1+2i)·1+(-i)5]2-i 10=(1+i)2-i 10=1+2i.19.(12分)复数z =(a 2+1)+a i(a ∈R )对应的点在第几象限?复数z 对应的点的轨迹方程是什么?解析:因为a 2+1≥1>0,复数z =(a 2+1)+a i 对应的点为(a 2+1,a ),所以z 对应的点在第一、四象限或实轴的正半轴上.设z =x +y i(x ,y ∈R ),则⎩⎪⎨⎪⎧x =a 2+1,y =a ,消去a 可得x =y 2+1,所以复数z 对应的点的轨迹方程是y 2=x -1.20.(12分)设复数z 1=(a 2-4sin 2θ)+(1+2cos θ)i ,a ∈R ,θ∈(0,π),z 2在复平面内对应的点在第一象限,且z 22=-3+4i.(1)求z 2及|z 2|;(2)若z 1=z 2,求θ与a 的值.解析:(1)设z 2=m +n i(m ,n ∈R ),则z 22=(m +n i)2=m 2-n 2+2mn i =-3+4i ,即⎩⎪⎨⎪⎧m 2-n 2=-3,2mn =4,解得⎩⎪⎨⎪⎧m =1,n =2,或⎩⎪⎨⎪⎧m =-1,n =-2,所以z 2=1+2i 或z 2=-1-2i.又因为z 2在复平面内对应的点在第一象限,所以z 2=-1-2i 应舍去, 故z 2=1+2i ,|z 2|= 5.(2)由(1)知(a 2-4sin 2θ)+(1+2cos θ)i =1+2i ,即⎩⎪⎨⎪⎧a 2-4sin 2θ=1,1+2cos θ=2,解得cos θ=12,因为θ∈(0,π),所以θ=π3,所以a 2=1+4sin 2θ=1+4×34=4,a =±2.综上,θ=π3,a =±2.21.(12分)虚数z 满足|z |=1,z 2+2z +1z<0,求z .解析:设z =x +y i(x ,y ∈R ,y ≠0),∴x 2+y 2=1.则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i =(x 2-y 2+3x )+y (2x +1)i.∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧ 2x +1=0,x 2-y 2+3x <0,①②又x 2+y 2=1.③ 由①②③得⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.22.(12分)已知复数z 1=i(1-i)3. (1)求|z 1|;(2)若|z |=1,求|z -z 1|的最大值.解析:(1)|z 1|=|i(1-i)3|=|2-2i|=22+-22=2 2.(2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆,而z 1对应着坐标系中的点Z 1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆的半径)=22+1.章末质量检测(三) 立体几何初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B3.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( )A .4SB .4πSC .πSD .2πS解析:由题意知圆柱的母线长为底面圆的直径2R , 则2R ·2R =4S ,得R 2=S .所以底面面积为πR 2=πS . 答案:C4.如果一个正四面体(各个面都是正三角形)的体积为9 cm 3,则其表面积为( ) A .18 3 cm 2B .18 cm 2C .12 3 cm 2D .12 cm 2解析:设正四面体的棱长为a cm ,则底面积为34a 2 cm 2,易求得高为63a cm ,则体积为13×34a 2×63a =212a 3=9,解得a =32,所以其表面积为4×34a 2=183(cm 2).答案:A5.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A .16π B.32π C .36π D.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr 2=16π.答案:A6.若平面α∥平面β,直线a ∥平面α,点B 在平面β内,则在平面β内且过点B 的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:当直线a ⊂平面β,且点B 在直线a 上时,在平面β内且过点B 的所有直线中不存在与a 平行的直线.故选A.答案:A7.若α∥β,A ∈α,C ∈α,B ∈β,D ∈β,且AB +CD =28,AB 、CD 在β内的射影长分别为9和5,则AB 、CD 的长分别为( )A .16和12B .15和13C .17和11D .18和10解析:如图,作AM ⊥β,CN ⊥β,垂足分别为M 、N ,设AB =x ,则CD =28-x ,BM =9,ND =5,∴x 2-81=(28-x )2-25, ∴x =15,28-x =13. 答案:B 8.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V 多面体P -BCC 1B 1=13S 正方形BCC 1B 1·PB 1=13×42×1=163.答案:B9.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( )A .30° B.45° C .60° D.90°解析:如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角(或其补角).由条件可知BD=DE=EB=5,所以∠BDE=60°,故选C.答案:C10.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BCP⊥平面PAC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BCP⊥平面PAC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B11.在等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为( )A.30° B.60°C.90° D.120°解析:如图所示,由AB=BC=1,∠A′BC=90°,得A′C= 2.∵M为A′C的中点,∴MC=AM=22,且CM⊥BM,AM⊥BM,∴∠CMA为二面角C-BM-A的平面角.∵AC =1,MC =AM =22,∴∠CMA =90°. 答案:C12.在矩形ABCD 中,若AB =3,BC =4,PA ⊥平面AC ,且PA =1,则点P 到对角线BD 的距离为( )A.292 B.135C.175D.1195 解析:如图,过点A 作AE ⊥BD 于E ,连接PE . ∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD ,∴BD ⊥平面PAE ,∴BD ⊥PE . ∵AE =AB ·AD BD =125,PA =1, ∴PE =1+⎝ ⎛⎭⎪⎫1252=135.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD 绕对角线AC 所在直线旋转一周所得组合体的结构特征是________. 解析:由圆锥的定义知是两个同底的圆锥形成的组合体. 答案:两个同底的圆锥组合体14.若某空间几何体的直观图如图所示,则该几何体的表面积是________. 解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6.答案:2+22+ 615.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:∵EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,∴F 为DC 中点.故EF =12AC = 2.答案: 216.矩形ABCD 中,AB =1,BC =2,PA ⊥平面ABCD ,PA =1,则PC 与平面ABCD所成的角是________.解析:tan∠PCA =PA AC=13=33,∴∠PCA =30°. 答案:30°三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解析:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).18.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.19.(12分)如图,四边形ABCD 与四边形ADEF 都为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)设DF 与GN 交于点O ,连接AE ,则AE 必过点O ,且O 为AE 的中点,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为AD,EF的中点,四边形ADEF为平行四边形,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,N为AD的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE⊂平面BDE,所以平面BDE∥平面MNG.20.(12分)S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,∴DE∥BC,∴DE⊥AB,∵SA=SB,∴△SAB为等腰三角形,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)由于AB=BC,则BD⊥AC,由(1)可知,SD⊥平面ABC,BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.21.(12分)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,点E是AB的中点.(1)求证:OE∥平面BCC1B1;(2)若AC1⊥A1B,求证:AC1⊥BC.证明:(1)连接BC1,因为侧面AA1C1C是菱形,AC1与A1C交于点O,所以O为AC1的中点,又因为E是AB的中点,所以OE∥BC1,因为OE⊄平面BCC1B1,BC1⊂平面BCC1B1,所以OE∥平面BCC1B1.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C,因为AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.22.(12分)如图所示,在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.解析:(1)证明:在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.所以△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.所以∠DEC=90°,即DE⊥EC.在长方体ABCD-A1B1C1D1中,BC⊥平面D1DCC1,又DE⊂平面D1DCC1,所以BC⊥DE.又EC∩BC=C,所以DE⊥平面EBC.因为DE⊂平面DEB,所以平面DEB⊥平面EBC.(2)如图所示,过E在平面D1DCC1中作EO⊥DC于O.在长方体ABCD-A1B1C1D1中,因为平面ABCD⊥平面D1DCC1,且交线为DC,所以EO⊥面ABCD.过O在平面DBC中作OF⊥DB于F,连接EF,所以EF⊥BD.∠EFO为二面角E-DB-C的平面角.利用平面几何知识可得OF=15,又OE=1,所以tan∠EFO= 5.章末质量检测(四) 统计一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个被抽查的学生是样本C.抽取的60名学生的体重是一个样本D.抽取的60名学生是样本容量解析:A×总体应为500名学生的体重B×样本应为每个被抽查的学生的体重C√抽取的60名学生的体重构成了总体的一个样本D×样本容量为60,不能带有单位2.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A .07B .44C .15D .51解析:找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.答案:B3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论: ①这组数据的众数是3.②这组数据的众数与中位数的数值不等. ③这组数据的中位数与平均数的数值相等. ④这组数据的平均数与众数的数值相等. 其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个解析:由题意知,众数与中位数都是3,平均数为4.只有①正确,故选A. 答案:A4.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x2+300,所以有x+x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取的高一学生数为800100=8.答案:A5.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:设中间一组的频数为x ,则其他8组的频数和为52x ,所以x +52x =140,解得x =40.答案:B6.某校共有学生2 000名,各年级男、女生人数如表所示:一年级二年级三年级女生373380y男生377370z现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A.24 B.18C.16 D.12解析:一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16.故选C.答案:C7.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高 D.甲的中位数是24解析:甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C成立;甲的中位数应该是23.答案:D8.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18解析:由图知,样本总数为N =200.16+0.24=50.设第三组中有疗效的人数为x ,则6+x 50=0.36,解得x =12. 答案:C9.一组数据的方差为s 2,平均数为x ,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数为( )A.12s 2,12x B .2s 2,2x C .4s 2,2x D .s 2,x解析:将一组数据的每一个数都乘以a ,则新数据组的方差为原来数据组方差的a 2倍,平均数为原来数据组的a 倍.故答案选C.答案:C10.某超市连锁店统计了城市甲、乙的各16台自动售货机在12:00至13:00间的销售金额,并用茎叶图表示如图,则可估计有( )A .甲城市销售额多,乙城市销售额不够稳定B .甲城市销售额多,乙城市销售额稳定C .乙城市销售额多,甲城市销售额稳定D .乙城市销售额多,甲城市销售额不够稳定解析:十位数字是3,4,5时乙城市的销售额明显多于甲,估计乙城市销售额多,甲的数字过于分散,不够稳定,故选D.答案:D11.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加上2所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差解析:设A 样本数据为x i ,根据题意可知B 样本数据为x i +2,则依据统计知识可知A ,B 两样本中的众数、平均数和中位数都相差2,只有方差相同,即标准差相同.答案:D12.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A.1169 B.367 C .36 D.677解析:由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x=91×7,解得x =4.故s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.故选B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 13.将一个容量为m 的样本分成3组,已知第一组频数为8,第二、三组的频率为0.15和0.45,则m =________.解析:由题意知第一组的频率为 1-(0.15+0.45)=0.4, 所以8m=0.4,所以m =20.答案:2014.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽20人,各年龄段分别抽取的人数为________.解析:由于样本容量与总体个体数之比为20100=15,故各年龄段抽取的人数依次为45×15=9(人),25×15=5(人),20-9-5=6(人).答案:9,5,615.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.解析:由频率分布图知,设90~100分数段的人数为x ,则0.40x =0.0590,所以x=720.答案:72016.设样本数据x 1,x 2,…,x 2017的方差是4,若y i =2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2017的方差为________.解析:本题考查数据的方差.由题意得D (y i )=D (2x i -1)=D (2x i )=4D (x i )=4×4=16.答案:16三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某总体共有60个个体,并且编号为00,01,…,59.现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列的1开始.依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),求抽取样本的号码.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60解析:由随机数表法可得依次的读数为:18,24,54,38,08,22,23,0118.(12分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%,为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解析:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x=10%.解得b =50%,c =10%. 故a =1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人数为200×34×40%=60;抽取的中年人数为200×34×50%=75;抽取的老年人数为200×34×10%=15.19.(12分)已知一组数据按从小到大的顺序排列为-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.解析:由于数据-1,0,4,x,7,14的中位数为5,所以4+x2=5,x =6.设这组数据的平均数为x -,方差为s 2,由题意得 x -=16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743. 20.(12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.解析:(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2. (2)设参加这次测试的学生有x 人,则0.1x =5, 所以x =50.即参加这次测试的学生有50人. (3)达标率为0.3+0.4+0.2=90%,所以估计该年级学生跳绳测试的达标率为90%.21.(12分)市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测跳过1.65 m就很可能获得冠军,该校为了获得冠军,可能选哪名运动员参赛?若预测跳过1.70 m才能得冠军呢?解析:(1)甲的平均成绩为:(1.70+1.65+1.68+1.69+1.72+1.73+1.68+1.67)÷8=1.69 m,乙的平均成绩为:(1.60+1.73+1.72+1.61+1.62+1.71+1.70+1.75)÷8=1.68 m;(2)根据方差公式可得:甲的方差为0.0006,乙的方差为0.00315∵0.0006<0.00315∴甲的成绩更为稳定;(3)若跳过1.65 m就很可能获得冠军,甲成绩均过1.65米,乙3次未过1.65米,因此选甲;若预测跳过1.70 m才能得冠军,甲成绩过1.70米3次,乙过1.70米5次,因此选乙.22.(12分)某中学高一女生共有450人,为了了解高一女生的身高(单位:cm)情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:(1)(2)画出频率分布直方图;(3)估计该校高一女生身高在[149.5,165.5]范围内的有多少人?解析:(1)由题意得M=80.16=50,落在区间[165.5,169.5]内的数据频数m=50-(8+6+14+10+8)=4,。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】2019-2020学年必修第二册第八章单元训练金卷立体几何初步(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.以下命题中正确的是( )A .以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B .以直角梯形的一腰为轴旋转所得的旋转体是圆台C .有一个面是多边形,其余各面都是三角形的几何体叫做棱锥D .圆锥的侧面展开图为扇形,这个扇形的半径为圆锥底面圆的半径 2.下列说法正确的是( )只装订不密封准考证号 考场号 座位号A .过三个点有且仅有一个平面B .空间中的两条直线不平行则相交C .圆锥过轴的截面一定是一个等腰三角形D .直角梯形绕它的一条边旋转一周形成的曲面围成的几何体是圆台3.如图,球面上有A 、B 、C 三点,90ABC ∠=︒,3BA BC ==,球心O 到平面ABC 322) A .72πB .36πC .18πD .8π4.已知三棱锥P ABC -的四个顶点都在球O 的球面上,ABC △是边长为3PA ⊥平面ABC ,若三棱锥P ABC -的体积为3球O 的表面积为( ) A .18πB .20πC .24πD .203π5.三棱柱111ABC A B C -底面为正三角形,侧棱与底面垂直,若2AB =,11AA =,则点A 到平面1A BC 的距离为( )A 3B 3C 33D 36.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,15AA =,则V 的最大值是( ) A .4πB .92π C .1256πD .323π7.设直三棱柱111ABC A B C -的体积为V ,点P 、Q 分别在侧棱1AA 、1CC 上,且1PA QC =,则三棱锥1B BPQ -的体积为( )A .16VB .14VC .13VD .12V8.如图,一圆锥形物体的母线长为4,其侧面积为4π,则这个圆锥的体积为( )A .153B .833C .153π D .833π 9.如图,在正四棱柱1111ABCD A B C D -中,1AB =,13AA =E 为AB 上的动点,则1D E CE +的最小值为( )A .22B .10C .51+D .22+10.如图,1111ABCD A B C D -为正方体,下面结论:①BD P 平面11CB D ;②1AC BD ⊥;③1AC ⊥平面11CB D ,其中正确结论的个数是( )A .0B .1C .2D .311.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90︒D .1AP PD +的最小值为22+12.如图,三棱锥S ABC -中,2SA AB AC ===,30ASB BSC CSA ∠=∠=∠=︒,M ,N 分别为SB ,SC 上的点,则AMN △周长的最小值为( )A .4B .3C .3D .22第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.棱长为2的正方体1111ABCD A B C D -中,M 是棱1AA 的中点,过C ,M ,1D 作正方体的截面,则截面的面积是 . 14.已知三棱锥P ABC -,PA ⊥平面ABC ,AC BC ⊥,3BC PA ==,1AC =,则三棱锥P ABC -的侧面积 .15.如图,六面体ABCDEF 中,AB CD P ,AB CD ⊥,且112AB AD CD ===,ADEF 是正方形,平面ADEF ⊥平面ABCD ,则点D 到平面BEC 的距离为 .16.如图,四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将四边形ABCD 沿对角线BD 折成四面体A BCD '-,则四面体A BCD'-体积的最大值为 .三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,点D 是AB 的中点. (1)求证:1AC BC ⊥; (2)求证:1AC P 平面1CDB .18.(12分)如图,在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB △为等边三角形,AC BC ⊥且2AC BC ==,O ,M 分别为AB ,VA 的中点.(1)求证:VB P 平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V ABC -的体积.19.(12分)如图,边长为2的正方形ABCD与等边三角形ABE所在的平面互相垂直,M,N分别是DE,AB的中点.(1)证明:MN P平面BCE;的体积.(2)求三棱锥B EMN20.(12分)如图(1),ABC △中,90ABC ∠=︒,22AB BC ==M 为AC 中点,现将ABM △沿着BM 边折起,如图(2)所示.(1)求证:平面BCM ⊥平面ACM ;(2)若平面ABM ⊥平面BCM ,求证AM BC ⊥,并求三棱锥B ACM -外接球的直径.21.(12分)如图,三棱柱111ABC A B C -,1AA ⊥底面ABC ,且ABC △为正三角形,16AA AB ==,D 为AC 中点. (1)求三棱锥1C BCD -的体积; (2)求证:平面1BC D ⊥平面11ACC A ; (3)求证:直线1AB P 平面1BC D .22.(12分)如图所示,在正三棱柱111ABC A B C -中,12AB AA ==,由顶点B 沿棱柱侧面(经过侧棱1AA )到达顶点1C ,与1AA 的交点记为M . (1)三棱柱侧面展开图的对角线长;(2)从B 经过M 到1C 的最短路线长及此时1A MAM的值.2019-2020学年必修第二册第八章单元训练金卷立体几何初步(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A对于A ,由圆锥的定义可知A 正确;对于B ,若旋转轴不是直角梯形的直腰,则旋转体不是圆台,故B 错误; 对于C ,若其余各面三角形没有公共顶点,则几何体不是棱锥,故C 错误; 对于D ,圆锥的侧面展开图的半径是圆锥的母线,故D 错误. 2.【答案】C对于A ,当三点共线时,过这三点有无数个平面,故A 不正确;对于B ,空间中的两条直线的位置关系有平行、相交、异面,故B 不正确; 对于C ,由圆锥的结构特征知:圆锥过轴的截面一定是一个等腰三角形,故C 正确; 对于D ,直角梯形绕它垂直于底边的腰旋转一周形成的曲面围成的几何体是圆台,故D 不正确. 3.【答案】B∵AC 是小圆的直径,所以过球心O 作小圆的垂线,垂足O '是AC 的中点.2232323()22OC =-=,32AC =,223='O O , ∴223OC OO O C ''=+=,即球半径为3,所以球体的体积是343363⨯π⨯=π.4.【答案】B∵三棱锥P ABC -的体积为23213(23)2334PA ⨯⨯⨯=, ∴2PA =,将三棱锥补成三棱柱,可得球心在三棱柱的中心,球心到底面的距离d 等于三棱柱的高PA 的一半,∵ABC △是边长为3ABC △外接圆的半径2r =, 5O 的表面积为4520π⋅=π. 5.【答案】B在三棱柱111ABC A B C -中,连接1A B ,1A C ,则11A B AC =, 取BC 的中点D ,连接AD ,1A D ,则有AD BC ⊥,1A D BC ⊥,AD 与1A D 交于D ,且AD 与1A D 都在平面1A AD 中,所以BC ⊥平面1A AD ,过A 作1AO A D ⊥,则AO ⊥面1A BC ,因为2AB =,11AA =,111ABC A B C -底面为正三角形, 所以3AD =,12A D =,11A A BC A ABC V V --=,111133A BC ABC h S AA S ⋅⋅=⋅⋅△△,1111221233232h ⋅⋅⋅⋅=⋅⋅⋅32h =,所以A 到平面1A BC 的距离为32.6.【答案】D如图,由题知,球的体积要尽可能大时,球需与三棱柱内切,先保证截面圆与ABC△内切,记圆O的半径为r,则由等面积法得1111682222ABCS AC r AB r BC r=⋅+⋅+⋅=⨯⨯△,所以()68AC AB BC r++=⨯,又6AB=,8BC=,所以10AC=,所以2r=,由于三棱柱高为5,此时可以保证球在三棱柱内部,若r增大,则无法保证球在三棱柱内,故球的最大半径为2,所以323Vπ=.7.【答案】C设A到BC的距离为h,∵直三棱柱111ABC A B C-的体积为V,点P、Q分别在侧棱1AA、1CC上,且1PA QC=,∴112V BC h AA=⨯⨯⨯,三棱锥1B BPQ-的体积为111111323B BPQ P BB QV V h BC AA V--==⨯⨯⨯=.8.【答案】C一个圆锥的母线长为4,它的侧面积为4π,设圆锥的底面半径是r,母线长为l,则得到4rlπ=π,解得1r=,这个圆锥的底面半径是1,∴圆锥的高为224115-=,所以圆锥的体积为21153r hπ=π.9.【答案】B画出几何体的图形,连接1D A延长至G,使得AG AD=,连接1C B延长至F,使得BF BC=,连接EF,则ABFG为正方形,连接1D F,则1D F为1D E CE+的最小值2222111310D F GF D G=+=+=.10.【答案】D由正方体的性质得,11BD B DP,所以结合线面平行的判定定理可得:BD P平面11CB D,所以①正确;连接AC、11AC,由正方体的性质得AC BD⊥,1AA BD⊥,又1AC AA A=I,所以BD⊥平面11AAC C,因为1AC⊂平面11AAC C,所以1AC BD⊥,所以②正确;由正方体的性质得11BD B DP,由②可得1AC BD⊥,所以111AC B D⊥,同理可得11AC CB⊥,进而结合线面垂直的判定定理得到1AC⊥平面11CB D,所以③正确.11.【答案】C∵111A D DC⊥,11A B DC⊥,∴1DC⊥面11A BCD,1D P⊂面11A BCD,11DC D P⊥,∴A正确;∵平面11D A P即为平面11D A BC,平面1A AP即为平面11A ABB,切11D A⊥平面11A ABB,∴平面11D A BC⊥平面11A ABB,∴平面11D A P⊥平面1A AP,∴B正确;当122A P<<时,1APD∠为钝角,∴C错误;将面1AA B与面11A BCD沿展成平面图形,线段1AD即为1AP PD+的最小值,在11D A A△中,11135D A A∠=︒,利用余弦定理解三角形得122AD=+,即122AP PD+≥+,∴D正确.12.【答案】D将三棱锥的侧面沿SA剪开展成如图所示的平面图形,可知当A,M,N,共线时,AMN△的周长最小,且AA'的长度即为所求的最小值,在SAA'△中,2SA SA'==,30A SB BSC ASC'∠=∠=∠=︒,故90ASA'∠=︒,所以2222AA SA A S''=+=.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】92如图所示,由面面平行的性质知截面与平面11AA B的交线MN是1AA B△的中位线,所以截面是梯形1CD MN,其中2MN=,122CD=,15CN D M==,梯形1CD MN的高为22232(5)()2h=-=,所以1329(222)222S=+⨯=.14.【答案】532如图所示,三棱锥P ABC -中,PA ⊥平面ABC ,∴PA AB ⊥,PA AC ⊥,PA BC ⊥,又AC BC ⊥,PA AC A =I ,∴BC ⊥平面PAC ,∴BC PC ⊥, ∴三棱锥P ABC -的各个面都是直角三角形, 又3BC PA ==,1AC =,∴三棱锥P ABC-的侧面积为PAB PAC PBCS S S S =++△△△2222111533(3)1313(3)12222=⨯⨯++⨯⨯+⨯⨯+=.15.【答案】6易证BC ⊥平面BDE ,∴BC BE ⊥,易求得6BEC S ∆=, 而1BCD S =△,设点D 到平面BEC 的距离是h , 由E BCD D BCE V V --=可得1133BCD BCE S DE S h ⋅=⋅△△, 解得66BCD BCE S DE h S ⋅===△△. 16.【答案】16要使四面体A BCD '-体积的最大,则平面A BD '平面BCD ,由BD CD ⊥,平面A BD '⊥平面BCD ,得CD ⊥平面A BD ',∴CD BD ⊥, ∵四边形ABCD 中,1AB AD CD ===,2BD =,∴A '到底面BCD 的距离为22, ∴四面体A BCD '-体积的最大值为1121213226V =⨯⨯⨯⨯=.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1)证明见解析;(2)证明见解析. (1)证明:∵90ACB ∠=︒,所以AC CB ⊥,又在直三棱柱111ABC A B C -中,有1AC BB ⊥, ∴AC ⊥平面11BB C C ,所以1AC BC ⊥.(2)设1BC 与1B C 交于点P ,连DP ,易知P 是1BC 的中点, 又D 是AB 中点,∴1AC DP P ,∵DP ⊂平面1CDB ,1AC 不在平面1CDB 上,∴1AC P 平面1CDB .18.【答案】(1)证明见解析;(2)证明见解析;(3)3. (1)证明:∵O ,M 分别为AB ,VA 的中点,∴OM VB P , ∵VB ⊄平面MOC ,OM ⊂平面MOC ,∴VB P 平面MOC . (2)∵AC BC =,O 为AB 的中点,∴OC AB ⊥,∵平面VAB ⊥平面ABC ,OC ⊂平面ABC ,∴OC ⊥平面VAB , ∵OC ⊂平面MOC ,∴平面MOC ⊥平面VAB . (3)在等腰直角三角形ACB 中,2AC BC ==,∴2AB =,1OC =,∴3VAB S =△,∵OC ⊥平面VAB ,∴133C VAB VAB V OC S -=⋅=△, ∴3V ABC C VAB V V --==. 19.【答案】(1)证明见解析;(2)3. (1)证明:取AE 中点P ,连接MP ,NP ,由题意可得MP AD BC P P ,∵MP ⊄平面BCE ,BC ⊂平面BCE ,∴MP P 平面BCE , 同理可证NP P 平面BCE ,∵MP NP P =I ,∴平面MNP P 平面BCE , 又MN ⊂平面MNP ,∴MN P 平面BCE .(2)由(1)可得MP DA P ,且12MP DA =, ∵平面ABCD ⊥平面ABE ,平面ABCD I 平面ABE AB =,且DA AB ⊥,∴DA ⊥平面ABE ,∴M 到平面ENB 的距离为112MP DA ==, ∵N 为AB 的中点,∴12EBN ABE S S =△△, ∴111113322132322B EMN M EBN ABE V MP V S --⨯==⨯=⨯⨯⨯⨯=△. 20.【答案】(1)证明见解析;(2)23(1)证明:由图(1)知,BM AM ⊥,BM MC ⊥,AM MC M =I ,所以BM ⊥平面AMC ,又因为BM ⊂平面BMC ,所以平面BCM ⊥平面ACM .(2)因为平面ABM ⊥平面BCM ,平面ABM I 平面BCM BM =,BM AM ⊥,AM ⊂平面ABM ,所以AM ⊥平面BMC ,所以AM MC ⊥,即AM 、MC 、BM 两两垂直,而易知2AM BM MC ===, 所以该三棱锥外接球与以MA 、MB 、MC 为相邻棱组成的长方体的外接球为同一个球,所以三棱锥B ACM -外接球的直径为22222223++=. 21.【答案】(1)93;(2)证明见解析;(3)证明见解析. (1)∵ABC △为正三角形,D 为AC 中点,∴BD AC ⊥, 由6AB =可知,3CD =,33BD =,∴19322BCD S CD BD =⋅⋅=△, 又∵1AA ⊥底面ABC ,且16AA AB ==, ∴1C C ⊥底面ABC ,且16C C =, ∴111933C BCDBCD V S C C -=⋅⋅=△.(2)∵1AA ⊥底面ABC ,BD ⊂平面ABC ,∴1AA BD ⊥, 又BD AC ⊥,1AA AC A =I ,1AA ,AC ⊂平面11ACC A , ∴BD ⊥平面11ACC A ,又BD ⊂平面1BC D ,∴平面1BC D ⊥平面11ACC A . (3)连接1B C 交1BC 于O ,连接OD ,又1AB ⊄平面1BC D ,OD ⊂平面1BC D ,∴1AB P 平面1BC D . 22.【答案】(1)210;(2)25,11A MAM=. 沿侧棱1BB 将正三棱柱的侧面展开,得到一个矩形11BB B B ''(如图所示).(1)矩形11BB B B ''的长326BB '=⨯=,宽12BB =, 所以三棱柱侧面展开图的对角线长为22162210BB '=+=. (2)由侧面展开图可知:当B ,M ,1C 三点共线时, 由B 经M 到点1C 的路线最短, 所以最短路线长为2214225BC =+=显然11ABM AC M ≅Rt Rt △△,所以1A M AM =,即11A MAM=.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。