高二第二学期期末数学考试试题(含答案)
- 格式:doc
- 大小:850.33 KB
- 文档页数:11
北京市西城区2023—2024学年度第二学期期末试卷高二数学第1页(共5页)北京市西城区2023—2024学年度第二学期期末试卷高二数学2024.7本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)在等差数列{}n a 中,13a =,35a =,则10a =(A )8(B )10(C )12(D )14(2)设函数()sin f x x =的导函数为()g x ,则()g x 为(A )奇函数(B )偶函数(C )既是奇函数又是偶函数(D )非奇非偶函数(3)袋中有5个形状相同的乒乓球,其中3个黄色2个白色,现从袋中随机取出3个球,则恰好有2个黄色乒乓球的概率是(A )110(B )310(C )15(D )35(4)在等比数列{}n a 中,若11a =,44a =,则23a a =(A )4(B )6(C )2(D )6±(5)投掷2枚均匀的骰子,记其中所得点数为1的骰子的个数为X ,则方差()D X =(A )518(B )13(C )53(D )536北京市西城区2023—2024学年度第二学期期末试卷高二数学第2页(共5页)(6)设等比数列{}n a 的前n 项和为n S ,若11a =-,1053231S S =,则6a =(A )132-(B )164-(C )132(D )164(7)设函数()ln f x x =的导函数为()f x ',则(A )(3)(2)(3)(2)f f f f ''<<-(B )(3)(3)(2)(2)f f f f ''<-<(C )(2)(3)(3)(2)f f f f ''<<-(D )(2)(3)(2)(3)f f f f ''<-<(8)设等比数列{}n a 的前n 项和为n S ,则“{}n a 是递增数列”是“{}n S 是递增数列”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(9)如果()e x f x ax =-在区间(1,0)-上是单调函数,那么实数a 的取值范围为(A )1(,][1,)e -∞+∞ (B )1[,1]e(C )1(,]e-∞(D )[1,)+∞(10)在数列{}n a 中,12a =,若存在常数(0)c c ≠,使得对于任意的正整数,m n 等式m n m n a a ca +=+成立,则(A )符合条件的数列{}n a 有无数个(B )存在符合条件的递减数列{}n a (C )存在符合条件的等比数列{}n a (D )存在正整数N ,当n N >时,2024n a >北京市西城区2023—2024学年度第二学期期末试卷高二数学第3页(共5页)第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分。
北京市海淀区2023-2024学年高二下学期期末考试数学试卷本试卷共6页,共两部分。
19道题,共100分。
考试时长90分钟。
试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
考试结束后,请将答题卡交回。
第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.5(1)x -的展开式中,所有二项式的系数和为A.0B.52C.1D.622.已知函数sin (),cos xf x x=则(0)f '的值为A.0B.1C.1- D.π3.若等比数列{}n a 的前n 项和21n n S =-,则公比q =A.12B.12-C.2D.2-4.下列函数中,在区间[]1,0-上的平均变化率最大的时A.2y x = B.3y x = C.12xy ⎛⎫= ⎪⎝⎭D.2xy =5.将分别写有2,0,2,4的四章卡片,按一定次序排成一行组成一个四位数(首位不为0),则组成的不同四位数的个数为A.9B.12C.18D.246.小明投篮3次,每次投中的概率为0.8,且每次投篮互不影响,若投中一次的2分,没投中得0分,总得分为X ,则A.() 2.4E X = B.() 4.8E X = C.()0.48D X = D.()0.96D X =7.已知一批产品中,A 项指标合格的比例为80%,B 项指标合格的比例为90%,A 、B 两项指标都合格的比例为60%,从这批产品中随机抽取一个产品,若A 项指标合格,则该产品的B 项指标也合格的概率是A.37B.23C.34D.568.已知等差数列n a 的前n 项和为n S ,若10a <、则“n S 有最大值”是“公差0d <”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设函数()()ln 1sin f x x a x =-+.若()()0f x f ≤在()1,1-上恒成立,则A.0a =B.1a ≥C.01a <≤ D.1a =10.在经济学中,将产品销量为x 件时的总收益称为收益函数,记为()R x ,相应地把()R x '称为边际收益函数,它可以帮助企业决定最优的生产或销售水平.假设一个企业的边际收益函数()1000R x x '=-(注:经济学中涉及的函数有时是离散型函数,但仍将其看成连续函数来分析).给出下列三个结论:①当销量为1000件时,总收益最大;②若销量为800件时,总收益为T ,则当销量增加400件时,总收益仍为T ;③当销量从500件增加到501件时,总收益改变量的近似值为500.其中正确结论的个数为A.0B.1C.2D.3第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分。
2023—2024学年高二下学期教学质量检测数学试题(答案在最后)2024.07注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径05毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.一质点A 沿直线运动,位移s (单位:米)与时间t (单位:秒)之间的关系为221s t =+,当位移大小为9时,质点A 运动的速度大小为()A.2B.4C.6D.82.若X 服从两点分布,()()100.32P X P X =-==,则()0P X =为()A.0.32B.0.34C.0.66D.0.683.下列说法正确的是()A.线性回归分析中决定系数2R 用来刻画回归的效果,若2R 值越小,则模型的拟合效果越好B.残差平方和越小的模型,拟合的效果越好C.正态分布()2,N μσ的图象越瘦高,σ越大D.两个随机变量的线性相关性越强,则相关系数r 的值越接近于14.已知函数()23f x ax x=+的单调递增区间为[)1,+∞,则a 的值为()A.6B.3C.32D.345.若()465nn a n ⨯+-∈N 能被25整除,则正整数a 的最小值为()A.2B.3C.4D.56.从标有1,2,3,4,5,6的6张卡片中任取4张卡片放入如下表格中,使得表中数字满足,a b c d >>,则满足条件的排法种数为()abcdA.45B.60C.90D.1807.在()21*(2n n +∈N 的展开式中,x 的幂指数是整数的各项系数之和为()A .2131n +- B.2131n ++ C.21312n +- D.21312n ++8.已知函数()3213f x x x =-,若()e n f m n =-,则m 与n 的大小关系为()A.m n >B.m n=C.m n< D.不能确定二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量()4,2X N ~,若(6),(46)P X a P X b >=<<=,则()A .12a b +=B.(2)P X a <=C.()218E X += D.()218D X +=10.已知曲线()y f x =在原点处的切线与曲线()y xf x =在()2,8处的切线重合,则()A.()24f =B.()23f '=C.()04f '= D.曲线()y f x =在()2,a 处的切线方程为y a=11.假设变量x 与变量Y 的n 对观测数据为()()()1122,,,,,,n n x y x y x y ,两个变量满足一元线性回归模型()()2,0,.Y bx e E e D e σ=+⎧⎨==⎩要利用成对样本数据求参数b 的最小二乘估计ˆb ,即求使()21()ni i i Q b y bx ==-∑取最小值时的b 的值,若某汽车品牌从2020~2024年的年销量为w (万辆),其中年份对应的代码t 为15~,如表,年份代码t12345销量w (万辆)49141825根据散点图和相关系数判断,它们之间具有较强的线性相关关系,可以用线性回归模型描述令变量x t t Y w w =-=-,且变量x 与变量Y 满足一元线性回归模型2()0,()Y bx eE e D e σ=+⎧⎨==⎩则下列结论正确的有()A .51521ˆiii ii x ybx===∑∑ B.51521ˆiii ii x yby===∑∑C.ˆ 5.1 1.3wt =- D.2025年的年销售量约为34.4万辆三、填空题:本题共3小题,每小题5分,共15分.12.A 、B 、C 、D 共4名同学参加演讲比赛,决出第一至第四的名次.A 和B 去询问成绩,回答者对A 说:“很遗憾,你和B 都没有得到冠军.”对B 说:“你当然不会是最差的.”从这两个回答分析,这4人的名次排列有__________.种(用数字作答).13.函数()()e 211x x f x x -=-的极小值为__________.14.定义:设,X Y 是离散型随机变量,则X 在给定事件Y y =条件下的期望为()()11,()()n ni i i i i i P X x Y y E X Y y x P X x Y y x P Y y ======⋅===⋅=∑∑∣∣,其中{}12,,,n x x x 为X 的所有可能取值集合,(),P X x Y y ==表示事件“X x =”与事件“Y y =”都发生的概率.某射击手进行射击训练,每次射击击中目标的概率均为(01)p p <<,击中目标两次时停止射击.设ξ表示第一次击中目标时的射击次数,η表示第二次击中目标时的射击次数.则()2,5P ξη===__________,()E n ξη==∣__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校有南、北两家餐厅,各餐厅菜品丰富多样,可以满足学生的不同口味和需求.某个就餐时间对在两个餐厅内就餐的100名学生分性别进行了统计,得到如下的22⨯列联表.性别就餐人数合计南餐厅北餐厅男252550女203050合计4555100(1)对学生性别与在南北两个餐厅就餐的相关性进行分析,依据0.100α=的独立性检验,能否认为在不同餐厅就餐与学生性别有关联?(2)若从这100名学生中选出2人参加某项志愿者活动,求在抽出2名学生的性别为一男一女的条件下,这2名学生均在“南餐厅”就餐的概率.附:()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++;α0.1000.0500.0250.010x α2.7063.8415.0246.63516.由0,1,2,3这四个数组成无重复数字的四位数中.(1)求两个奇数相邻的四位数的个数(结果用数字作答);(2)记夹在两个奇数之间的偶数个数为X ,求X 的分布列与期望.17.已知函数()()1ln f x x x ax =--.(1)若2a =,求()f x 在()()1,1f 处的切线方程;(2)若()f x 的图象恒在x 轴的上方,求a 的取值范围.18.已知离散型随机变量X 服从二项分布(),B n p .(1)求证:11C C ,(kk n n k n n k --=≥,且n 为大于1的正整数);(2)求证:()E X np =;(3)一个车间有12台完全相同的车床,它们各自独立工作,且发生故障的概率都是20%,设同时发生故障的车床数为X ,记X k =时的概率为()P X k =.试比较()P X k =最大时k 的值与()E X 的大小.19.已知函数()()()2()e ,xf x x a x b a b =--∈R .(1)当1,2a b ==时,求函数()f x 的单调区间;(2)若x a =是()f x 的一个极大值点,求b 的取值范围;(3)令()()exg x f x -=且12(),,a b x x <是()g x 的两个极值点,3x 是()g x 的一个零点,且123,,x x x 互不相等.问是否存在实数4x ,使得1234,,,x x x x 按照某种顺序排列后构成等差数列,若存在求出4x ,若不存在说明理由.2023—2024学年高二下学期教学质量检测数学试题2024.07注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径05毫米黑色墨水签字笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.一质点A 沿直线运动,位移s (单位:米)与时间t (单位:秒)之间的关系为221s t =+,当位移大小为9时,质点A 运动的速度大小为()A.2B.4C.6D.8【答案】D 【解析】【分析】令9s =求出t ,再求出函数的导函数,代入计算可得.【详解】因为221s t =+,令2219s t +==,解得2t =(负值已舍去),又4s t '=,所以2|428t s ='=⨯=,所以当位移大小为9时,质点A 运动的速度大小为8m /s .故选:D2.若X 服从两点分布,()()100.32P X P X =-==,则()0P X =为()A.0.32 B.0.34C.0.66D.0.68【答案】B 【解析】【分析】利用两点分布的性质可得答案.【详解】依题意可得()()101P X P X =+==,()()100.32P X P X =-==,所以()10.3210.34.2P X -===故选:B.3.下列说法正确的是()A.线性回归分析中决定系数2R 用来刻画回归的效果,若2R 值越小,则模型的拟合效果越好B.残差平方和越小的模型,拟合的效果越好C.正态分布()2,N μσ的图象越瘦高,σ越大D.两个随机变量的线性相关性越强,则相关系数r 的值越接近于1【答案】B 【解析】【分析】2R 值越大,模型的拟合效果越好可判断A ;残差平方和越小的模型,拟合的效果越好,判断B ;正态分布()2,N μσ的图象越瘦高,σ越小可判断C ;两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,可判断D .【详解】对于A :2R 值越大,模型的拟合效果越好,故A 错误;对于B ,残差平方和越小的模型,拟合的效果越好,故B 正确.对于C ,正态分布()2,N μσ的图象越瘦高,σ越小,故C 错误;对于D ,两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故D 错误.故选:B .4.已知函数()23f x ax x=+的单调递增区间为[)1,+∞,则a 的值为()A.6B.3C.32D.34【答案】C 【解析】【分析】求出函数的定义域与导函数,分0a ≤、0a >两种情况讨论,求出函数的单调递增区间,从而得到方程,解得即可.【详解】函数()23f x ax x=+的定义域为{}|0x x ≠,又()3223232ax f x ax x x -'=-=,当0a ≤时()0f x '<恒成立,所以()f x 没有单调递增区间,不符合题意;当0a >时,323y ax =-单调递增,令()0f x ¢>,解得1332x a ⎛⎫> ⎪⎝⎭,所以()f x 的单调递增区间为133,2a ⎡⎫⎛⎫⎪⎢+∞ ⎪⎪⎢⎝⎭⎣⎭(或133,2a ⎛⎫⎛⎫⎪+∞ ⎪ ⎪⎝⎭⎝⎭),依题意可得13312a ⎛⎫= ⎪⎝⎭,解得32a =.故选:C5.若()465nn a n ⨯+-∈N 能被25整除,则正整数a 的最小值为()A.2B.3C.4D.5【答案】C 【解析】【分析】利用二项式定理展开,并对n 讨论即可得到答案【详解】因为()465nn a n ⨯+-∈N 能被25整除,所以当1n =时,46529a a ⨯+-=-,此时2925(Z)a k k =-∈,0a >,当1k =时,4a =;当2n ≥时,11224(51)54(5C 5C 5n n n n n n n a --⨯++-=⨯+⨯++⨯ 1C 51)5n n n a -+⨯++-112214(5C 5C 54()C 51)5n n n n n n n n a---=⨯+⨯++⨯+⨯⨯++- 2132425(5C 5C 25)4n n n n n n a ---=⨯+⨯++++- 213225(454C 54C )4n n n n na n ---=⨯+⨯++++- ,因此只需4a -能够被25整除即可,可知最小正整数a 的值为4,综上所述,正整数a 的最小值为4,故选:C6.从标有1,2,3,4,5,6的6张卡片中任取4张卡片放入如下表格中,使得表中数字满足,a b c d >>,则满足条件的排法种数为()abcdA.45B.60C.90D.180【答案】C 【解析】【分析】分两步完成,第一步从6张卡片中任取2张卡片放入a 、b ,第二步从剩下的4张卡片中任取2张卡片放入c 、d ,按照分步乘法计数原理计算可得.【详解】首先从6张卡片中任取2张卡片放入a 、b (较大的数放入a )有26C 种方法;再从剩下的4张卡片中任取2张卡片放入c 、d (较大的数放入c )有24C 种方法;综上可得一共有2264C C 90=种不同的排法.故选:C7.在()21*(2n n +∈N 的展开式中,x 的幂指数是整数的各项系数之和为()A.2131n +- B.2131n ++ C.21312n +- D.21312n ++【答案】D 【解析】【分析】设((21212,2n n A B ++==,由二项式定理知A 与B 中的x 的整数次幂项之和相同,再利用赋值法求解.【详解】设((21212,2n n A B ++==,由二项式定理知A 与B 中的x 的整数次幂项之和相同,记作()f x ,非整数次幂项之和互为相反数,相加后相互抵消.故有())()2121222n n f x ++=++.令1x =,则所求的系数之和为()()2111312n f +=+.故选:D.8.已知函数()3213f x x x =-,若()e n f m n =-,则m 与n 的大小关系为()A.m n >B.m n=C.m n< D.不能确定【答案】A 【解析】【分析】设()e x g x x =-,利用导数先研究函数()f x 和()g x 图象性质,并得到在R 上()()g x f x >恒成立,若()e ()nf m ng n =-=,可知3m >,若0n <,则显然m n >,若0n ≥,由()()()g m f m g n >=,所以m n >,综上所述,m n >.【详解】由()3213f x x x =-,()2()22f x x x x x =-=-',当0x <或2x >时,()0f x '>,则函数()f x 单调递增,当02x <<时,()0f x '<,则函数()f x 单调递减,4()(0)0,()(2)3f x f f x f ====-极大值极小值,且(3)0f =,设()e x g x x =-,则()e 1x g x '=-,当0x <时,()0g x '<,则函数()g x 单调递减,当0x >时,()0g x '>,则函数()g x 单调递增,()(0)1g x g ==极小值,设()321()()()e 33xF x g x f x x x x x ⎛⎫=-=---> ⎪⎝⎭,则2()e 12x F x x x'=--+设()2()e 123xm x x x x =--+>,则()e 22x m x x '=-+,设()()e 223xv x x x =-+>,则()e 20x v x '=->恒成立,所以()v x 在()3,∞+单调递增,3()e 2320v x >-⨯+>,即()0m x '>恒成立,所以()m x 在()3,∞+单调递增,则33()(3)e 196e 40m x m >=--+=->,即()0F x '>恒成立,所以()F x 在()3,∞+单调递增,则3()(3)e 30F x F >=->,所以在()3,∞+上()()g x f x >恒成立,在(],3-∞显然也成立,如图,若()e ()nf m ng n =-=,可知3m >,若0n <,则显然m n >,若0n ≥,由()()()g m f m g n >=,所以m n >,综上所述,m n >故选:A【点睛】关键点点睛:设()e x g x x =-,利用导数得到在R 上()()g x f x >恒成立,若()e ()nf m ng n =-=,可知3m >;若0n <,则显然m n >,若0n ≥,由()()()g m f m g n >=,所以m n >,综上所述,m n >.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量()4,2X N ~,若(6),(46)P X a P X b >=<<=,则()A.12a b +=B.(2)P X a <=C.()218E X +=D.()218D X +=【答案】ABD 【解析】【分析】根据正态分布的对称性可判断A 、B ,根据正态分布定义及期望与方差的性质可判断C 、D.【详解】对于A ,因为4μ=,()()6,46>=<<=P X a P X b ,所以()()()44660.5>=<<+>=+=P X P X P X a b ,故A 正确;对于B ,因为4μ=,()()26P X P X a <=>=,故B 正确;对于C ,因为()4E X =,所以()()21219+=+=E X E X ,故C 错误;对于D ,因为()2D X =,所以()()2148D X D X +==,故D 正确.故选:ABD.10.已知曲线()y f x =在原点处的切线与曲线()y xf x =在()2,8处的切线重合,则()A.()24f =B.()23f '=C.()04f '= D.曲线()y f x =在()2,a 处的切线方程为y a=【答案】ACD 【解析】【分析】令()()g x xf x =,求出()g x 的导函数,依题意()28=g ,即可判断A ,又曲线()y f x =在原点处的切线过点()2,8,即可得到()0f ',即可判断C ,再由()()02g f '='求出()2f ',即可判断B 、D.【详解】令()()g x xf x =,则()()()g x f x xf x ''=+,依题意()()2228g f ==,解得()24f =,故A 正确;依题意可得曲线()y f x =在原点处的切线过点()2,8,所以()480200f '--==,故C 正确;又()()()()222204f fg f '='=+=',所以()20f '=,则曲线()y f x =在()2,a 处的切线方程为y a =,故B 错误,D 正确.故选:ACD11.假设变量x 与变量Y 的n 对观测数据为()()()1122,,,,,,n n x y x y x y ,两个变量满足一元线性回归模型()()2,0,.Y bx e E e D e σ=+⎧⎨==⎩要利用成对样本数据求参数b 的最小二乘估计ˆb ,即求使()21()ni i i Q b y bx ==-∑取最小值时的b 的值,若某汽车品牌从2020~2024年的年销量为w (万辆),其中年份对应的代码t 为15~,如表,年份代码t12345销量w (万辆)49141825根据散点图和相关系数判断,它们之间具有较强的线性相关关系,可以用线性回归模型描述令变量x t t Y w w =-=-,且变量x 与变量Y 满足一元线性回归模型2()0,()Y bx eE e D e σ=+⎧⎨==⎩则下列结论正确的有()A.51521ˆi ii i i x ybx ===∑∑ B.51521ˆi ii i i x yby ===∑∑C.ˆ 5.1 1.3wt =- D.2025年的年销售量约为34.4万辆【答案】AC 【解析】【分析】利用线性回归方程待定系数公式()()()51521ˆiii ii x x y y bx x ==--=-∑∑,再由变量的线性代换关系进行计算,最后恒过样本点(),x y ,就可得到线性回归方程.【详解】由i i x t t =-可得:()551111055i i i i x t t t t ===-=-=∑∑,同理由i i y ωω=-,可得()551111055i i i i y ωωωω===-=-=∑∑,根据公式()()()55511155522221115ˆ5iii ii ii i i iii i i i x x y y x y x y x ybx x xxx======---===--∑∑∑∑∑∑,故A 正确;B 错误;由表格中数据可得:3,14t ω==,()()5551115i iii i i i i i x y tt t t ωωωω====--=-⋅∑∑∑1429314418525531451=⨯+⨯+⨯+⨯+⨯-⨯⨯=,()5552222111514916255910ii ii i i xt ttt ====-=-=++++-⨯=∑∑∑,所以5152151ˆ 5.110iii ii x ybx=====∑∑,由于0,0x y ==,所以y 与x 的回归方程必过原点,ˆ 5.1yx =,又由于3x t t t =-=-,14y ωωω=-=-代入得:()ˆ14 5.13t ω-=-,整理得:ˆ 5.1 1.3t ω=-,故C 正确;当6t =,即表示2025年,此时ˆ 5.16 1.329.3ω=⨯-=,所以2025年的年销售量约为29.3万辆,故D 错误;故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12.A 、B 、C 、D 共4名同学参加演讲比赛,决出第一至第四的名次.A 和B 去询问成绩,回答者对A 说:“很遗憾,你和B 都没有得到冠军.”对B 说:“你当然不会是最差的.”从这两个回答分析,这4人的名次排列有__________.种(用数字作答).【答案】8【解析】【分析】依题意A 、B 不在第一名且B 不在第四名,分A 在第四名与不在第四名两种情况讨论.【详解】依题意A 、B 不在第一名且B 不在第四名,若A 在第四名,先排B 到第二、三名中的一个位置,另外两个人全排列,所以有1222A A 4=种排列;若A 不在第四名,则先排A 、B 到第二、三名两个位置,另外两个人全排列,所以有2222A A 4=种排列;综上可得这4人的名次排列有448+=种.故答案为:813.函数()()e 211x x f x x -=-的极小值为__________.【答案】324e【解析】【分析】求出函数的定义域与导函数,从而求出函数的单调区间,即可求出函数的极小值.【详解】函数()()e 211x x f x x -=-的定义域为{}|1x x ≠,又()()()2e 231x x xf x x -'=-,所以当0x <或32x >时()0f x ¢>,当01x <<或312x <<时()0f x '<,所以()f x 在(),0∞-,3,2⎛⎫+∞⎪⎝⎭上单调递增,在()0,1,31,2⎛⎫⎪⎝⎭上单调递减,所以()f x 在32x =处取得极小值,即极小值为32323e 21324e 3212f ⎛⎫⨯- ⎪⎛⎫⎝⎭== ⎪⎝⎭-.故答案为:324e14.定义:设,X Y 是离散型随机变量,则X 在给定事件Y y =条件下的期望为()()11,()()n ni i i i i i P X x Y y E X Y y x P X x Y y x P Y y ======⋅===⋅=∑∑∣∣,其中{}12,,,n x x x 为X 的所有可能取值集合,(),P X x Y y ==表示事件“X x =”与事件“Y y =”都发生的概率.某射击手进行射击训练,每次射击击中目标的概率均为(01)p p <<,击中目标两次时停止射击.设ξ表示第一次击中目标时的射击次数,η表示第二次击中目标时的射击次数.则()2,5P ξη===__________,()E n ξη==∣__________.【答案】①.32(1)p p -②.2n ##12n 【解析】【分析】根据相互独立事件的乘法公式求()2,5P ξη==,求出()P n η=、(),P i n ξη==,即可求(|)E n ξη=.【详解】由题意,事件“2,5ξη==”表示该射击手进行5次射击且在第二次、第五次击中目标,所以()322,5(1)(1)(1)(1)P p p p p p p p ξη===-⋅⋅-⋅-⋅=-,又122221()C (1)(1)(1)n n n P n p p n p p η---==-=--,()()221n P i n p p ξη-===-,()1,2,,1i n =- ,所以()()()()()222211121(1)(11,)|n n i n n p p P i n E p n i P n p n ξηξηη-=--⎡⎤+++--⎡⎤==⎣⎦==⨯=⎢⎥=⎢⎥⎣--⎦∑ 122 (1111)n n n n -=++++---1(1)1122n n n ⎛⎫-+ ⎪-⎝⎭==.故答案为:32(1)p p -;2n【点睛】关键点点睛:本题解答的关键是对题干所给公式理解并准确的应用.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校有南、北两家餐厅,各餐厅菜品丰富多样,可以满足学生的不同口味和需求.某个就餐时间对在两个餐厅内就餐的100名学生分性别进行了统计,得到如下的22⨯列联表.性别就餐人数合计南餐厅北餐厅男252550女203050合计4555100(1)对学生性别与在南北两个餐厅就餐的相关性进行分析,依据0.100α=的独立性检验,能否认为在不同餐厅就餐与学生性别有关联?(2)若从这100名学生中选出2人参加某项志愿者活动,求在抽出2名学生的性别为一男一女的条件下,这2名学生均在“南餐厅”就餐的概率.附:()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++;α0.1000.0500.0250.010x α2.7063.8415.0246.635【答案】(1)答案见解析(2)15【解析】【分析】(1)求出2χ值,与2.706比较大小,得出结论即可;(2)运用古典概型和条件概率公式求解即可.【小问1详解】零假设为0H :分类变量X 与Y 相互独立,即不同区域就餐与学生性别没有关联.222()100(25302025)1002.706()()()()4555505099n ad bc a b c d a c b d χ-⨯-⨯===<++++⨯⨯⨯.依据0.100α=的独立性检验,没有充分证据推断0H 不成立,因此可以认为0H 成立,即认为在不同区域就餐与学生性别没有关联.【小问2详解】设事件A 为“从这100名参赛学生中抽出2人,其性别为一男一女”,事件B 为“这2名学生均在南餐厅就餐”,则()11252021110025201111505050502100C C C C C ()25201C C ()C C 50505C P AB P B A P A ⨯=====⨯.故在抽出2名学生性别为一男一女的条件下,这2名学生的成绩均在“南餐厅”就餐概率为15.16.由0,1,2,3这四个数组成无重复数字的四位数中.(1)求两个奇数相邻的四位数的个数(结果用数字作答);(2)记夹在两个奇数之间的偶数个数为X ,求X 的分布列与期望.【答案】(1)8(2)分布列见解析;7()9E X =【解析】【分析】(1)分0在个位、0在十位和0在百位三类求解;(2)由题意知夹在两个奇数之间的偶数个数X 可能的取值分别为0,1,2,求出其分布列,并利用期望公式求解.【小问1详解】两个奇数相邻的无重复数字的四位数有如下三种情况:①0在个位上时有2222A A 4=个四位数,②0在十位上时有22A 2=个四位数,③0在百位上时有22A 2=个四位数,所以满足条件的四位数的个数共有4228++=个.【小问2详解】由题意知夹在两个奇数之间的偶数个数X 可能的取值分别为0,1,2,则1333884(0)C A 189P X ====,133361(1)C A 3P X ===,333142(2)C A 9P X ===,X ∴的分布列为X 012P491329期望为4127()0129399E X =⨯+⨯+⨯=.17.已知函数()()1ln f x x x ax =--.(1)若2a =,求()f x 在()()1,1f 处的切线方程;(2)若()f x 的图象恒在x 轴的上方,求a 的取值范围.【答案】(1)20x y +=(2)a<0【解析】【分析】(1)利用导数的几何意义求解即可;(2)将问题转化为()(1)ln 0f x x x ax =-->恒成立,则(1)ln x xa x-<在,()0x ∈+∞上恒成立,构造函数(1)ln ()x xF x x-=,利用导数求出其最小值即可.【小问1详解】由2a =,则()(1)ln 2f x x x x =--,,()0x ∈+∞,(1)2f =-,()1ln 1f x x x'=--,代入1x =得(1)2f '=-,所以()f x 在(1,1)处的切线方程为20x y +=.【小问2详解】由()f x 图象恒在x 轴上方,则()(1)ln 0f x x x ax =-->恒成立,即(1)ln x xa x-<在,()0x ∈+∞上恒成立,令(1)ln ()x xF x x-=,即min ()a F x <,21ln ()x xF x x -+'=,令()1ln g x x x =-+,则1()10(0)g x x x'=+>>,所以()g x 在(0,)+∞上为单调递增函数且(1)0g =.所以当(0,1)x ∈时,()0F x '<,()F x 在(0,1)单调递减;当(1,)x ∈+∞时,()0F x '>,()F x 在(1,)+∞单调递增;所以(1)0F =为函数()F x 的最小值,即()(1)F x F ≥.所以综上可知a<0.18.已知离散型随机变量X 服从二项分布(),B n p .(1)求证:11C C ,(kk n n k n n k --=≥,且n 为大于1的正整数);(2)求证:()E X np =;(3)一个车间有12台完全相同的车床,它们各自独立工作,且发生故障的概率都是20%,设同时发生故障的车床数为X ,记X k =时的概率为()P X k =.试比较()P X k =最大时k 的值与()E X 的大小.【答案】(1)证明见解析(2)证明见解析(3)()P X k =最大时k 的值小于()E X 的大小【解析】【分析】(1)根据组合数公式分析证明;(2)根据二项分布结合二项式定理分析证明;(3)分析可知随机变量~(12,0.2)X B ,结合二项分布概率公式可得2k =概率最大,进而与期望对比分析.【小问1详解】左边!!C !()!(1)!()!kn n n k k k n k k n k ==⋅=---,右边11(1)!!C (1)!()!(1)!()!k n n n n n k n k k n k ---==⋅=----,所以左边=右边,即11C C k k n n k n --=;【小问2详解】由~(,)X B n p 知()C (1)k k n k n P X k p p -==-,令1q p =-由(1)知11C C k k n n k n --=可得,1111(1)11011()CC nnnk kn kk k n kk k n k nn n k k k E X kC p qn p qnp pq ----------======∑∑∑,令1k m -=,则1111()C()n mm n m n n m E X npp q np p q -----===+∑,()E X np ∴=;【小问3详解】由题意知~(12,0.2)X B ,所以()120.2 2.4E X =⨯=,要使()P X k =最大,则必有()(1)P X k P X k =≥=+,()(1)P X k P X k =≥=-,即12111312121211111212C 0.2(10.2)C 0.2(10.2)C 0.2(10.2)C 0.2(10.2)k k k k k k kk k k k k -----++-⎧-≥-⎨-≥-⎩即141341121k k k k ⎧≥⎪⎪-⎨⎪≥⎪-+⎩解得81355k ≤≤,又因为*N k ∈,所以2 2.4()k E X =<=.()P X k ∴=最大时k 的值小于()E X .19.已知函数()()()2()e ,xf x x a x b a b =--∈R .(1)当1,2a b ==时,求函数()f x 的单调区间;(2)若x a =是()f x 的一个极大值点,求b 的取值范围;(3)令()()exg x f x -=且12(),,a b x x <是()g x 的两个极值点,3x 是()g x 的一个零点,且123,,x x x 互不相等.问是否存在实数4x ,使得1234,,,x x x x 按照某种顺序排列后构成等差数列,若存在求出4x ,若不存在说明理由.【答案】(1)单调递减区间为(,-∞,,单调递增区间为(,)+∞(2)(,)a +∞(3)存在,423a bx +=【解析】【分析】(1)求出函数的导函数,再解关于导函数的不等式,即可求出函数的单调区间;(2)令2()(3)2h x x a b x ab b a =+--+--,即可判断()h x 有两个不等实根1x ,2x ,不妨设12x x <,再对1x 、2x 、a 的大小关系分类讨论,即可得到()0h a <,从而求出b 的范围;(3)求出函数的导函数,即可得到1x a =,223a b x +=,再确定3x b =,根据等差数列的定义求出4x 即可.【小问1详解】由2()()()e x f x x a x b =--得()()2(3)2e x f x x a x a b x ab b a '⎡⎤=-+--+--⎣⎦,当1a =,2b =时,()(1)(xx x f x x =--+',令()0f x '=,解得1x =21x =,3x =所以当(,x ∈-∞或x ∈时()0f x '<,当(x ∈或)x ∈+∞时()0f x ¢>,所以()f x 的单调递减区间为(,-∞,,单调递增区间为(,)+∞.【小问2详解】函数()f x 的定义域为R ,且()()2(3)2e xf x x a x a b x ab b a '⎡⎤=-+--+--⎣⎦,令2()(3)2h x x a b x ab b a =+--+--,则22 (3)4(2)(1)80a b ab b a a b ∆=-----=-++>.所以()h x 有两个不等实根1x ,2x ,不妨设12x x <.①当1x a =或2x a =时,x a =不是()f x 的极值点,此时不合题意;②当1x a >时,则x a <或12x x x <<时()0f x '<,当1a x x <<或2x x >时()0f x ¢>,所以()f x 在(),a -∞,()12,x x 上单调递减,在()1,a x ,()2,x +∞上单调递增,所以x a =不是()f x 的极大值点,③当2x a <时,则x a >或12x x x <<时()0f x ¢>,当2x x a <<或1x x <时()0f x '<,所以()f x 在(),a +∞,()12,x x 上单调递增,在()2,x a ,()1,x -∞上单调递减,所以x a =不是()f x 的极大值点,④当12x a x <<时,则2x x >或1x x a <<时()0f x ¢>,当2a x x <<或1x x <时()0f x '<,所以()f x 在()2,x +∞,()1,x a 上单调递增,在()2,a x ,()1,x -∞上单调递减,所以x a =是()f x 的极大值点.所以()0h a <,即2(3)20a a b a ab b a +--+--<,所以b a >,所以b 的取值范围(,)a +∞.【小问3详解】由2()e ()()()x g x f x x a x b -==--,知()23()3a b g x x a x +⎛⎫'=--⎪⎝⎭,由a b <,故23a b a +<,所以当x a <或23a b x +>时()0g x '>,当23a b a x +<<时()0g x '<,所以()g x 在(),a -∞,2,3a b +⎛⎫+∞ ⎪⎝⎭上单调递增,在2,3a b a +⎛⎫ ⎪⎝⎭上单调递减,不妨设()g x 的两个极值点分别为1x a =,223a b x +=.因为123,,x x x 互不相等,3x 是()g x 的一个零点,所以3x b =,所以2222223333a b b a b a a b a b +--+⎛⎫-==⨯=- ⎪⎝⎭,所以存在124242232263a b a x x a b a b x +++++====,使1423,,,x x x x 成等差数列,即存在实数4x ,使得1234,,,x x x x 按照某种顺序排列后构成等差数列,且423a b x +=.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.78915⨯⨯⨯⋅⋅⋅⨯可表示为( ) A .915AB .815AC .915CD .815C2.从1~7这七个数字中选3个数字,组成无重复数字的三位数,其中偶数的个数为( ) A .210B .120C .90D .453.()91x -的展开式的第6项的系数为( ) A .69CB .69C -C .59CD .59C -4.日常生活中的饮用水是经过净化的,随着水的纯净度的提高,所需净化费用不断增加.已知将1t 水净化到纯净度为x %时所需费用(单位:元)为()()528480100100c x x x=<<-,则净化到纯净度为98%左右时净化费用的变化率,大约是净化到纯净度为90%左右时净化费用变化率的( ) A .30倍B .25倍C .20倍D .15倍5.根据分类变量X 与Y 的成对样本数据,计算得到26.147χ=.根据小概率值0.01α=的独立性检验(0.016.635x =),结论为( )A .变量X 与Y 不独立B .变量X 与Y 不独立,这个结论犯错误的概率不超过0.01 C .变量X 与Y 独立 D .变量X 与Y 独立,这个结论犯错误的概率不超过0.016.已知6件产品中有2件次品,4件正品,检验员从中随机抽取3件进行检测,记取到的正品数为X ,则()E X =( )A .2B .1C .43D .237.某人在11次射击中击中目标的次数为X ,若()~11,0.8X B ,若()P X k =最大,则k=( ) A .7 B .8C .9D .108.已知函数()()1e x f x x =+,过点M (1,t )可作3条与曲线()y f x =相切的直线,则实数t 的取值范围是( ) A .24,0e ⎛⎫-⎪⎝⎭B .242,e e ⎛⎫-⎪⎝⎭ C .36,2e e ⎛⎫-⎪⎝⎭D .36,0e ⎛⎫-⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.对经验回归方程,下列正确的有( ) A .决定系数2R 越小,模型的拟合效果越好 B .经验回归方程只适用于所研究的样本的总体C .不能期望经验回归方程得到的预报值就是响应变量的精确值D .残差平方和越小,模型的拟合效果越好10.甲、乙两地举行数学联考,统计发现:甲地学生的成绩()()2111~,0X N μσσ>,乙地学生的成绩()()2222~,0Y N μσσ>.下图分别是其正态分布的密度曲线,则( )A .甲地数学的平均成绩比乙地的低B .甲地数学成绩的离散程度比乙地的小C .()()90948290PX P X ≤<>≤< D .若28σ=,则()921240.84P Y ≤<≈(附:若随机变量()()2~,0X N μσσ>,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈)11.下列命题正确的有( )A .现有1、3、7、13四个数,从中任取两个相加得到m 个不相等的和;从中任取两个相减得到n 个不相等的差,则m +n =18B .在()()()567111x x x +++++的展开式中,含3x 的项的系数为65 C .若(5122a b =-(a ,b 为有理数),则b =-29D .02420202022202020222022202220222022C C C C C 2+++⋅⋅⋅++= 12.已知函数()()()ln 2f x x x ax a a =-+∈R 有两个极值点1x ,()212x x x <,则( )A .104a <<B .122x x +>C .()112f x >D .()20f x >三、填空题:本题共4小题,每小题5分,共20分. 13.已知函数()3f x x =,则曲线()y f x =在点(1,1)处的切线的方程为______.14.将4名博士分配到3个不同的实验室,每名博士只分配到一个实验室,每个实验室至少分配一名博士,则不同的分配方案有______种.15.某小微企业制造并出售球形瓶装的某种饮料,瓶子的制造成本是21.6r π分,其中r (单位:cm )是瓶子的半径,已知每出售1mL 的饮料,可获利0.4分,且能制作的瓶子的最大半径为6cm ,当每瓶饮料的利润最大时,瓶子的半径为______cm . 16.已知离散型随机变量X 的取值为有限个,()72E X =,()3512D X =,则()2E X =______. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)两批同种规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取一件. (Ⅰ)求这件产品是次品的概率;(Ⅱ)已知取到的是次品,求它取自第一批产品的概率. 18.(本小题满分12分)若()*,0,na x a a n x ⎛⎫-∈≠∈ ⎪⎝⎭R N 的展开式中只有第4项的二项式系数最大,且展开式中的常数项为-20. (Ⅰ)求n ,a 的值; (Ⅱ)若()()()()220212022202220212020012202120221111a x a x x a x x a x x a x a +-+-+⋅⋅⋅+-+-=,求1232022a a a a +++⋅⋅⋅+.19.(本小题满分12分)某校组织数学知识竞赛活动,比赛共4道必答题,答对一题得4分,答错一题扣2分.学生甲参加了这次活动,假设每道题甲能答对的概率都是34,且各题答对与否互不影响.设甲答对的题数为Y ,甲做完4道题后的总得分为X . (Ⅰ)试建立X 关于Y 的函数关系式,并求()0P X <;(Ⅱ)求X 的分布列及()E X .20.(本小题满分12分) 已知函数()e ln x m f x x +=-.(Ⅰ)若()f x 在[)1,+∞上单调递增,求实数m 的取值范围;(Ⅱ)求证:2m ≥-时,()0f x >.21.(本小题满分12分)某公司对其产品研发的年投资额x (单位:百万元)与其年销售量y (单位:千件)的数据进行统计,整理后得到如下统计表:(Ⅰ)求变量x 和y 的样本相关系数r (精确到0.01),并推断变量x 和y 的线性相关程度(参考:若0.75r ≥,则线性相关程度很强;若0.300.75r ≤<,则线性相关程度一般;如果0.25r ≤,则线性相关程度较弱);(Ⅱ)求年销售量y 关于年投资额x 的线性回归方程;(Ⅲ)当公司对其产品研发的年投资额为600万元时,估计产品的年销售量. 参考公式:对于变量x 和变量y ,设经过随机抽样获得的成对样本数据为()11,x y ,()22,x y ,…,(),n n x y ,其中1x ,2x ,…,n x 和1y ,2y ,…,n y 的均值分别为x 和y .称()()niix x y y r --=∑x 和y 的样本相关系数.线性回归方程ˆˆˆybxa =+中,()()()121ˆniii n i i x x yy b x x ==--=-∑∑,ˆˆay bx=-. 7.14≈.22.(本小题满分12分) 已知函数()()()sin ln 1f x a x x a =-+∈R 在区间(-1,0)内存在极值点.(Ⅰ)求a 的取值范围; (Ⅱ)判断关于x 的方程()0f x =在()1,π-内实数解的个数,并说明理由.参考答案一、单项选择题(每小题5分,共40分)1.A 2.C 3.D 4.B 5.C 6.A 7.C 8.D 二、多项选择题(每小题5分,共20分) 9.BCD10.AD11.BC12.BD三、填空题(每小题5分,共20分)13.y =3x -2 14.36 15.6 16.916四、解答题(共70分) 17.(本小题满分10分)解:设事件B 为“取到的产品是次品”,()1,2A i =为“取到的产品来自第i 批”.(Ⅰ)由全概率公式,所求概率为()()()()()1122||P B P A P B A P A P B A =+40%5%60%4%0.044=⨯+⨯=.(Ⅱ)所求概率为()()()()()()1111||P BA P A P B A P A B P B P B ==40%5%50.04411⨯==.18.(本小题满分12分) (Ⅰ)解:由题意,n =6. 展开式的通项()662166C C kk kkkk k a T x a x x --+⎛⎫=-=- ⎪⎝⎭,k =0,1,…,6. 令6-2k =0,得k =3.由题意,得()336C 20a -=-,即32020a -=-.解得a =1.(Ⅱ)解法1:()202211x x ⎡⎤=+-⎣⎦()()()()2202120220202212021220202021202220222022202220222022C C 1C 1C 1C 1x x x x x x x x =+-+-+⋅⋅⋅+-+-又()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=,所以202201220212022202220222022202220222022C C C C C 2ii a==+++++=∑. 解法2:由(Ⅰ),知()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=.令12x =,得2022202120202202201220221111111111222222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯-+⨯-+⋅⋅⋅+-= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即20222022202220220122022111112222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.上式两边同乘以20222,得202220222i i a ==∑.由()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=,令1x =,得01a =.所以2022202220220121i ii i a a a===-=-∑∑.19.(本小题满分12分)(Ⅰ)由题意,X =4Y -2(4-Y )=6Y -8. 由X =6Y -8<0,得43Y <.所以Y =0,1. 所以()()()431413113001C 444256P X P Y P Y ⎛⎫⎛⎫<==+==+⨯⨯= ⎪ ⎪⎝⎭⎝⎭. (Ⅱ)由题意,知3~4,4Y B ⎛⎫ ⎪⎝⎭. X 与Y 的对应值表为:于是,()()4318014256P X P Y ⎛⎫=-===-= ⎪⎝⎭;()()31433321C 14464P X P Y ⎛⎫=-===⨯-⨯=⎪⎝⎭; ()()2224332742C 144128P X P Y ⎛⎫⎛⎫====⨯-⨯= ⎪ ⎪⎝⎭⎝⎭; ()()3343327103C 14464P X P Y ⎛⎫⎛⎫====⨯-⨯=⎪ ⎪⎝⎭⎝⎭; ()()43811644256P X P Y ⎛⎫===== ⎪⎝⎭. 法1:()()()132727818241016102566412864256E X =-⨯+-⨯+⨯+⨯+⨯=.法2:()()()36868648104E X E Y E Y ⎛⎫=-=-=⨯⨯-= ⎪⎝⎭.20.(本小题满分12分) (Ⅰ)因为()f x 在[)1,+∞单调递增,所以()1e 0x m f x x +'=-≥在[)1,+∞恒成立,即1ln x m x+≥. 所以1ln ln m x x x x≥-=--. 令()ln gx x x =--,显然()g x 在[)1,+∞上单调递减,所以()g x 在[)1,+∞上的最大值为()()max 11g x g ==-.因此,1m ≥-. (Ⅱ)当2m ≥-时,()2e ln e ln x m x f x x x +-=-≥-.只需证明2e ln 0x x -->.证法1:令()2e ln x gx x -=-,则函数()g x 的定义域为()0,+∞.()21e x g x x -'=-.因为2e x y -=是增函数,1y x=-在()0,+∞上单调递增, 所以()21e x g x x -'=-在()0,+∞上单调递增.又因为()101e e 0g -'=-<,()e 211e e 10e eg -'=->->,由零点存在性定理,存在唯一的()01,e x ∈,使得()02001e 0x g x x-'=-=.当()00,x x ∈时,()()00g x g x ''<=,()g x 单调递减;当()0,x x ∈+∞时,()()00g x g x ''>=,()g x 单调递增. 所以,()()0200min e ln x gx g x x -==-.由()02001e 0x g x x -'=-=,得0201e x x -=,002ln x x -=-. 于是()()00min01220g x g x x x ==+->=. 所以,()2e ln 0x gx x -=->.证法2:要证2e ln 0x x -->,即证2e ln x x x x -->-.设()21e x h x x -=-,则()21e1x h x -='-.()210e 12x h x x ->⇔>⇔>';()102h x x '<⇔<,所以()1h x 在(0,2)上单调递减,在()2,+∞上单调递增. 所以()()11min 21h x h ==-.设()2ln h x x x =-,则()2111x h x xx-'=-=.()2001h x x '>⇔<<;()201h x x '<⇔>,所以()2h x 在(0,1)上单调递增,在()1,+∞上单调递减. 所以()()22max 11h x h ==-.可见,()()12h x h x >.所以原结论成立.证法3:要证明2e ln 0x x -->,而()2e121x x x -≥+-=-,当且仅当2x =时取等号;1ln x x -≥,当且仅当1x =时取等号.所以2e ln x x ->,即2e ln 0x x -->.注:证明2e 1x x -≥-,1ln x x -≥各得3分,给出取等的条件各得1分. 21.(本小题满分12分)解:(Ⅰ)由题意,3x =,6y =,52155ii x==∑,51123i i i x y ==∑,521307.5i i y ==∑.()()nniii i x x y y x y nxyr ---==∑∑=0.92=≈.因为0.75r ≥,所以变量x 和y 的线性相关程度很强.(Ⅱ)()()()1122211ˆnniii ii i nniii i x x yy x ynxybx x xnx ====---==--∑∑∑∑21235363.35553-⨯⨯==-⨯. ˆ6 3.33 3.9a=-⨯=-. 所以年销售量y 关于年投资额x 的线性回归方程为ˆ 3.3 3.9y x =-. (Ⅲ)当x =6时,由(Ⅱ),ˆ 3.36 3.915.9y =⨯-=.所以研发的年投资额为600万元时,产品的年销售量约为15.9千件. 22.(本小题满分12分) (Ⅰ)解:()()1cos 101f x a x x x'=--<<+. ①当1a ≤时,因为0cos 1x <<,所以()11011x f x x x'<-=<++. 所以()f x 在(-1,0)上单调递减,所以()f x 在(-1,0)上无极值点.故1a ≤不符合题意.②当a >1时,因为cos y a x =在(-1,0)上单调递增,11y x=-+在(-1,0)上单调递增, 所以()f x '在(-1,0)上单调递增.又()111,0a -∈-,111cos 10f a a a a ⎛⎫⎛⎫'-=--< ⎪ ⎪⎝⎭⎝⎭,()010f a '=->, 所以存在唯一的111,0x a ⎛⎫∈- ⎪⎝⎭,使得()10f x '=.当()11,x x ∈-时,()0f x '<,()f x 单调递减;当()1,0x x ∈时,()0f x '>,()f x 单调递增.所以()f x 在(-1,0)内存在极小值点1x .满足题意.综上,a 的取值范围是()1,+∞.(Ⅱ)当02x π<<时,()()2sin 11x f x a x ''=-++单调递减.又()010f ''=>,()24022f a ππ⎛⎫''=--< ⎪⎝⎭+,所以存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()00f x ''=.当00x x <<时,()0f x ''>,()f x '单调递增;当02x x π<<时,()0f x ''<,()f x '单调递减,又()()0010f x f a ''>=->,2022f ππ⎛⎫'=-< ⎪+⎝⎭,所以存在唯一的0,2x πα⎛⎫∈ ⎪⎝⎭,使得()0f α'=.当()0,x α∈时,()0f x '>;当,2x πα⎛⎫∈ ⎪⎝⎭时,()0f x '<.又当2x ππ≤<时,()0f x '<恒成立,。
2022-2023学年东北师大附中(高二)年级(数学)科试卷下学期期末考试第I 卷(选择题)一、单项选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知某质点运动的位移y (单位;cm )与时间t (单位;s )之间的关系为()()ln 21y t t =+,则该质点在2s =t 时的瞬时速度为( ) A.15B.25C. 2D. 4【答案】B 【解析】【分析】对()()ln 21y t t =+求导得()221y t t ′=+,从而可求质点在2s =t 时的瞬时速度()2y ′. 【详解】因为()()ln 21y t t =+,所以()221y t t ′=+, 所以该质点在2s =t 时的瞬时速度为()2222125y ′==×+. 故选:B.2. 某中学课外活动小组为了研究经济走势,根据该市1999-2021年的GDP (国内生产总值)数据绘制出下面的散点图:该小组选择了如下2个模型来拟合GDP 值y 随年份x 的变化情况,模型一:(0,0)y kx b k x =+>>;模型二:e (0,0)x y k b k x =+>>,下列说法正确的是( ) A. 变量y 与x 负相关B. 根据散点图的特征,模型一能更好地拟合GDP 值随年份的变化情况C. 若选择模型二,e x y k b =+的图象一定经过点(),x yD. 当13x =时,通过模型计算得GDP 值为70,实际GDP 的值为71,则残差为1 【答案】D 【解析】【分析】对于AB ,由散点图的变化趋势分析判断,对于C ,由线性回归方程的性判断,对于D ,结合残差的定义判断.【详解】对于A ,由散点图可知y 随年份x 的增大而增大,所以变量y 与x 正相关,所以A 错误, 对于B ,由散点图可知变量y 与x 的变化趋向于一条曲线,所以模型二能更好地拟合GDP 值随年份的变化情况,所以B 错误,对于C ,若选择模型二:e (0,0)x y k b k x =+>>,令e x t =,则ykt b =+的图象经过点(),t y ,所以C 错误,对于D ,当13x =时,通过模型计算得GDP 值为70,实际GDP 的值为71,则残差为71701−=,所以D 正确, 故选:D 3. 函数21()ln 2f x x x =−的减区间为( ) A. (1,1)− B. (,1)−∞C. (0,1)D. (0,)+∞【答案】C 【解析】【分析】对函数求导,然后通分,进而令导函数小于0,最后求得单调递减区间. 【详解】函数()21ln 2f x x x =−的定义域为()0,∞+, 求导得()211x f x x x x =′−=−, 令()210x f x x−′=<,0x ,01x ∴<<,因此函数()21ln 2f x x x =−的减区间为()0,1. 故选:C.4. 已知随机变量X 的分布列为设23Y X =+,则()D Y 等于( )A.83B.53C.43D.173【答案】A 【解析】【分析】根据分布列求出()E X ,()D X ,再根据条件得()()4D Y D x =,计算答案即可. 【详解】由X 的分布列得()1110121333E X =×+×+×=, ()()()()22211120111213333D X =−×+−×+−×=,因为23Y X =+,则()()843D Y D X ==. 故选:A.5. 某教育局为振兴乡村教育,将5名教师安排到3所乡村学校支教,若每名教师仅去一所学校,每所学校至少安排1名教师,则不同的安排情况有( ) A. 300种 B. 210种 C. 180种 D. 150种【答案】D 【解析】【分析】根据部分均匀分组分配求解即可.【详解】由于每所学校至少安排1名教师,则不同的安排情况有2233535322C C C A 150A +=种. 故选:D .6. 已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220nn x b x −+=的实数根,则10b 等于( ) A. 24 B. 32C. 48D. 64【答案】D 【解析】【分析】根据题意,得到1n n n a a b ++=,12nn n a a +=,求得22a =,推出112n n a a +−=,进而可求出10a ,11a ,从而可求出结果.【详解】因为n a ,1n a +是方程220nn x b x −+=的实数根, 所以1n n n a a b ++=,12n n n a a +=, 又11a =,所以22a =; 当2n ≥时,112n n n a a −−=,所以11112n n n n n na a a a a a ++−−==, 因此4102232a a =⋅=,5111232a a =⋅= 所以101011323264b a a =+=+=. 故选:D.【点睛】本题主要考查由数列的递推关系求数列中的项,属于常考题型.7. 已知函数e ()xf x ax x=−,,()0x ∈+∞,当210x x >>时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A. (,e]−∞ B. (,e)−∞C. e ,2−∞D. e ,2−∞【答案】D 【解析】【分析】根据不等式,构造函数并明确其单调性,进而可得导数的不等式,利用参数分离整理不等式,构造函数,利用导数求其最值,可得答案. 【详解】 当210x x >>时,不等式()()1221f x f x x x <恒成立,则()()1122f x x f x x <, 即函数()()2e xg x xf x ax ==−在()0,∞+上单调递增,则()e 20xg x ax ′=−≥, 整理可得2x e a x ≤,令()e x m x x =,则()()21e x x m x x−′=. 当()0,1x ∈时,()0m x ′<,()m x 单调递减,当()1,x ∈+∞时,()0m x ′>,()m x 单调递增,()()min 21e a m x m ∴≤==,e2a ∴≤. 故选:D.8. 设甲袋中有3个红球和4个白球,乙袋中有1个红球和2个白球,现从甲袋中任取1球放入乙袋,再从乙袋中任取2球,记事件A =“从甲袋中任取1球是红球”,事件B =“从乙袋中任取2球全是白球”,则下列说法正确的是( )A. 9()14=P BB. 6()7P AB =C. ()15P A B =D. 事件A 与事件B 相互独立【答案】C 【解析】分析】由古典概型概率计算公式,以及条件概率公式分项求解判断即可.【详解】现从甲袋中任取1球放入乙袋,再从乙袋中任取2球可知,从甲袋中任取1球对乙袋中任取2球有影响,事件A 与事件B 不是相互独立关系, 故D 错误; 从甲袋中任取1球是红球的概率为:()37P A =, 从甲袋中任取1球是白球的概率为:47, 所以乙袋中任取2球全是白球的概率为:()1212324312127474C C C C 125+C C C C 14714==+=P B ,故A 错误;()12321274C C 1C C 14==P AB ,故B 错误; ()()()11411455P AB P A B P B ==×=,故C 正确; 故选:C二、多项选择题:本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求。
2021-2022学年福建省福州第二中学高二下学期期末考试数学试题一、单选题 1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D【答案】C【详解】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+ i 2i i =-+=, 则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.已知集合{}|22U x x =-≤≤,集合{}220A x x x =--<,则UA ( )A .{}21x x -≤<-B .{}21x x -≤≤-C .{}{}212x x -≤<-⋃D .{}{}212x x -≤≤-⋃【答案】D【分析】解出A 集合,通过补集运算算出UA 即可【详解】解:{}{}22012A x x x x x =--<=-<<所以UA{}{}212x x -≤≤-⋃故选:D3.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B .310n a n =- C .228n S n n =-D .2122n S n n =-【答案】A【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C ,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C .对D ,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A .【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.4.已知直线()100,0ax by a b +-=>>平分圆C :222420170x y x y +---=,则aba b+的最大值为( ) A.3+B.3-CD .16【答案】B【分析】由题意知直线过圆C 的圆心得到21a b +=,求aba b+的最大值可转化为11a b ab a b +=+的最小值的倒数,利用基本不等式1“”的妙用求最值即可. 【详解】圆C :222420170x y x y +---=,∴圆心(1,2)C ,直线()100,0ax by a b +-=>>平分圆C :222420170x y x y +---=, ∴直线()100,0ax by a b +-=>>过圆心(1,2)C ,即()210,0a b a b +=>>,11112()(2)33a b b aa b ab a b a b a b+∴=+=++=++≥,3ab a b ∴≤=-+当且仅当2b a a b =,即212b a ==,ab a b +的最大值为3-故选:B5.已知圆锥SO 的底面半径为2,若其底面上存在两点A ,B ,使得90ASB ∠=︒,则该圆锥侧面积的最大值为( ) A. B .2πC.D .4π【答案】C【分析】根据OA OB AB +≥可确定l ≤. 【详解】设圆锥的母线长为l ,90ASB ∠=,AB ∴=,又OA OB AB +≥(当且仅当AB 为底面圆直径时取等号),4AB ∴≤,即l ≤,∴圆锥侧面积22S l l ππ=⨯⨯=≤,即所求最大值为.故选:C6.设()f x 是定义域为R 的偶函数,且在()0,+∞上单调递减,则( )A .()()()0.250.5log 0.5log 0.20.5f f f >> B .()()()0.250.5log 0.50.5log 0.2f f f >> C .()()()0.20.55log 0.20.5log 0.5f f f >> D .()()()0.20.550.5log 0.2log 0.5f f f >>【答案】B【分析】由于()f x 是()0,+∞上递减的偶函数,故只需要比较选项中自变量的绝对值的大小,结合指数函数,对数函数的单调性即可比较.【详解】由110.5222log 0.2log 5log 5log 42--==>=,即0.5log 0.22>,注意到()()52ln 2ln 5log 2log 51ln 5ln 2⨯=⨯=,由155550log 1log 0.5log 2log 2-=<==,故50log 20.5<<,即50log 0.50.5<<,又根据指数函数性质,0.5x y =是R 上的减函数,故10.200.50.50.5<<,即0.20.50.51<<,于是0.250.5log 0.50.5log 0.2<<,又()f x 是()0,+∞上递减的偶函数,则()()()0.250.5log 0.50.5log 0.2f f f >>.故选:B7.若双曲线C:22221x y a b -=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为A .2 BC D 【答案】A【详解】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d ==()2,0到直线0bx ay +=的距离为2bd c===即2224()3c a c -=,整理可得224c a =,双曲线的离心率2242c e a===.故选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围). 8.函数()sin ln 23f x x x π=--的所有零点之和为( ) A .9 B .6 C .4.5 D .3【答案】A【分析】根据给定条件,构造函数sin y x =π,ln 23y x =-,作出这两个函数的部分图像,确定两个图像的交点个数,再结合性质计算作答.【详解】由()0sin ln |23|x x f x π=⇔=-,令 sin y x =π , ln 23y x =- , 显然sin y x =π与ln 23y x =-的图像都关于直线32x =对称, 在同一坐标系内作出函数sin y x =π,ln 23y x =-的图像,如图,观察图像知,函数sin y x =π,ln 23y x =-的图像有6个公共点,其横坐标依次为123456,,,,,x x x x x x ,这6个点两两关于直线32x =对称,有1625343x x x x x x +=+=+=, 所以,1234569x x x x x x +++++=,所以函数()sin ln 23f x x x π=--的所有零点之和为9.故选:A二、多选题9.某人有6把钥匙,其中n 把能打开门.如果随机地取一把钥匙试着开门,把不能开门的钥匙扔掉,设第二次才能打开门的概率为p ,则下列结论正确的是( ) A .当1n =时,16p = B .当2n =时,13p = C .当3n =时,310p = D .当4n =时,45p =【答案】AC【分析】根据n 不同的取值,分别计算对应概率求解. 【详解】当1n =时,511656p ⨯==⨯,选项A 正确; 当2n =时,4246515p ⨯==⨯,选项B 错误; 当3n =时,3336510p ⨯==⨯,选项C 正确; 当4n =时,2446515p ⨯==⨯,选项D 错误. 故选:AC10.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是( )A .()f x 的最小正周期为2πB .,06π⎛⎫⎪⎝⎭是()y f x =图象的一个对称中心C .()f x 在区间11,212ππ⎡⎤⎢⎥⎣⎦上单调递减D .把()y f x =图象上所有点向右平移12π个单位长度后得到函数()2cos2g x x =-的图象 【答案】BCD【分析】根据正弦型函数的性质、图象的变换性质,结合已知图象逐一判断即可.【详解】由题意知,2A =,35341234T πππ⎛⎫=--= ⎪⎝⎭,所以周期T π=,22πωπ==, 又552sin 221212f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以52,,2,623k k Z k k Z πππϕπϕπ+=+∈⇒=-∈, 因为2πϕ<,所以令0k =,即3πϕ=-,故()2sin 23f x x π⎛⎫=- ⎪⎝⎭,所以A 错误;又2sin 20663f πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,故B 正确;因为11,212x ππ⎡⎤∈⎢⎥⎣⎦,所以232,332x πππ⎡⎤-∈⎢⎥⎣⎦,由于正弦函数在其上单调递减,所以函数()f x 在11,212ππ⎡⎤⎢⎥⎣⎦上单调递减,故C 正确;将()y f x =图象上所有点向右平移12π个单位长度后得到2sin 22cos2122y f x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭的图象,故D 正确.故选:BCD .11.已知函数()()R f x x ∈满足()()()492f x f x f =-+,又()9f x +的图象关于点()9,0-对称,且()12022f =,则( ) A .()20f =B .()()()4445462022f f f ++=-C .1133f x ⎛⎫-+ ⎪⎝⎭关于点()3,3对称D .1133f x ⎛⎫-+ ⎪⎝⎭关于点()1,3对称【答案】ABC【分析】将2代入()()()492f x f x f =-+可算出()20f =,故A 正确;将()20f =代入可得()f x 关于2x =对称,又因为()9f x +的图象关于点()9,0-对称,可得()f x 关于点()0,0对称,利用()f x 的双对称可以得到()f x 的周期,然后通过()f x 的周期和对称算出()()()44,45,46f f f ,故B 正确;先研究1133f x ⎛⎫-+ ⎪⎝⎭是由()f x 经过各种图像变换,就可求出1133f x ⎛⎫-+ ⎪⎝⎭的对称中心,故C 正确,D 错误【详解】解:将2x =代入()()()492f x f x f =-+得()()()2292f f f =+, 所以()20f =,故A 正确;将()20f =代入()()()492f x f x f =-+得()()4f x f x =-, 所以()f x 关于2x =对称,()9f x +是()f x 向左平移9个单位长度得到,因为()9f x +的图象关于点()9,0-对称,所以()f x 关于点()0,0对称 所以()()()()4,f x f x f x f x =-=--所以()()()44,f x f x f x =-=--()()()4448f x f x f x -=---=-- 所以()()8f x f x =-,所以()f x 的周期为8, 所以()()()()44485400f f f f =+⨯===,()()()()()453863312022f f f f f =-+⨯=-=-=-=- ()()()()46286220f f f f =-+⨯=-=-=所以()()()4445462022f f f ++=-,故B 正确;1133f x ⎛⎫-+ ⎪⎝⎭是由()f x 先向右平移一个单位得到()1f x -,再保持纵坐标不变,横坐标变为原来的三倍得到113f x ⎛-⎫⎪⎝⎭,最后向上平移3个单位长度得到1133f x ⎛⎫-+ ⎪⎝⎭,所以1133f x ⎛⎫-+ ⎪⎝⎭关于点()3,3对称,故C 正确,D 错误;故选:ABC12.已知正三棱柱111ABC A B C -中,2AB =,11AA =,M 为AB 的中点,点P 在线段1BC 上,则下列结论正确的是( ) A .直线1//BC 平面1A MC B .A 和P 到平面1A MC 的距离相等C .三棱锥1P A MC -D .不存在点P ,使得1AP A C ⊥【答案】ABD【分析】连接11,A C AC 交于点O ,连接OM ,证得1//OM BC ,进而得到1//BC 平面1A MC ,可判定A 正确;证得AN NP =,结合斜线与平面所成的角相等,可判断B 正确;先证明CM AB ⊥,并求出CM 的长度,1//BC 平面1A MC ,所以,B P 到平面1A MC 的距离是一样的,所以11P A MC B A MC V V --=,继而算出答案,可得C 是错误的;假设存在点P ,使得1AP A C ⊥,令[]1(1),0,1AP AB AC λλλ=+-∈,结合10AC AP ⋅>,可判定D 正确.【详解】对于A 中,如图所示,连接11,A C AC 交于点O ,连接OM , 因为111ABC A B C -为正三棱柱,所以其侧面都是矩形,所以O 为1AC 的中点,又因为M 是AB 的中点,所以1//OM BC ,由OM ⊂平面1A MC ,且1BC ⊄平面1A MC ,所以1//BC 平面1A MC ,所以A 正确;对于B 中,在1ABC ,因为AP 交OM 于点N ,1//OM BC ,AM MB =,所以AN NP =, 因为AN 与PN 与平面1A MC 成角相等,所以A 和P 到平面1A MC 的距离相等, 所以B 正确;对于C 中,因为底面是正三角形,且M 为AB 的中点,所以CM AB ⊥, 所以22213CM -因为1//BC 平面1A MC ,且P 在1BC 上, 所以11111113131332P A MC B A MC A BMC BMC V V V SAA ---===⋅=⨯⨯=C 错误 对于D 中,假设存在点P ,使得1AP A C ⊥,令[]1(1),0,1AP AB AC λλλ=+-∈,可得1111(1)AC AP AC AB AC AC λλ⋅=⋅+-⋅, 易得1AC 和AB 所成角为锐角,1AC 和1AC 所成角为锐角,所以1110,0AC AB AC AC ⋅>⋅>,所以1111(1)0AC AP AC AB AC AC λλ⋅=⋅+-⋅>, ,所以不存在点P ,使得1AP A C ⊥,所以D 正确. 故选:ABD三、填空题13.若平面向量()()1,1,2,a b m ==满足()a ab ⊥-,则m =___________. 【答案】0【分析】由题意得()0-⋅=a b a ,代入坐标进行计算即可. 【详解】∵()a a b ⊥-,∴()0-⋅=a b a , 又()()1,1,2,a b m ==,()1,1-=--a b m , ∴110m -+-=,即0m =, 故答案为:0.14.8(1)()yx y x-+的展开式中35x y 的系数为___________.【答案】14-【分析】把8(1)()y x y x -+化为88()()y x y x y x -++,根据8()x y +展开式的通项,讨论求出k 的值,进行运算即可得到答案.【详解】8()x y +展开式的通项为:()818C 0,1,2,8k kk k T xy k -+==由于888(1)()()()y y x y x y x y x x=-+-++,所以当5k =当时,53568C T x y =,当4k =当时,44458C T x y =,所以8(1)()y x y x-+的展开式中35x y 的项为,()()535444543535358888C C =C C 567014y x y x y x y x y x y x--=-=-, 所以8(1)()y x y x-+的展开式中35x y 的系数为14-.故答案为:14-.15.写出一个使等式sin cos 2sin cos 66ααππαα+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭成立的α的值为_____________. 【答案】8π(答案不唯一,只要满足()2148k k Z παπ+=-∈即可). 【分析】利用二倍角和两角和差正弦公式化简已知等式得到sin 2sin 263ππαα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,由正弦函数性质可确定()()222136k k Z ππααπ+++=+∈,由此可解得结果. 【详解】sin cos cos sin sin cos 66sin cos sin cos 6666ππααααααππππαααα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭+=⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭sin 2621sin 223παπα⎛⎫+ ⎪⎝⎭==⎛⎫+ ⎪⎝⎭,sin 2sin 263ππαα⎛⎫⎛⎫∴+=+ ⎪ ⎪⎝⎭⎝⎭,()()222136k k Z ππααπ∴+++=+∈,解得:()2148k k Z παπ+=-∈, 当0k =时,8πα=,∴使得等式成立的一个α的值为8π(答案不唯一). 故答案为:8π(答案不唯一,只要满足()2148k k Z παπ+=-∈即可). 16.有一凸透镜其剂面图(如图所示)是由椭圆221259x y +=和双曲线22188x y -=的实线部分组成,已知两曲线有共同焦点M ,N ,动点A ,B 分别在左右两部分实线上运动,则△ANB 周长的最小值为______________【答案】1042-【分析】根据已知条件,结合双曲线和椭圆的定义,将原问题转化为,,A B M 三点共线时,ANB 周长取得最小值,即可求解.【详解】由题意,双曲线22188x y -=,可得22a =, 根据双曲线的定义可得42AM AN -=,即42AN AM =-, 又由椭圆221259x y +=,可得5a =, 根据椭圆的定义可得10BM BN +=,所以10BN BM =-,所以ANB 周长为1042()10421042BM AM AB AB AB ---+≥--+=-, 故ANB 周长的最小值为1042-,其中,,A B M 三点共线时,等号成立. 故答案为:1042-.四、解答题17.甲、乙两名同学与同一台智能机器人进行象棋比赛,计分规则如下:在一轮比赛中,如果甲赢而乙输,则甲得1分;如果甲输而乙赢,则甲得1-分;如果甲和乙同时赢或同时输,则甲得0分.设甲赢机器人的概率为0.6,乙赢机器人的概率为0.5.求:(1)在一轮比赛中,甲的得分X的分布列;(2)在两轮比赛中,甲的得分Y的分布列及期望.【答案】(1)分布列见解析E Y=(2)分布列见解析,()0.2【分析】(1)依题意可得X的可能取值为1-,0,1,利用相互独立事件的概率公式求出所对应的概率,即可得到分布列;(2)依题意可得Y的可能取值为2-,1-,0,1,2,利用相互独立事件的概率公式求出所对应的概率,即可得到分布列及数学期望;【详解】(1)解:依题意可得X的可能取值为1-,0,1,P X=-=-⨯=,所以(1)(10.6)0.50.2(0)0.60.5(10.6)(10.5)0.5P X==⨯+-⨯-=,P X==⨯-=,(1)0.6(10.5)0.3所以X的分布列为(2)解:依题意可得Y的可能取值为2-,1-,0,1,2,所以2P Y P X P X=-==-⨯=-==,(2)(1)(1)0.20.04=-==-⨯=⨯=⨯⨯=,P Y P X P X(1)(1)(0)220.20.50.22===-⨯=⨯+=⨯==⨯⨯+=,(0)(1)(1)2(0)(0)20.30.20.50.37P Y P X P X P X P X===⨯=⨯=⨯⨯=,(1)(0)(1)20.30.520.3P Y P X P X2(2)(1)(1)0.30.09===⨯===,P Y P X P X所以Y的分布列为所以()20.0410.200.3710.320.090.2E Y =-⨯-⨯+⨯+⨯+⨯=.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(12;(270【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果.【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得22a =,故22BC a ==; [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以2BC =. [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,241=+DB t 21+AM t 由1122=⋅=⋅DABSDA AB DB AN ,得221241123=++t t t 212t =,所以22==BC t(2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则2AM ⎛⎫= ⎪ ⎪⎝⎭,()2,0,1AP =-, 由111120220m AM x y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x ()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,2BM ⎛⎫=- ⎪ ⎪⎝⎭,()2,1,1BP =--, 由222220220n BM x n BP x y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3314cos ,72m n m n m n ⋅===⋅⨯所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --的正弦值为7014. [方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 2的正方形,联结1D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得310=HG 在Rt AHG 中,2310==AH HG ,由勾股定理求得35=AG . 所以,70sin AH AGH AG ∠==A PMB --70【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.19.已知数列{}n a 的各项均不为零,n S 为其前n 项和,且121n n n a a S +=-.(1)证明:22n n a a +-=;(2)若11a =-,数列{}n b 为等比数列,11b a =,23b a =.求数列{}n n a b 的前2022项和2022T . 【答案】(1)证明见解析; (2)4044.【分析】(1)由题设递推式可得()1212n n n n a a a a +++-=,结合已知条件即可证结论.(2)由(1)及等比数列定义写出{}n b 通项公式,进而有(1)nn n n a b a =-,根据奇偶项的正负性,应用分组求和法及(1)的结论求2022T 即可. 【详解】(1)因为121n n n a a S +=-①,则12121n n n a a S +++=-②, ②-①得:()1212n n n n a a a a +++-=,又10n a +≠, 所以22n n a a +-=.(2)由11a =-得:31a =,于是231b a ==, 由11b =-得:{}n b 的公比1q =-.所以(1)n n b =-,(1)nn n n a b a =-.由12121a a a =-得:23a =由22n n a a +-=得:2022202120202019214a a a a a a -=-=⋅⋅⋅=-=, 因此2022123420212022T a a a a a a =-+-+-+⋅⋅⋅()()()214320222021a a a a a a =-+-+⋅⋅⋅+-()211011a a =⨯-10114=⨯4044=.20.在ABC 中,cos2cos2cos22sin sin 1A C B A C +-=-+. (1)求角B ;(2)设锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且1c =,求ABC 面积的取值范围. 【答案】(1)π3.(2).【分析】(1)将已知条件按二倍角展开化简得222a c ac b+-=,再结合余弦定理即可求得角B;(2)结合题意可得有ππ62A<<,由正弦定理可得sin2πsin()3AaA=-,再由面积公式可得S,代入a并化简可得1311tan2SA=+,根据A的范围即可求出S的范围. 【详解】(1)解:因为cos2cos2cos22sin sin1A CB A C+-=-+.所以cos2cos22sin sin1cos2A C A C B++=+,即有22212sin12sin2sin sin112sinA C A C B-+-+=+-,即222sin sin sin sin sinA C A C B+-=,即222a c ac b+-=,由余弦定理可得:2222cosb ac ac B=+-,所以2cos1B=,即1cos2B=,又因为(0,π)B∈,所以π3B=.(2)解:由(1)可得:π3B=,所以2π3A C+=,所以2π3C A=-,又因为ABC为锐角三角形,所以π22ππ32AA⎧<<⎪⎪⎨⎪<-<⎪⎩,即有ππ62A<<;又因为1c=,12πsin sin sin()3a cA C A==-,所以sin2πsin()3AaA=-,又因为1sin2Sac B==sin2πsin()3AA-sin3cosA+1311tan2A+. 因为有ππ62A<<,所以有tan A1tan A<<所以13tan2A<<,所以以11122tan2A<+<,所以122311tan 2A <+,1311tan 2A <+即S ∈. 21.已知椭圆C :()222210x y a b a b +=>>的左、右焦点分别为1F 、2F ,焦距为2,点⎭在椭圆C 上. (1)求椭圆C 的方程;(2)若点()()000,0P x y y >是椭圆C 上一点,Q 为y 轴上一点,22PF PQ =,设直线l 与椭圆C 交于M ,N 两点,若直线PM ,PN 关于直线0x x =对称,求直线l 的斜率. 【答案】(1)22143x y += (2)12-【分析】(1)依题意列出几何量方程组,直接求解可得;(2)先求点P 坐标,然后可得直线PM 、PN 的斜率关系,设直线方程联立椭圆方程,利用韦达定理代入斜率关系,化简可得直线的斜率k .【详解】(1)解:依题意可得22223314c a b =⎧⎪⎨+=⎪⎩,又222b a c =-, 所以24a =,23b =,1c =. 所以22143x y +=; (2)解:因为22PF PQ =,所以Q 是2PF 的中点. 结合QO x ⊥轴,所以1PF x ⊥轴,所以01x =-,则2201314y +=,解得032y =±,因为00y >,所以032=y ,所以31,2P ⎛⎫- ⎪⎝⎭.因为直线PM 、PN 关于直线01x x ==-对称. 所以PM 、PN 的倾斜角互补,所以0PM PN k k +=,显然直线l 的斜率存在,设l :y kx m =+,由22143y kx m x y =+⎧⎪⎨+=⎪⎩,得()2224384120k x kmx m +++-=,由0∆>得2243m k <+.设()11,M x y , ()22,N x y ,则1228+43km x x k -=+,212241243m x x k -=+,由12123322011PMPNy y kk x x --+=+=++, 整理得()1212322302kx x k m x x m ⎛⎫++-++-= ⎪⎝⎭,所以2483420k k km m ++--=,即()()212320k k m ++-= 若232k m +-0=,则32m k =+, 所以直线MN 的方程为()312y k x -=+,此时,直线MN 过P 点,舍去. 所以21k +0=,即12k =-,所以直线l 的斜率为12-.22.已知函数()sin ln(1)f x x x =-+,()'f x 为()f x 的导数.证明: (1)()'f x 在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析【分析】(1)求得导函数后,可判断出导函数在1,2π⎛⎫- ⎪⎝⎭上单调递减,根据零点存在定理可判断出00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=,进而得到导函数在1,2π⎛⎫- ⎪⎝⎭上的单调性,从而可证得结论;(2)由(1)的结论可知0x =为()f x 在(]1,0-上的唯一零点;当0,2x π⎛⎫∈ ⎪⎝⎭时,首先可判断出在()00,x 上无零点,再利用零点存在定理得到()f x 在0,2x π⎛⎫⎪⎝⎭上的单调性,可知()0f x >,不存在零点;当,2x ππ⎡⎤∈⎢⎥⎣⎦时,利用零点存在定理和()f x 单调性可判断出存在唯一一个零点;当(),x π∈+∞,可证得()0f x <;综合上述情况可证得结论. 【详解】(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫ ⎪⎝⎭上单调递减又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-< ⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫ ⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1ln ln102222e f ππππ⎛⎫⎛⎫=-+=>=⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点第 21 页 共 21 页 ③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减 ()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02f f ππ⎛⎫⋅< ⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点 ④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln 1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.。
2023-2024学年山东省淄博市高二下学期期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设等差数列{a n },a 2=3,d =5,则a 5=( )A. −5B. 18C. 23D. 282.若函数f(x)满足lim Δx→0f(1−Δx)−f(1)Δx =18,则f′(1)=( )A. −18B. −14C. 18D. 143.设{a n }是等比数列,且a 2+a 3=2,a 5+a 6=−16,则公比q =( )A. −2B. 2C. −8D. 84.在(2− x )7的展开式中,含x 2的项的系数为( )A. −280B. 280C. −560D. 5605.某志愿者小组有5人,从中选3人到A 、B 两个社区开展活动,其中1人到A 社区,则不同的选法有( )A. 12种B. 24种C. 30种D. 60种6.直线y =kx 与曲线y =ln 2x 相切,则实数k 的值为( )A. 1B. 12C. 2e D. 2e 27.若P(B|A)=13,P(A)=34,P(B)=12,则P(A|B)=( )A. 14 B. 34 C. 13 D. 128.不等式2ln x > x ln2的解集是( )A. (1,2)B. (4,+∞)C. (2,+∞)D. (2,4)二、多选题:本题共3小题,共15分。
在每小题给出的选项中,有多项符合题目要求。
9.已知随机变量X ~N (3,1),则下列说法正确的是( )A. 若Y =X +3,则E (Y )=6B. 若Y =3X +1,则D (Y )=3C. P (X ≤2)=P (X ≥4)D. P (0≤X ≤4)=1-2P (X ≥4)10.若函数f(x)的定义域为(−4,3),其导函数f′(x)的图象如图所示,则( )A. f(x)有两个极大值点B. f(x)有一个极小值点C. f(0)>f(1)D. f(−2)>f(−3)11.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.如数列1,3,6,10,它的前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,则数列1,3,6,10被称为二阶等差数列,现有二阶等差数列{c n},其前6项分别为4,8,10,10,8,4,设其通项公式c n=g(n).则下列结论中正确的是( )A. 数列{c n+1−c n}的公差为2B. ∑20(c i+1−c i)=−300i=1C. 数列{c n}的前7项和最大D. c21=−296三、填空题:本题共3小题,每小题5分,共15分。
高二年级调研测试数学本试卷共4页,19小题,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.将条形码横贴在答题卡上“条形码粘贴处”.2.回答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上.如需改动,先划掉原来的答案,然后再写上新答案.不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算012456C C C ++=( )A. 20B. 21C. 35D. 36【答案】B 【解析】【分析】利用组合数计算公式计算可得结果.【详解】由组合数计算公式可得01245665C C C 152112×++=++=×. 故选:B2. 已知样本数据121x +,221x +,…,21n x +的平均数为5,则131x +,231x +,…,31n x +的平均数为( ) A. 6 B. 7C. 15D. 16【答案】B 【解析】【分析】根据平均数的性质即可得12,,,n x x x …的平均数为2,则可得到新的一组数据的平均数. 【详解】由题意,样本数据121x +,221x +,…,21n x +的平均数为5,设12,,,n x x x …的平均数为x , 即215+=x ,解得2x =,根据平均数性质知131x +,231x +,…,31n x +的平均数为317x +=. 故选:B3. 下表是大合唱比赛24个班级的得分情况,则80百分位数是( ) 得分 7 8 9 10 11 13 14 频数 4246242A. 13.5B. 10.5C. 12D. 13【答案】D 【解析】【分析】根据百分位数的定义求解即可.【详解】因为00248019.2×=,24个班级的得分按照从小到大排序, 可得80百分位数是第20个数为13. 故选:D4. 已知a ,b 为两条不同直线,α,β,γ为三个不同平面,则下列说法正确的是( ) A. 若a b ∥,b α⊂,则//a α B. 若//a α,b α⊂,则//a b C. //αγ,//βγ,则//αβ D. 若αγ⊥,βγ⊥,则//αβ【答案】C 【解析】【分析】由线线、线面、面面的位置关系即可求得本题. 【详解】若//a b ,b α⊂,则//a α或a α⊂,则A 错; 若//a α,b α⊂,则//a b 或a 与b 异面,则B 错;//αγ,//βγ,由平行的传递性可知,//αβ,则C 对;若αγ⊥,βγ⊥,则//αβ或相交.,D 错, 故选:C.5. 已知,,A B C 三点不共线,O 为平面ABC 外一点,下列条件中能确定,,,M A B C 四点共面的是( )的.A. OM OA OB OC =++B. 3OM OA OB BC =−−C. 1123OM OA OB OC =++D. 32OM OA OB BC =−−【答案】D 【解析】【分析】根据空间向量基本定理对选项逐个进行验证即可得出结论.【详解】由空间向量基本定理可知,若,,,M A B C 四点共面,则需满足存在实数,,x y z 使得OM xOA yOB zOC =++,且1x y z ++=, 显然选项A ,C 不成立;对于选项B ,由3OM OA OB BC =−−可得()33OM OA OB OC OB OA OC =−−−=− ,不合题意,即B 错误;对于D ,化简32OM OA OB BC =−−可得()323OM OA OB OC OB OA OB OC =−−−=−− ,满足()()3111+−+−=,可得D 正确; 故选:D6. 已知随机事件A ,B ,3()10P A =,1()2P B =,1(|)3P B A =,则(|)P A B =( ) A.15B.16 C.320D.110【答案】A 【解析】【分析】根据题意,由乘法公式代入计算可得()P AB ,再由条件概率公式,代入计算,即可得到结果. 【详解】因为3()10P A =,1()2P B =,1(|)3P B A =, 则()()131(|)31010P B A P A P AB ×=×==, 则()()1110(|)152P AB P A BP B ===. 故选:A7. 已知9290129(21)x a a x a x a x +=+++⋅⋅⋅+,则682424682222a a a a +++的值为( )A. 255B. 256C. 511D. 512【答案】A 【解析】【分析】利用二项式定理写出展开式的通项,令0x =求出0=1a ,分别令12x =、12x =−,再两式相加可得8202825622a a a +++=,再减去0a 即可. 【详解】令0x =,得0=1a , 令12x =,得93891202389251222222a a a a a a ++++++== , 令12x =−,得38912023********a a a a a a −+−++−= , 两式相加得82028251222a a a+++=, 得8202825622a a a +++= , 则682424682552222a a a a +++=. 故选:A.8. 某工厂有甲、乙、丙3个车间生产同一种产品,其中甲车间的产量占总产量的20%,乙车间占35%,丙车间占45%.已知这3个车间的次品率依次为5%,4%,2%,若从该厂生产的这种产品中取出1件为次 ) A.331000B.1033C.1433D.311【答案】C 【解析】【分析】根据题意,由全概率公式可得抽取到次品的概率,再由条件概率公式代入计算,即可求解. 【详解】记事件A 表示甲车间生产的产品, 记事件B 表示乙车间生产的产品, 记事件C 表示丙车间生产的产品, 记事件D 表示抽取到次品,则()()()0.2,0.35,0.45P A P B P C ===, ()()()0.05,0.04,0.02P D A P D B P D C ===,取到次品的概率为()()()()()()()P D P A P D A P B P D B P C P D C =++0.20.050.350.040.450.020.033=×+×+×=,若取到的是次品,此次品由乙车间生产的概率为:()()()()()()0.350.040.014140.0330.03333P B P D B P BD P B D P D P D ×=====.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列选项中叙述正确有( )A. 在施肥量不过量的情况下,施肥量与粮食产量之间具有正相关关系B. 在公式1xy=中,变量y 与x 之间不具有相关关系C. 相关系数10.6r =时变量间的相关程度弱于20.8r =−时变量间的相关程度D. 某小区所有家庭年收入x (万元)与年支出y (万元)具有相关关系,其线性回归方程为ˆˆ0.8ybx =+.若20x =,16y =,则ˆ0.76b =. 【答案】ACD 【解析】【分析】AB 的正误,根据相关系数的性质可判断C 的正误,根据回归方程的性质可判断D 的正误.【详解】对于A ,在施肥量不过量的情况下,施肥量越大,粮食产量越高, 故两者之间具有正相关关系,故A 正确.对于B ,变量y 与x 之间函数关系,不是相关关系,故B 错误. 对于C ,因为210.80.6r r =>=,故相关系数10.6r =时变量间的相关程度弱于20.8r =−时变量间的相关程度,故C 正确.对于D ,因为回归直线过(),x y ,故ˆ16200.8b=×+,故ˆ0.76b =,故D 正确. 故选:ACD.10. 已知点(2,3,3)A −−,(2,5,1)B ,(1,4,0)C ,平面α经过线段AB 的中点D ,且与直线AB 垂直,下列选项中叙述正确的有( ) A. 线段AB 的长为36的是B. 点(1,2,1)P −在平面α内C. 线段AB 的中点D 的坐标为(0,4,1)−D. 直线CD 与平面α【答案】BCD 【解析】【分析】由空间两点间的距离公式即可得到线段AB 的长,判断A ;由AB ⊥平面α,垂足为点D ,PD AB ⊥,即可判断B ;由中点坐标公式可得点D 的坐标,判断C ;设直线CD 与平面α所成的角为β,sin cos ,AB CD AB CD AB CDβ⋅==,通过坐标运算可得,判断D.【详解】因为点(2,3,3)A −−,(2,5,1)B , 所以6AB =,故A 错误;设D 点的坐标为(),,x y z ,因为D 为线段AB 的中点,所以2235310,4,1222x y z −++−+======−, 则D 的坐标为(0,4,1)−,故C 正确;因为点(1,2,1)P −,则()1,2,0PD =− ,又()4,2,4AB =,则()()1,2,04,2,40PD AB ⋅=−⋅=,所以PD AB ⊥,即PD AB ⊥, 又AB ⊥平面α,垂足为点D ,即D ∈平面α,所以PD ⊂平面α,故B 正确;由(1,4,0)C ,(0,4,1)D −,得()1,0,1CD =−−,设直线CD 与平面α所成的角为β,则sin cos ,ABβ= ,故D 正确.故选:BCD.11. 甲袋中有2个红球、3个黄球,乙袋中有3个红球、2个黄球,同时从甲、乙两袋中取出2个球交换,分别记交换后甲、乙两个袋子中红球个数的数学期望为()E X 、()E Y ,方差为()D X 、()D Y ,则下列结论正确的是( )A. ()()5E X E Y +=B. ()()E X E Y <C. ()()D X D Y <D. ()()D X D Y =【答案】ABD 【解析】【分析】依题意可知不管如何交换红球个数始终只有5个,易知5X Y +=,利用期望值和方差性质可得A ,D 正确,C 错误;易知随机变量X 的所有可能取值为0,1,2,3,4,写出对应的概率并得出分布列,可得() 2.4E X =,()()5 2.6E Y E X =−=,可得B 正确.【详解】根据题意,记甲、乙两个袋子中红球个数分别为,X Y , 不管如何交换红球个数始终只有5个,易知5X Y +=,对于A ,由期望值性质可得()()()55E X E Y E Y =−=−,即()()5E X E Y +=,所以A 正确; 对于B ,易知随机变量X 的所有可能取值为0,1,2,3,4; 当从甲袋中取出2个红球,乙袋中取出2个黄球后交换,可得()()22222255C C 105C C 100P X P Y ====×=, 当从甲袋中取出1个红球,1个黄球,乙袋中取出2个黄球后交换,或者从甲袋中2个红球,乙袋中取出1个红球,1个黄球后交换,可得()()1111223232222555C C C C C 12314C C C 10025P X P Y ====+×==;当从甲袋中取出1个红球,1个黄球,乙袋中取出1个红球,1个黄球;或者从甲袋中取出2个红球,乙袋中取出取出2个红球;或者从甲袋中取出2个黄球,乙袋中取出取出2个黄球后交换,可得()()1111222223233322222222555555C C C C C C C C 422123C C C C C C 10050P X P Y ====×+×+×==; 当从甲袋中取出2个黄球,乙袋中取出1个红球,1个黄球;或者从甲袋中取出1个红球,1个黄球,乙袋中取出取出2个红球后交换,可得()()21111232323322225555C C C C C C 36932C C C C 10025P X P Y ====×+×==;当从甲袋中取出2个黄球,乙袋中取出2个红球后交换,可得()()22332255C C 941C C 100P X P Y ====×=,随机变量X 的分布列为所以期望值()132******** 2.4100255025100E X =×+×+×+×+×=, 可得()()5 2.6E Y E X =−=,即()()E X E Y <,可得B 正确; 对于C ,D ,由方差性质可得()()()()()251D Y D X D X D X =−=−=,即可得()()D X D Y =,所以C 错误,D 正确. 故选:ABD【点睛】关键点点睛:根据题意可得随机变量满足5X Y +=,利用期望值和方差性质可判断出AD 选项,再求出随机变量X 的分布列可得结论.三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量X 服从正态分布()295,N σ,若(80)0.3P X <=,则(95110)P X ≤<=______. 【答案】0.2##15【解析】【分析】根据正态分布的对称性结合已知条件求解即可. 【详解】因为随机变量X 服从正态分布()295,N σ,(80)0.3P X <=, 所以(95110)(8095)0.5(80)0.2P X P X P X ≤<=<<=−<=, 故答案为:0.213. 如图,用四种不同颜色给图中的,,,,A B C D E 五个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有______种.【答案】72 【解析】【分析】由图形可知点E 比较特殊,所以按照分类分步计数原理从点E 开始涂色计算可得结果.【详解】根据题意按照,,,,A B C D E 的顺序分5步进行涂色,第一步,点E 的涂色有14C 种,第二步,点A 的颜色与E 不同,其涂色有13C 种, 第三步,点B 的颜色与,A E 都不同,其涂色有12C 种,第四步,对点C 涂色,当,A C 同色时,点C 有1种选择;当,A C 不同色时,点C 有1种选择; 第五步,对点D 涂色,当,A C 同色时,点D 有2种选择;当,A C 不同色时,点D 有1种选择;根据分类分步计数原理可得,不同的涂色方法共有()111432C C C 121172×+×=种. 故答案为:7214. 如图,已知三棱锥−P ABC 的底面是边长为2的等边三角形,60APB ∠=°,D 为AB 中点,PA CD ⊥,则三棱锥−P ABC 的外接球表面积为______.【答案】20π3##20π3【解析】【分析】设PAB 外接圆的圆心为E ,三棱锥−P ABC 的外接球的球心为O ,连接OE , ABC 的外接圆的圆心为G ,连接OG ,OB ,可证四边形OGDE 为矩形,利用解直角三角形可求外接球半径,故可求其表面积.【详解】因为ABC 为等边三角形,D 为AB 中点,故CD AB ⊥, 而PA CD ⊥,PA AB A = ,,PA AB ⊂平面PAB ,所以CD ⊥平面PAB . 设PAB 外接圆的圆心为E ,三棱锥−P ABC 的外接球的球心为O ,连接,OE BE , 设ABC 的外接圆的圆心为G ,连接OG ,OB , 则OE ⊥平面PAB ,OG CD ⊥故//OE CD ,故,,,O G D E 共面,而DE ⊂平面PAB , 故CD DE ⊥,故四边形OGDE 为矩形.又12sinABBEAPB=×∠13OE DG CD===,故外接球半径为OB=,故外接球的表面积为1520π4π93×=,故答案为:20π3四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步聚.15.在()*23,Nnx n n≥∈的展开式中,第2,3,4项的二项式系数依次成等差数列.(1)证明展开式中不存在常数项;(2)求展开式中所有的有理项.【答案】(1)证明见解析;(2)7128x,4672x,280x,214x.【解析】【分析】(1)根据题意可求得7n=,利用二项展开式的通项可得展开式中不存在常数项;(2)由二项展开式的通项令x的指数为整数即可解得合适的k值,求出所有的有理项.【小问1详解】易知第2,3,4项的二项式系数依次为123C,C,Cn n n,可得132C+C2Cn n n=,即()()()121262n n n n nn−−−+=×,整理得()()270n n−−=,解得7n=或2n=(舍);所以二项式为72x,假设第1k+项为常数项,其中Nk∈,即可得()1777277C 22C kk k kkk k x x −−−−=为常数项,所以1702k k −−=, 解得14N 3k =∉,不合题意; 即假设不成立,所以展开式中不存在常数项; 【小问2详解】由(1)可知,二项展开式的通项()1777277C22C kk k kk k k x x−−−−=可得, 其中的有理项需满足17Z 2k k −−∈,即37Z 2k −∈,且7k ≤;当30,77Z 2k k =−=∈,此时有理项为707772C 128x x =; 当32,74Z 2k k =−=∈,此时有理项为524472C 672x x =; 当34,71Z 2k k =−=∈,此时有理项为3472C 280x x =; 当36,72Z 2k k =−=−∈,此时有理项为16272142C x x−=; 综上可知,展开式中所有的有理项为7128x ,4672x ,280x ,214x . 16. 某校天文社团将2名男生和4名女生分成两组,每组3人,分配到A ,B 两个班级招募新社员. (1)求到A 班招募新社员的3名学生中有2名女生的概率;(2)设到A ,B 两班招募新社员的男生人数分别为a ,b ,记X a b =−,求X 的分布列和方差. 【答案】(1)35(2)85【解析】【分析】(1)由古典概型的概率求解122436C C 3C 5P ==; (2)由题意,X 的可能取值为2,0,2−,算出对应概率()2P X =−,()0P X =,()2P X =,即可列出X 的分布列,再求出()E X ,进而由公式求出方差.【小问1详解】到A 班招募新社员的3名学生中有2名女生的概率为122436C C 3C 5P ==. 【小问2详解】由题意,X 的可能取值为2,0,2−,则()032436C C 12C 5P X =−==,()122436C C 30C 5P X ===,()212436C C 12C 5P X ===, 所以X 的分布列为则()1312020555E X =−×+×+×=, 所以()()()()22213182000205555D X =−−×+−×+−×=. 17. 如图,正三棱柱111ABC A B C 中,D 为AB 的中点.(1)求证:1BC ∥平面1ACD ; (2)当1AA AB的值为多少时,1AB ⊥平面1ACD ?请给出证明. 【答案】(1)证明见答案. (2 【解析】【分析】(1)连接1AC ,交1AC 于点O ,连接DO ,能证出1//BC DO ,则能证出1BC ∥平面1ACD.(2)先把1AB ⊥平面1ACD 当做条件,得出11AB A D ⊥,得出1AA AB的值,过程要正面分析. 【小问1详解】连接1AC ,交1AC 于点O ,连接DO , 因为O 是1AC 的中点,D 为AB 的中点, 所以DO 是1ABC 的中位线,即1//BC DO ,1BC ⊄平面1ACD ,DO ⊂平面1ACD , 所以1BC ∥平面1ACD . 【小问2详解】1AA AB =时,1AB ⊥平面1ACD ,证明如下:因为1AA AB =,11tan A AB ∴∠,111tan AA DA B AD ∠= 1111A AB DA B ∴∠=∠,1112DA B AA D π∠+∠= ,1112A AB AA D π∴∠+∠=,即11AB A D ⊥.因为三棱柱111ABC A B C 为正三棱柱,ABC ∴ 为正三角形,且1AA ⊥平面ABC ,1,CD AB CD AA ∴⊥⊥,1AB AA A ∩=,AB ⊂平面11ABB A ,1AA ⊂平面11ABB A ,CD 平面11ABB A ,因为1AB ⊂平面11ABB A ,所以1AB CD ⊥,1A D CD D = ,1,A D CD ⊂平面1ACD , 1AB ∴⊥平面1ACD .1AA AB∴18. 会员足够多的某知名户外健身俱乐部,为研究不高于40岁和高于40岁两类会员对服务质量的满意度.现随机抽取100名会员进行服务满意度调查,结果如下:年龄段满意度合计满意不满意 不高于40岁 50 20 70 高于40岁 25 5 30 合计7525100(1)问:能否认为,会员不高于40岁和高于40岁年龄结构对服务满意度有关;(2)用随机抽取的100名会员中的满意度频率代表俱乐部所有会员的满意度概率.从所有会员中随机抽取3人,记抽取的3人中,对服务满意的人数为X ,求X 的分布列和数学期望.参考公式:22()()()()()n ad bc a b c d a c b d χ−=++++(其中n a b c d =+++).参考数据:()20P x χ≥ 0.150.10 0.05 0.025 0.010 0.005 0.0010x2.072 2.7063.841 5.024 6.635 7.879 10.828【答案】(1)不能认为会员不高于40岁和高于40岁年龄结构对服务满意度有关. (2)分布列见解析;94. 【解析】【分析】(1)首先根据列联表中的数据结合公式计算2χ值,然后对照表格得到结论;(2)由表格可知,对服务满意的人的概率为34,且33,4X B∼,根据二项分布公式即可求解. 【小问1详解】 由列联表可知:2217100(5052520)100.587255 2.072730630χ××−×<××==≈, 所以不能认为会员不高于40岁和高于40岁年龄结构对服务满意度有关. 【小问2详解】由表格可知,对服务满意人的概率为34,且33,4X B∼, 则0,1,2,3X =,可得:()303110C 464P X ===,()2133191C 4464P X === , ()22331272C 4464P X ===,()3333273C 464P X === , 故X 的分布列如图:可得()39344EX =×=. 19. 如图,在三棱台ABC DEF −中,2AB BC AC ===,1AD DF FC ===,N 为DF 的中点,二面角D AC B −−的大小为θ.(1)求证:AC BN ⊥; (2)若π2θ=,求三棱台ABC DEF −的体积; (3)若A 到平面BCFE cos θ的值. 【答案】(1)证明见解析; (2)78(3)3cos 5θ=−的【解析】【分析】(1)利用三棱柱性质,根据线面垂直的判定定理可得AC ⊥平面BMN ,可证明结论; (2)由二面角定义并利用棱台的体积公式代入计算可得结果;(3)建立空间坐标系,求出平面BCFE 的法向量,利用点到平面距离的向量求法即可得出cos θ的值. 【小问1详解】取AC 的中点为M ,连接,NM BM ;如下图所示:易知平面//ABC 平面DEF ,且平面ABC ∩平面DACF AC =,平面DEF ∩平面DACF DF =; 所以//AC DF ,又因为1AD FC ==, 可得四边形DACF 为等腰梯形,且,M N 分别为,AC DF 的中点,所以MN AC ⊥, 因为2AB BC AC ===,所以BM AC ⊥, 易知BM MN M = ,且,BM MN ⊂平面BMN , 所以AC ⊥平面BMN ,又BN ⊂平面BMN ,所以AC BN ⊥; 【小问2详解】由二面角定义可得,二面角D AC B −−的平面角即为BMN ∠, 当π2θ=时,即π2BMN ∠=,因此可得MN ⊥平面ABC ,可知MN 即为三棱台的高,由1,2ADDF FC AC ====可得MN =;易知三棱台的上、下底面面积分别为DEFABC S S =因此三棱台ABC DEF −的体积为1738V =【小问3详解】由(1)知,BM AC ⊥,MN AC ⊥,二面角D AC B −−的平面角即为()0,πBMN θ∠=∈; 以M 为坐标原点,分别以,MA MB 所在直线为,x y 轴,过点M 作垂直于平面ABC 的垂线为z 轴建立如图所示的空间直角坐标系:可得()()()()1,0,0,1,0,0,,,0,0,0A C B N M θθ −,易知11,0,022NF MC==−,可得12F θθ − ;则()1,cos 2CBCF θθ =设平面BCFE 的一个法向量为(),,n x y z =,所以01cos sin 02n CB x n CF x y z θθ ⋅==⋅=++=, 令1y =,则1cos sin x z θθ−=,可得1cos sin n θθ−=; 显然()2,0,0AC =− ,由A 到平面BCFE,可得AC n n ⋅==,可得21cos 4sin θθ− =;整理得25cos 2cos 30θθ−−=,解得3cos 5θ=−或cos 1θ=; 又()0,πθ∈,可得3cos 5θ=−.【点睛】方法点睛:求解点到平面距离常用方法:(1)等体积法:通过转换顶点,利用体积相等可得点到面的距离;(2)向量法:求出平面的法向量,并利用点到平面距离的向量求法公式计算可得结果;。
运城市2023-2024学年第二学期期末调研测试高二数学试题2024 7本试题满分150分,考试时间120分钟。
答案一律写在答题卡上。
注意事项:1 答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2 答题时使用0 5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3 请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4 保持卡面清洁,不折叠,不破损。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设全集U=R,集合A={x│y=2槡-x},B={y│y=2x,x∈A},则A∩B=A.(-∞,2]B.[2,+∞)C.(0,2]D.[2,4]2.函数f(x)=│x│(x-1)的单调递减区间是A.(-∞,0)B.(0,12)C.(12,1)D.(1,+∞)3.函数y=sinxex+e-x(x∈[-2,2])的图象大致为4.已知p:3x+2>1,q:-2≤x<1,则p是q的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要5.已知函数f(x)=(13)x,x>11x,0<x<{1,则f(f(log槡32))=A.14B.4C.12D.26.若(x+mx)(x-1x)5的展开式中常数项是20,则m=A.-2B.-3C.2D.37.根据气象灾害风险提示,5月12日~14日某市进入持续性暴雨模式,城乡积涝和地质灾害风险极高,全市范围内降雨天气易涝点新增至36处.已知有包括甲乙在内的5个排水施工队前往3个指定易涝路口强排水(且每个易涝路口至少安排一个排水施工队),其中甲、乙施工队不在同一个易涝路口,则不同的安排方法有A.86B.100C.114D.1368.已知函数f(x)=│lnx│,x>0-x2-4x+1,x≤{0若关于x的方程[f(x)]2-2af(x)+a2-1=0有k(k∈N)个不等的实根x1,x2,…xk,且x1<x2<…<xk,则下列结论正确的是A.当a=0时,k=4B.当k=2时,a的取值范围为a<1C.当k=8时,x1+x4+x6x7=-3D.当k=7时,a的取值范围为(1,2)二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知全集U={x│x<10,x∈N},A U,B U,A∩(瓓UB)={1,9},A∩B={3},(瓓UA)∩(瓓UB)={4,6,7},则下列选项正确的为A.2∈BB.A的不同子集的个数为8C.{1} AD.6 瓓U(A∪B)10.已知由样本数据(xi,yi)(i=1,2,3,…,10)组成的一个样本,得到经验回归方程为^y=2x-0.4,且x=2,去除两个样本点(-2,1)和(2,-1)后,得到新的经验回归方程为^y=3x+b^.在余下的8个样本数据和新的经验回归方程中A.相关变量x,y具有正相关关系B.新的经验回归方程为^y=3x-3C.随着自变量x值增加,因变量y值增加速度变小D.样本(4,8 9)的残差为0.111.已知f(x)是定义在实数集R上的偶函数,当x≥0时,f(x)=2x4x+1.则下列结论正确的是A.对于x∈R,f(x)=2x4x+1B.f(x)在(0,+∞)上为减函数C.f(x)的值域为(-∞,12]D.f(0.30.4)>f(-0.40.3)>f(log237)三、填空题:本题共3小题,每小题5分,共15分.12.已知函数f(x)=x3-sinx(ax-1)(3x+2)为奇函数,则实数a的值为.13.一个袋子中有n(n∈N)个红球和5个白球,每次从袋子中随机摸出2个球.若“摸出的两个球颜色不相同”发生的概率记为p(n),则p(n)的最大值为.14.已知函数f(x),g(x)的定义域均为R,f(x)为奇函数,g(x+1)为偶函数,f(-1)=2,g(x+2)-f(x)=1,则∑61i=1g(i)=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合A={x│x2-5x-6<0},集合B={x│[x-(1-a)][x-(1+a)]>0},其中a>0.(1)若a=2,求A∩(瓓RB);(2)设命题p:x∈A,命题q:x∈B,若p是瓙q的必要而不充分条件,求实数a的取值范围.16.已知函数f(x)=log2(4x+a·2x+16),其中a∈R.(1)若a=-10,求函数f(x)的定义域;(2)当x∈[1,+∞)时,f(x)>x恒成立,求实数a的取值范围.17.某疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了1800名该疾病的患者进行调查,发现女性患者人数是男性患者人数的12,男性患A型疾病的人数为男性患者人数的23,女性患A型疾病的人数是女性患者人数的34.(1)根据所给信息完成下列2×2列联表:性别疾病类型A型B型合计男女合计(2)基于(1)中完成的2×2列联表,依据小概率值α=0.001的 2独立性检验,分析所患疾病的类型与性别是否有关?(3)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为9元.该团队研发的疫苗每次接种后产生抗体的概率为23,如果第一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期,记该试验中1人用于接种疫苗的费用为ξ,求E(ξ).附: 2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+dα0.1000.0500.0100.0050.001α2.7063.8416.6357.87910.82818.基础学科招生改革试点,也称强基计划,是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.强基计划的校考由试点高校自主命题,某试点高校校考过程中笔试通过后才能进入面试环节.2022年报考该试点高校的学生的笔试成绩X近似服从正态分布N(μ,σ2).其中,μ近似为样本平均数,σ2近似为样本方差s2.已知μ的近似值为76.5,s的近似值为5.5,以样本估计总体.(1)假设有84.135%的学生的笔试成绩高于该校预期的平均成绩,求该校预期的平均成绩大约是多少?(2)若笔试成绩高于76.5分进入面试,若从报考该试点高校的学生中随机抽取10人,设其中进入面试学生数为ξ,求随机变量ξ的期望.(3)现有甲、乙、丙、丁四名学生进入了面试,且他们通过面试的概率分别为13、13、12、12.设这4名学生中通过面试的人数为X,求随机变量X的分布列和数学期望.参考数据:若X~N(μ,σ2),则:P(μ-σ<X≤μ+σ)≈0.6827;P(μ-2σ<X≤μ+2σ)≈0.9545;P(μ-3σ<X≤μ+3σ)≈0.9973.19.定义一种新的运算“ ”: x,y∈R,都有x y=lg(10x+10y).(1)对于任意实数a,b,c,试判断(a b)-c与(a-c) (b-c)的大小关系;(2)若关于x的不等式(x-1)2>[(a2x2) (a2x2)]-lg2的解集中的整数恰有2个,求实数a的取值范围;(3)已知函数f(x)=lg(x+4-2x+槡3),g(x)=(1 x) (-x),若对任意的x1∈R,总存在x2∈[-32,+∞),使得g(x1)=lg│3m-2│+f(x2),求实数m的取值范围.命题人:康杰中学 张阳朋运城中学 吕莹高二数学期末答案一、1-8 C B BA B DCC 二、9.ABC 10.AB 11.ABD 三、12.3213.59 14.63四 、15.(1)15.2{|650}{|16}A x x x x x =+->=-<<, …………1分 ){{|[(1)][(1]0}|1x x a B x x a x a =---+<>=-或1}x a >+. ………… 2分若2a =,则{|1B x x =<-或3}x >,{}31|≤≤-=x x B C R , ………… 4分{}31|)(≤<-=∴x x B C A R ………… 6分(2)若的必要而不充分条件是q p ⌝,{}a x a x B C A B C U U +≤≤-=⊆∴11 , ………… 8分∴01116a a a >⎧⎪->-⎨⎪+<⎩,解得02a <<. ………… 12分 a ∴的取值范围是(0,2). ………… 13分16.(1)当10a =-时,()()2log 410216xxf x =-⨯+,由4102160x x -⨯+>得()()22028xx-->, ………… 2分故22x <或28x >,得1x <或3x >, ………… 4分 故函数()()2log 410216xxf x =-⨯+的定义域为()(),13,-∞⋃+∞,………… 6分(2)解一:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分22116122 9所以当[)+∞∈,1x 时,()f x x >恒成立,即为()()2116g t t a t =+-⋅+在[)+∞∈,2t 上最小值大于0, ………… 10分函数()()2116g t t a t =+-⋅+的对称轴为12at -=, 当221<-a即3->a 时,函数()g t 在[)+∞,2上单调递增, 此时0218)2(>+=a g ,得9->a ,a <-∴3 ………… 12分 当221≥-a,即3-≤a 时,函数()g t 在对称轴取得最小值, 此时()21112211602g a a a a ⎪⎛⎫=⎝---⎛⎫⎛⎫ ⎪⎝⎭+-+ ⎭>⎪⎭⎝,得79a -<<,37-≤<-∴a ………… 14分 故a 的取值范围为()7,-+∞ ………… 15分 解二:由()f x x >得()22log 4216log 2xxxa x +⋅+>=, ………… 7分得42216x x x a +⋅+>,即()041216xxa +-⋅+>, ………… 8分设2x t =,因[)+∞∈,1x ,故22≥=x t , ………… 9分 所以当[)+∞∈,1x 时,()f x x >恒成立,即)(21)16(162≥++-=-+->t tt t t t a ………… 11分 令1)16()(++-=t t t g 则”成立时“当且仅当==-≤++-=4,71)16()(t tt t g ………… 14分故a 的取值范围为()7,-+∞ ………… 15分 17. (1)设男性患者人数为m ,则女性患者人数为12m ,由118002m m +=12001200600 2 21200800336004504322⨯列联表如下:疾病类型性别A 型B 型 合计男 800 400 1200 女 450 150 600 合计12505501800………… 5分(2)零假设0H :所患疾病的类型与性别无关, ………… 6分 根据列联表中的数据,经计算得到()2218008001504504001441200600125055011χ⨯⨯-⨯==⨯⨯⨯,…… 8分 由于20.00114413.09110.82811χχ=≈>=, ………… 9分 依据小概率值0.001α=的2χ独立性检验,可以认为所患疾病的类型与性别有关.… 10分 (3)接种疫苗的费用ξ可能的取值为27,54, ………… 11分223322220(27)C ()(1()33327P ξ==-+=, ………… 12分207(54)12727P ξ==-=, ………… 13分则ξ的分布列为ξ27 54P2027 727期望为()2072754342727E ξ=⨯+⨯= .………… 15分 18.解:(1)由()()0.50.841352P X P X μσμσμσ-<≤+>-=+=,………2分76.5 5.576.5 5.571 4(2)由76.5μ=得,()176.52P ξ>=, 即从所有参加笔试的学生中随机抽取1名学生,该生笔试成绩76.5以上的概率为12…5分 所以随机变量ξ服从二项分布110,2X B ⎛⎫~ ⎪⎝⎭, ………6分 所以()11052E ξ=⨯=. ………8分 (3)X 的可能取值为0,1,2,3,4. ………9分()220022111011329P X C C ⎛⎫⎛⎫==⨯-⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, ………10分 ()22100122221111111111113323223P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯-⨯⨯-+⨯-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…11分()22201122221111112111323322P X C C C C ⎛⎫⎛⎫⎛⎫⎛⎫==⨯⨯⨯-+⨯⨯-⨯⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭220222111313236C C ⎛⎫⎛⎫+⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭, ………12分 6121311312112131)3(2221212222=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫ ⎝⎛-⨯⨯+⎪⎭⎫⎝⎛⨯==C C C C X p , ……13分()22222211143236P X C C ⎛⎫⎛⎫==⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭, ………14分 X 0 1 2 3 4()P X19 13 1336 16 136………15分 ∴()11131150123493366363E X =⨯+⨯+⨯+⨯+⨯=. ………17分 19. (1) ,x y ∀∈R ,()lg 1010xyx y ⊕=+∴()()lg 1010a b a b c c ⊕-=+-, ………2分10101010101010 45(2)()()()()222222222222lg 1010lg 210lg 2a x a xa xa x a x a x⊕=+=⨯=+∴原不等式可化为:()2221x a x ->,即()221210a x x --+>, ………6分满足题意,必有210a -<,即1a <-或1a >① ………7分令()()22121h x axx =--+,由于()010h =>,()21h a =-,结合①可得:()10h <, ………8分∴()h x 的一个零点在区间()0,1,另一个零点在区间[)1,2--, ………9分从而⎩⎨⎧>-≤-0)1(0)2(h h ,即⎩⎨⎧>+-⨯--⨯-≤+-⨯--⨯-01)1(2)1(101)2(2)2(12222)()(a a ② ………10分 由①②可得:223232<≤-≤<-a a 或 ………11分 (3)()(lg 4f x x =+,()()lg 101010xxg x -=++ ………12分设4t x =+3,2x ⎡⎫∈-+∞⎪⎢⎣⎭r =,[)0,r ∈+∞,则()2132x r =-, ∴()()2221151*********t r r r r r =-+-=-+=-+≥, ………14分∴()lg 2f x ≥,()1()lg 32g x m f x =-+的值域为)lg 32lg 2,A m ⎡=-++∞⎣ ………15分1010101012x x -++≥=,∴()lg12g x ≥()g x 的值域为[)lg12,B =+∞ ………16分根据题意可知:B A ⊆,∴lg 32lg 2lg12m -+≤解之得:4833m -≤≤且23m ≠ ………17分为。
第二学期期末教学质量监测高二数学本试卷共4页,22小题,满分150分.考试用时120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的 。
1.若i 12i z ⋅=-(i 为虚数单位),则z 的共轭复数是A .22i --B .2i -C .2i +D .2i -+2.抛物线24=-x y 的焦点到准线的距离为A .1B . 2C .3D .4 3.“p 且q 是真命题”是“非p 为假命题”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.用三段论演绎推理:“复数都可以表示成实部与虚部之和的形式,因为复数z 23i =+ 的实部是2,所以复数z 的虚部是3i ”。
对于这段推理,下列说法正确的是 A .大前提错误导致结论错误 B .小前提错误导致结论错误 C .推理形式错误导致结论错误 D .推理没有问题,结论正确 5.函数x e x f xln )(=在点))1(,1(f 处的切线方程是A .)1(2-=x e y B.1-=ex y C.)1(-=x e y D.e x y -= 6.若2παπ<<,则sin cos αα-的值与1的大小关系是A.sin cos 1αα->B.sin cos 1αα-=C.sin cos 1αα-<D.不能确定 7.函数3()34f x x x =- []0,1x ∈的最大值是A .12B . -1C .0D .1 8.甲、乙、丙三人中只有一人去过陈家祠,当他们被问到谁去过时,甲说:“丙没有去”;乙说:“我去过”;丙说:“甲说的是真话”。
若三人中只有一人说的是假话,那么去过陈家祠的人是 A .甲 B .乙 C .丙 D .不能确定9.某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为A .2()()m r n r ++ 千米B .()()m r n r ++千米C .mn 2千米D .mn 千米10.函数31()3=-f x x ax 在R 上是增函数,则实数a 的取值范围是 A .0≥a B. 0≤a C. 0>a D. 0<a11.若椭圆)0(12222>>=+b a b y a x 和圆c c b y x (,)2(222+=+为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是A. )53,52(B. )55,52(C. )53,55(D. )55,0( 12. 已知定义在R 上的函数()f x 是奇函数,且(2)0f =,当0x >时,有'2()()0⋅-<x f x f x x,则不等式2()0x f x ⋅>的解集是 A .(2,0)(2,)-+∞U B.(,2)(0,2)-∞-U C .(2,0)(0,2)-U D .(2,2)(2,)-+∞U第Ⅱ卷(非选择题 共90分)二、填空题: 本大题共4小题,每小题5分,共20分。
13.函数b x ax x x f +++=23)(在1=x 时取得极值,则实数=a _______.14.下表提供了某厂节能降耗技术改造后,在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:根据表中提供的数据,求出y 关于x 的线性回归方程为=0.7+0.35ˆy x ,那么表中t 的值为______. 15.代数式⋅⋅⋅+++11111中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式t =,则11t t +=,则210t t --=,取正值得51t +=,用类似方法可得=⋅⋅⋅+++666_______.16.如图1,1F 、2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线C 的两支分别交于点,A B ,若2ABF ∆为x3 4 5 6 y2.5t44.5图2BD CA等边三角形,则双曲线C 的离心率为_______.三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分10分)已知直线l 的参数方程为2(4x a t t y t =-⎧⎨=-⎩为参数),圆C 的参数方程为4cos (4sin x y θθθ=⎧⎨=⎩为参数)(Ⅰ)求直线l 和圆C 的普通方程;(Ⅱ)若直线l 与圆C 有公共点,求实数a 的取值范围. 18.(本小题满分12分)国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:(Ⅰ)根据以上信息完成2×2列联表;(Ⅱ)是否有99%以上的把握认为人们对此政策持支持态度与年龄有关?附:))()()(()(22d b c a d c b a bc ad n K ++++-=19.(本小题满分12分)如图2,在ABC ∆中,,83B AB π∠==,点D 在BC 边上,且2CD =,1cos 7∠=ADC . (Ⅰ)求sin BAD ∠; (Ⅱ)求BD ,AC 的长.0.2 0 0.5 1.0 中老年组 中青年组图3A B (2)(1)DGCEF P ⇒DABG CF P 20.(本小题满分12分)如图⑴,在直角梯形ABCP 中,//BC AP ,AB BC ⊥,CD AP ⊥,2AD DC PD ===,,,E F G分别是线段,,PC PD BC 的中点,现将PDC ∆折起,使平面PDC ⊥平面ABCD ,如图⑵. (Ⅰ)求证://AP 平面EFG ; (Ⅱ)求三棱锥P EFG -的体积.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为3,且经过点()1,3--M .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线02:=--y x l 与椭圆C 交于,A B 两点,点P 为椭圆C 上一动点,当△PAB 的面积最大时,求点P 的坐标及△PAB 的最大面积.22.(本小题满分12分)已知函数2()ln f x x ax bx =++(其中a ,b 为常数且0a ≠)在1x =处取得极值. (Ⅰ)当1a =时,求()f x 的单调区间;(Ⅱ)若()f x 在(0,e]上的最大值为1,求a 的值.第二学期期末质量监测高二数学参考答案与评分标准二、填空题:13.-2; 14.3 15. 3三、解答题:17.(本小题满分10分)已知直线l 的参数方程为2(t 4x a t y t =-⎧⎨=-⎩为参数),圆C 的参数方程为4cos (4sin x y θθθ=⎧⎨=⎩为参数)(Ⅰ)求直线l 和圆C 的普通方程;(Ⅱ)若直线l 与圆C 有公共点,求实数a 的取值范围.17.解:(Ⅰ) 消去参数t 得直线l 的一般方程:220--=l x y a ……………………2分 消去参数θ得圆C 的一般方程22:16+=x y …………………………5分若直线l 与圆C 有公共点18.(本小题12分)国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:0.2 0 0.5 1.0(Ⅰ)根据以上信息完成2×2列联表;(Ⅱ)是否有99%以上的把握认为人们对此政策持支持态度与年龄有关?附:))()()(()(22d b c a d c b a bc ad n K ++++-=18.解:(Ⅰ)由等高条形图可知:中老年组中,持支持态度的有50×0.2=10人,持不支持态度的有50-10=40人;…………………………………………………………………………2分中青年组中,持支持态度的有50×0.5=25人,持不支持态度的有50-25=25人。
…………………………………………………………………………4分故2×2列联表为:…………………………………………………………………………6分(Ⅱ8分10分 9.89≈>6.635……………………………………11分∴有99%以上的把握认为人们对此政策持支持态度支持与年龄有关………12分19.(本小题满分12分) 如图,在ABC ∆中,,83B AB π∠==,点D 在BC 边上,且2CD =,1cos 7∠=ADC . (Ⅰ)求sin BAD ∠; (Ⅱ)求,AC 的长. 19.解:(Ⅰ)在V ABC 中 ,∴()sin sin ∠=∠-∠BAD ADC B ……………………3分=sin cos cos sin∠⋅∠-∠⋅∠ADC B ADC B……………………4分(Ⅱ)在V ABD中=3,……………………9分在V ABC中,由余弦定理得:2222cos=+-⋅AC AB BC AB BC B49=,即7=AC……………………12分20.(本小题满分12分)如图⑴,在直角梯形ABCP中,BC∥AP,A B⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD,如图⑵.(Ⅰ)求证AP∥平面EFG;(Ⅱ)求三棱锥P EFG-的体积.20.解:(Ⅰ)∵V PDC中,点E,F分别是PC,PD的中点∴EF∥CD 又CD∥AB∴EF∥AB ………………………………………………1分图3A B(2)(1)DGCEFP⇒DA BGCFP∵⊄面PAB EF ⊂面PAB AB 根据线面平行的判定定理EF ∥平面PAB ………………………………………………2分 同理:EG ∥平面PAB ………………………………………………3分⋂=EF EG E ………………………………………………4分∴平面EFG ∥平面PAB ,又AP ⊂面PAB ,…………………………5分 ∴AP ∥平面EFG …………………………………………………………6分 (Ⅱ)由题设可知BC ⊥平面PDC ,故GC 为三棱锥G-PEF 底面上的高G 是BC 的中点,BC =2,所以GC =1……………………………8分 又11111222PEF S PF EF ∆=⋅=⨯⨯=,……………………………9分 所以--=P EFG G PEF V V ……………………………11分1316∆=⋅=PEF S GC ----------------------------------12分21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为3,且经过点()1,3--M .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线02:=--y x l 与椭圆C 交于,A B 两点,点P 为椭圆C 上一动点,当△PAB 的面积最大时,求点P 的坐标及△PAB 的最大面积. 21.(本小题满分12分)解:(Ⅰ)3c e a ==, ……………………………1分 又222a b c =+,所以,3b a =223a b =, … ……………………2分 ()1,3--M 在椭圆C………………3分联立解得224,12b a ==,故椭圆C 的方程为141222=+y x . ……………………4分(Ⅱ)将直线02=--y x 代入141222=+y x 中消去y 得,032=-x x .解得0=x 或3=x . …………………………5分 所以点()2,0-A ,()1,3B ,所以()()23210322=++-=AB . ………………6分在椭圆C 上求一点P , 使△PAB 的面积最大,则点P 到直线l 的距离最大. 设过点P 且与直线l 平行的直线方程为b x y +=.……………………………………7分将b x y +=代入141222=+y x 整理得,()0436422=-++b bx x .…………………8分令()()22644340b b ∆=-⨯⨯-=,解得4±=b . …………………………………9分将4±=b 代入方程()0436422=-++b bx x ,解得3±=x .易知当点P 的坐标为()1,3-时,△PAB 的面积最大. ………………………………10分 且点P ()1,3-到直线l 的距离为231121322=+---=d . …………………………11分△PAB 的最大面积为=⨯⨯=d AB S 219. …………………………………………12分 22.(本小题满分12分)已知函数2()ln f x x ax bx =++(其中a ,b 为常数且0a ≠)在1x =处取得极值. (Ⅰ)当1a =时,求()f x 的单调区间;(Ⅱ)若()f x 在(0,]e 上的最大值为1,求a 的值. 22.解:(Ⅰ)因为2()ln f x x ax bx =++,所以1'()2f x ax b x=++,……………1分 因为函数2()ln f x x ax bx =++在1x =处取得极值,'(1)120f a b =++= ………………………………………………2分 当1a =时,3b =-,2231'()x x f x x-+=, ……………………3分函数()f x 定义域为(0,)∈+∞x由'()0f x >,得102x <<或1x >;由'()0f x <,得112x <<,…………………5分 即函数()f x 的单调递增区间为1(0,)2,(1,)+∞;单调递减区间为1(,1)2.(Ⅱ)因为(21)(1)'()ax x f x x--=,令'()0f x =,11x =,212x a=, ………………………………………………6分 因为()f x 在1x =处取得极值,所以21112x x a=≠=,①当102a<时,()f x 在(0,1)上单调递增,在(1,]e 上单调递减,所以()f x 在区间(0,]e 上的最大值为(1)f ,令(1)1f =,解得2a =-, ………………………………………………8分②当1012<<a 时, ()f x 在1(0,)2a 上单调递增,1(,1)2a上单调递减,(1,)e 上单调递增, 所以最大值1可能在12x a=或x e =处取得,而21111()ln ()(21)2222f a a a a a a =+-+11ln 124=--a a0< , 所以2()ln (21)1f e e ae a e =+-+=,解得12a e =-; ………………………10分③当112e a ≤<时,()f x 在区间(0,1)上单调递增,1(1,)2a 上单调递减,1(,)2e a上单调递增,所以最大值1可能在1x =或x e =处取得, 而(1)ln1(21)=10=+-+--<f a a a , 所以2()ln (21)1f e e ae a e =+-+=,解得12a e =-,与2112x e a <=<矛盾.………………………………………………11分 ④当212x e a=≥时,()f x 在区间(0,1)上单调递增,在(1,)e 上单调递减,所以最大值1可能在1x =处取得,而(1)ln1(21)=10=+-+--<f a a a ,矛盾. 综上所述,12a e =-或2a =-. ………………………………………………12分11。