流量测量仪表知识
- 格式:ppt
- 大小:6.33 MB
- 文档页数:68
第四章流量检测仪表1.概述〔流量的概念和单位、流量检测方法及流量计分类〕在生产过程中,为了有效地进行操作、操纵和监督,需要检测各种流体的流量。
物料总量的计量依旧经济核算和能源治理的重要依据。
流量检测仪表是开展生产,节约能源,先进产品质量,提高经济效益和治理水平的重要工具,是工业自动化仪表与装置中的重要仪表之一。
流体的流量是指在短临时刻内流过某一流通截面的流体数量与通过时刻之比,该时刻足够短以致可认为在此期间的流淌是稳定的。
此流量又称瞬时流量。
流体数量以体积表示称为体积流量,流体数量以质量表示称为质量流量。
流量的表达式为:式中为体积流量,单位;为质量流量,;V为流体体积,m3;M为流体质量,Kg;t为时刻;为流体密度,;为流体平均流速,;为流通截面面积,。
在某段时刻内流体通过的体积或质量总量称为累计流量或总流量,它是体积流量或质量流量在该段时刻的积分。
流量检测方法能够回为体积流量检测和质量流量检测两种方式,前者测得流体的体积流量值,后者能够直截了当测得流体的质量流量值。
测量流量的仪表称为流量计,测量流体总量的仪表称为计量表或总量计。
流量计通常由一次装置和二次仪表组成。
一次装置安装于流道的内部或外部,依据流体与之相互作用关系的物理定律产生一个与流量有确定关系的信号,这种一次装置亦称流量传感器。
二次仪表那么给出相应的流量值大小。
流量计的种类繁多,各适合于不同的工作场合。
按检测原理分类的典型流量计列在见下表。
流量计的分类2.容积式流量计容积式流量计是直截了当依据排出体积进行流量累计的仪表,它利用运动元件的往复次数或转速与流体的连续排出量成比例对被测流体进行连续的检测。
容积式流量计能够计量各种液体和气体的累积流量,由于这种流量计能够周密测量体积量,因此其类型包括从小型的家用煤气表到大容积的石油和天然气计量仪表,广泛地用作治理和贸易的手段。
容积式流量计由测量室、运动部件、传动和显示部件组成。
它的测量主体为具有固定标准容积的测量室,测量室由流量计内部的运动部件与壳体构成。
流量测量仪表基本参数流量测量仪表是工业自动化中常见的一种仪器设备,用于测量流体介质在管道中的流量,并通过显示和输出信号等方式将测得的数据传递给控制系统或记录设备,以实现对流体的准确监测和控制。
流量测量仪表的基本参数是评估其性能和适用性的重要标准,下面将对一些基本参数进行介绍。
1. 测量精度:流量测量仪表的测量精度是指其测量结果与被测介质实际流量的偏差大小。
通常以百分比或小数作为表示单位,如0.5%或0.005。
测量精度越高,测量结果与实际值的差异越小,反之则差异越大。
测量精度是衡量流量测量仪表性能的重要指标,在实际应用中对测量结果的准确性要求较高的场合,应选择具有较高测量精度的仪表。
2. 测量范围:流量测量仪表的测量范围是指其能够准确测量的流量范围。
通常以单位时间内通过仪表的最小和最大流量值表示,如0-100m³/h。
测量范围涉及到仪表结构以及传感器等元件的设计和选用,不同的测量范围对应着仪表在不同工况下的适用性,因此在选型时需要根据实际需求考虑。
3. 响应时间:流量测量仪表的响应时间是指其从接收到输入信号到输出测量结果完成的时间间隔。
响应时间的长短与测量仪表中的传感器、信号处理电路等相关,一般情况下,响应时间越短,测量结果与实际情况的变化越接近,反之则变化越滞后。
在对流量变化较快的场合,需要选择具有较短响应时间的仪表。
4. 精度稳定性:流量测量仪表的精度稳定性是指在长期使用的过程中,测量精度的稳定性。
精度稳定性可以从传感器的稳定性、温度对测量精度的影响以及仪表自身的寿命等方面考虑。
一个精度稳定性好的流量测量仪表可以在长期使用中保持较高的准确性,减少维护与校准的工作。
总结回顾:流量测量仪表的基本参数是衡量其性能和适用性的重要指标,包括测量精度、测量范围、响应时间和精度稳定性等。
在选用流量测量仪表时,需要根据实际需求和场合的要求来选择合适的仪表。
这些基本参数在实际应用中起到了至关重要的作用,可以帮助实现对流体的准确监测和控制。
流量测量仪表的分类知识点总结
流量测量的方法很多,仪表的种类也很多,结合流量的定义,常用的流量测量方法可归纳为容积法,流速法和质量流量法等。
1.容积法
如果流体是以固定体积从流量计中逐次排放流出,则对排放的次数计数,就可以求得通过仪器的流体总量。
若测量排放的频率,即可显示流量。
这种方法叫做容积法。
如刮板流量计。
椭圆齿轮流量计和标准体积管等,都是按此原理工作的。
这类仪表所显示的是体积流量的总量。
容积法的特点是流动状态对测量的影响较小,精确度较高,这类流量计一般不宜用于测量高温高压流体和脏污介质的流量,测量流量的上限也不大。
2.流速法
根据一元流动的连续方程,当流通截面恒定时,截面上的平均流速与体积流量成正比,于是各种与流速有关的物理现象便可以用来建立流量计。
例如:超声波流量计、涡轮流量计、动压测量管、漩涡流量计和节流式流量计等均属于此类。
目前流量仪表中以这类仪表最多,它们有较宽的使用条件,有用于高温高压流体的,也有精度较高的,有的能量损失很小,有的可适应脏污介质等等。
3.直接测质量流量法
使流体流动得到某种加速度的力学效应与质量的关系,是这种方法的物理基础,按这种原理制成的流量计有质量流量计和回转管式流量计等(如科里奥利质量流量计)。
这类仪表都比较复杂,价格昂贵。
流量计的仪表常数即雷诺数的知识介绍测量管内流体流量时往往必须了解其流动状态、流速分布等。
雷诺数就是表征流体流动特性的一个重要参数。
流体流动时的惯性力Fg和粘性力(内摩擦力)Fm之比称为雷诺数。
用符号Re表示。
Re是一个无因次量。
流体力学中表征粘性影响的相似准数。
为纪念O.雷诺而命名,记作Re。
Re=ρvL/μ,ρ、μ为流体密度和动力粘度,v、L为流场的特征速度和特征长度。
对外流问题,v、L一般取远前方来流速度和物体主要尺寸(如机翼展长或圆球直径);内流问题则取通道内平均流速和通道直径。
雷诺数表示作用于流体微团的惯性力与粘性力[1]之比。
两个几何相似流场的雷诺数相等,则对应微团的惯性力与粘性力之比相等。
雷诺数越小意味着粘性力影响越显著,越大则惯性力影响越显著。
雷诺数很小的流动(如润滑膜内的流动),其粘性影响遍及全流场。
雷诺数很大的流动(如一般飞行器绕流),其粘性影响仅在物面附近的边界层或尾迹中才是重要的。
在涉及粘性影响的流体力学实验中,雷诺数是主要的相似准数。
但很多模型实验的雷诺数远小于实物的雷诺数,因此研究修正方法和发展高雷诺数实验设备是流体力学实验研究的重要课题。
测量管内流体流量时往往必须了解其流动状态、流速分布等。
雷诺数就是表征流体流动特性的一个重要参数。
流体流动时的惯性力Fg和粘性力(内摩擦力)Fm之比称为雷诺数。
用符号Re表示。
Re是一个无因次量。
雷诺数小,意味着流体流动时各质点间的粘性力占主要地位,流体各质点平行于管路内壁有规则地流动,呈层流流动状态。
雷诺数大,意味着惯性力占主要地位,流体呈紊流流动状态,一般管道雷诺数Re<2000为层流状态,Re>4000为紊流状态,Re=2000~4000为过渡状态。
在不同的流动状态下,流体的运动规律.流速的分布等都是不同的,因而管道内流体的平均流速υ与最大流速υmax的比值也是不同的。
因此雷诺数的大小决定了粘性流体的流动特性。
外部条件几何相似时(几何相似的管子,流体流过几何相似的物体等),若它们的雷诺数相等,则流体流动状态也是几何相似的(流体动力学相似)。
流量测量仪表基本参数一、测量范围流量测量仪表的测量范围是指在特定流量范围内,仪表可以准确测量流体的流量。
测量范围通常以体积流量或质量流量表示。
在选择仪表时,需要根据实际流量需求来确定测量范围。
二、精度流量测量仪表的精度是指其测量结果与实际流量之间的误差。
精度越高,仪表越能够准确反映实际流量。
精度通常以百分比或绝对误差表示。
在选择仪表时,需要根据实际精度要求来选择合适的仪表。
三、响应时间流量测量仪表的响应时间是指其对流量变化做出反应所需的时间。
响应时间越短,仪表越能够实时反映流量变化。
在选择仪表时,需要考虑被测流体的变化速度以及需要实时监测的要求。
四、测量介质流量测量仪表的测量介质是指其能够测量的流体类型。
不同的仪表适用于不同的流体类型,如气体、液体、蒸汽等。
在选择仪表时,需要考虑被测流体的类型以及相关特性,如压力、温度、腐蚀性等。
五、工作压力流量测量仪表的工作压力是指其在正常工作条件下所承受的最大压力。
工作压力范围越宽,仪表越能够适应不同的工作压力环境。
在选择仪表时,需要考虑被测流体的压力范围以及工作压力变化的要求。
六、工作温度流量测量仪表的工作温度是指其在正常工作条件下所承受的最大温度。
工作温度范围越宽,仪表越能够适应不同的温度环境。
在选择仪表时,需要考虑被测流体的温度范围以及工作温度变化的要求。
七、量程流量测量仪表的量程是指其能够测量的最大流量范围。
量程越大,仪表越能够适应不同的流量需求。
在选择仪表时,需要考虑被测流体的流量范围以及需要监测的流量变化范围。
八、重复性流量测量仪表的重复性是指其在相同条件下多次测量同一流量的误差分布情况。
重复性越好,仪表越能够提供一致的测量结果。
在选择仪表时,需要考虑其对重复性的要求以及需要监测的流体特性。