检测技术与实验报告 (1)
- 格式:docx
- 大小:222.89 KB
- 文档页数:49
实验名称:新型检测技术的应用研究实验日期:2023年X月X日实验地点:XX大学实验室一、实验目的本次实验旨在研究新型检测技术的应用,通过对该技术的原理、操作步骤和实验结果进行分析,验证其准确性和实用性,为我国相关领域的研究提供参考。
二、实验原理新型检测技术是指利用先进的物理、化学、生物等方法,对物质进行快速、高效、准确的检测。
本实验采用的新型检测技术为基于荧光共振能量转移(FRET)原理的检测方法。
该方法通过构建特定的分子探针,利用荧光共振能量转移信号的变化来判断目标物质的浓度。
三、实验材料1. 实验试剂:荧光染料、荧光素酶、磷酸二酯酶、生物素、抗体、DNA分子等。
2. 实验仪器:荧光光谱仪、酶标仪、PCR仪、凝胶成像系统等。
3. 实验样品:待测物质溶液。
四、实验步骤1. 构建荧光共振能量转移探针:将荧光染料与荧光素酶连接,形成荧光共振能量转移探针。
2. 样品处理:将待测物质溶液与探针混合,在荧光光谱仪下检测荧光信号。
3. 数据分析:利用酶标仪和PCR仪对荧光信号进行定量分析,计算待测物质的浓度。
4. 对照实验:设置阴性对照组和阳性对照组,以验证实验结果的准确性。
五、实验结果与分析1. 荧光共振能量转移探针构建成功:通过荧光光谱仪检测,荧光信号强度与探针浓度呈正相关,证明探针构建成功。
2. 待测物质浓度检测结果:根据酶标仪和PCR仪的定量分析结果,待测物质浓度在实验范围内与荧光信号强度呈正相关,验证了该检测方法的准确性。
3. 对照实验结果:阴性对照组和阳性对照组的检测结果与实验组一致,进一步验证了实验结果的准确性。
六、结论本次实验成功构建了基于荧光共振能量转移原理的新型检测技术,并验证了其准确性和实用性。
该技术具有快速、高效、准确的特点,为我国相关领域的研究提供了有力支持。
七、实验展望1. 优化探针设计:进一步优化荧光共振能量转移探针的设计,提高检测灵敏度。
2. 扩展应用领域:将新型检测技术应用于更多领域,如食品安全、环境监测、生物医药等。
实验一金属箔式应变片单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,掌握单臂电桥工作原理和性能。
二、实验内容将应变式传感器的其中一个应变片接入电桥作为一个桥臂,构成直流电桥,利用应变式传感器实现重量的测量。
三、实验所用仪表及设备应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源数、±4V电源、数字万用表。
四、实验步骤1、根据图1-1,应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。
图1-1 应变片传感器安装示意图2、实验模板差动放大器调零,方法为:(1)接入模板电源±15V,检查无误后,合上主控台电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置;(2)将差放的正、负输入端与地短接,V o1输出端与数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕后关闭主控台电源。
3、参考图1-2接入传感器,将应变式传感器的其中一个应变片R1接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),检查接线无误后,合上主控台电源开关,用数字万用表测量主控台到应变式传感器模块上的±5V、±15V电压值是否稳定?若电压波动值大于10mV,应反复拔插相应的电源连接线,直至电压稳定,不再波动为止,然后粗调节Rw1,再细调RW4使数显表显示为零。
4、在传感器托盘上放置1只砝码,读取数显表显示值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表1-1。
图1-2 应变片传感器单臂电桥实验图5、根据表1-1计算系统灵敏度S:S=ΔV/ΔW(ΔV为输出电压平均变化量,ΔW为重量变化量);计算非线性误差:δf =Δm / y FS×100%,其中Δm为输出电压值(多次测量为平均值)与拟合直线最大电压偏差量,y FS为满量程时电压输出平均值,这里YFS取180g时对应的输出电压值。
竭诚为您提供优质文档/双击可除一般检查实验报告篇一:检测技术实验报告《检测技术实验》实验名称:院(系):姓名:实验室:同组人员:评定成绩:实验报告第一次实验(一、三、五)自动化专业:自动化xxxxxx 学号:xxxxxxxx实验组别:实验时间:年月日审阅教师:实验一金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器:应变传感器实验模块、托盘、砝码、数显电压表、±15V、±4V电源、万用表、导线等。
三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,上面的应变片随弹性体形变被拉伸,对应为模块面板上的R1、R3,下面的应变片随弹性体形变被压缩,对应为模块面板上的R2、R4。
图2-1应变式传感器安装示意图图2-2应变传感器实验模板、接线示意图图2-3单臂电桥工作原理通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压e为电桥电源电压,式1-1表明单臂电桥输出为非线性,非线性误差为四、实验内容与步骤1、图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。
2、从主控台接入±15V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端ui短接,输出端uo2接数显电压表(选择2V档),调节电位器Rw4,使电压表显示为0V。
最新实验报告(实验一)实验目的:本实验旨在探究特定条件下物质的热分解行为,通过定量分析,了解温度、时间、催化剂等因素对反应速率和产物分布的影响。
实验方法:1. 材料准备:选取适量的待分解物质样品,记录其初始质量。
2. 设备设置:使用热重分析仪(TGA)进行实验,设定升温程序为从室温升至800℃,升温速率为10℃/分钟。
3. 实验操作:将样品置于坩埚中,开启TGA设备,记录质量变化数据。
4. 数据收集:实验结束后,收集TGA曲线图,记录各个阶段的质量损失和残留物情况。
实验结果:1. TGA曲线显示,在200℃时,样品开始有轻微的质量损失,推测为水分的蒸发。
2. 当温度升至400℃时,样品质量迅速下降,表明发生了明显的热分解反应。
3. 在600℃时,质量损失趋于稳定,此时残留物质量约为初始样品的30%。
4. 通过对比实验,发现在添加特定催化剂后,热分解起始温度降低,反应速率加快。
实验讨论:1. 实验观察到的初步质量损失与预期的水分蒸发相符,进一步证实了样品中含有一定量的结合水。
2. 热分解阶段的质量快速下降表明样品在高温下不稳定,容易发生分解。
3. 残留物的组成分析表明,分解产物主要包括氧化物和其他无机盐类。
4. 催化剂的加入显著改变了反应动力学,这可能与催化剂降低了反应的活化能有关。
结论:本次实验成功地模拟并分析了物质在不同条件下的热分解行为。
通过TGA分析,我们确定了样品的热稳定性和分解产物,同时发现催化剂的使用对提高反应效率具有重要意义。
未来的工作将进一步探索不同催化剂和反应条件下的分解行为,以优化工业生产过程。
检测技术实验报告总结1. 引言本次实验主要针对检测技术进行了深入研究和实践。
检测技术作为计算机视觉和图像处理的重要分支,具有广泛的应用前景。
本次实验通过对不同检测技术的探索和实验,对检测算法的原理、性能和应用进行了一定的了解和分析。
2. 实验设计与设置在本次实验中,我们采用了以下实验设计与设置:1. 实验目标:对比不同的检测技术在目标检测任务中的性能表现。
2. 实验对象:我们选择了YOLO、Faster R-CNN 等多种常用的检测算法作为实验对象。
3. 实验数据集:为了保证实验结果的可靠性和准确性,我们选择了经典的PASCAL VOC 数据集作为实验数据集。
4. 实验环境:我们使用了一台配置高效、高性能的服务器进行实验,以保证实验的稳定性和可重复性。
5. 实验流程:通过对比不同检测技术的准确率、召回率和运行时间等指标,来评估不同算法的性能和效果。
3. 实验结果与分析3.1 YOLO 算法YOLO(You Only Look Once)是一种实时目标检测算法,其特点是一次性完成检测和定位,速度快且准确度较高。
在我们的实验中,我们使用VOC2007 数据集对YOLO 算法进行了测试。
实验结果表明,YOLO 算法在目标检测任务中表现出了较好的性能。
在测试集上的平均准确率达到了XX%。
同时,由于YOLO 采用了全卷积神经网络的设计,使得算法在图像处理的速度方面表现优秀,平均每张图片的识别时间仅为XX毫秒。
3.2 Faster R-CNN 算法Faster R-CNN 是一种经典的目标检测算法,其特点是采用了区域建议网络(Region Proposal Network,RPN)来生成候选目标框,然后再进行目标检测和定位。
在我们的实验中,我们同样使用VOC2007 数据集对Faster R-CNN 算法进行了测试。
与YOLO 算法相比,Faster R-CNN 算法在准确率方面稍稍降低,平均准确率达到了XX%。
实验一传感器实验班号:机械91班学号:姓名:戴振亚同组同学:裴文斐、林奕峰、冯荣宇1、电阻应变片传感器一、实验目的(1) 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
(2) 了解半桥的工作原理,比较半桥与单臂电桥的不同性能、了解其特点(3) 了解全桥测量电路的原理及优点。
(4) 了解应变直流全桥的应用及电路的标定二、实验数据三、实验结果与分析1、性能曲线A、单臂电桥性能实验由实验数据记录可以计算出的系统的灵敏度S=ΔU/ΔW=0.21(mV/g),所以运用直线拟合可以得到特性曲线如下图所示。
B、半桥性能实验由实验记录的数据我们可以得到半桥系统的灵敏度为S=ΔU/ΔW=0.41(mV/g),所以我们可以运用直线拟合实验数据得到性能曲线如下图所示。
C、全桥性能实验由实验记录的数据我们可以得到全桥系统的灵敏度为S=ΔU/ΔW=0.78(mV/g),所以我们可以运用直线拟合实验数据得到性能曲线如下图所示。
检测实验报告戴振亚D、电子称实验由实验记录的数据我们可以得到全桥系统的灵敏度为S=ΔU/ΔW=-1(mV/g),所以我们可以运用直线拟合实验数据得到性能曲线如下图所示。
2、分析a、从理论上分析产生非线性误差的原因由实验原理我们可以知道,运用应变片来测量,主要是通过外界条件的变化来引起应变片上的应变,从而可以引起电阻的变化,而电阻的变化则可以通过电压来测得。
而实际中,电阻的变化与应变片的应变的变化不是成正比的,而是存在着“压阻效应”,从而在实验的测量中必然会引起非线性误差。
b、分析为什么半桥的输出灵敏度比单臂时高了一倍,而且非线性误差也得到改善。
首先我们由原理分析可以知道,单臂电桥的灵敏度为e0=(ΔR/4R0)*e x,而半桥的灵敏度为e0=(ΔR/2R0)*e x,所以可以知道半桥的灵敏度是单臂时的两倍,而由实验数据中我们也可以看出,而由于半桥选用的是同侧的电阻,为相邻两桥臂,所以可以知道e0=(ΔR1/R0-ΔR2/R0)*e x/4,而ΔR1、ΔR2的符号是相反的,同时由于是同时作用,减号也可以将温度等其他因素引起的电阻变化的误差减去而使得非线性误差得到改善。
实验一、质粒DNA的提取及检测【实验目的】1、掌握碱裂解法提取质粒的原理和步骤2、掌握琼脂糖凝胶电泳检测DNA的方法和技术3、学会PCR操作的基本技术第一部分质粒DNA的提取一、实验原理:碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA在拓扑学上的差异来分离它们。
在pH值介于~这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。
当加入的乙酸钾高盐缓冲液恢复pH至中性时,共价闭合环状的质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,而线性的染色体DNA的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们缠绕形成网状结构,通过离心,染色体DNA与不稳定的大分子RNA,蛋白质-SDS复合物等一起沉淀下来而被除去。
二、仪器与试剂1、仪器恒温摇床、台式离心机2、试剂溶液I、溶液Ⅱ、溶液Ⅲ、无水乙醇、TE缓冲液、胰RNA酶、酚、氯仿三、实验步骤1、将2mL含相应抗生素(Amp:50μg/mL)的LB液体培养基加入到试管中,接入含pUC19质粒的大肠杆菌,37℃振荡培养过夜。
2、取培养物倒入微量离心管中,4000r/min离心2min。
3、吸去培养液,使细胞沉淀尽可能干燥。
4、将细菌沉淀悬浮于100μL溶液I中,充分混匀,室温放置10 min。
5、加200μL溶液Ⅱ(新鲜配制),盖紧管皿,混匀内容物,将离心管放冰上5min。
6、加入150μL溶液Ⅲ(冰上预冷),盖紧管口,颠倒数次使混匀。
冰上放置15min。
7、12000r/min,离心15min,将上清转至另一离心管中。
8、向上清中加入等体积酚:氯仿(1:1)(去蛋白),反复混匀,12000r/min,离心5min,将上清转移到另一离心管中。
9、向上清加入2倍体积无水乙醇,混匀后,室温放置5~10min。
12000r/min,离心5min。
一、实验目的1. 掌握生物检测技术的基本原理和操作方法。
2. 了解常见生物分子的检测方法及其应用。
3. 培养严谨的实验态度和团队协作精神。
二、实验原理生物检测技术是指利用生物化学、分子生物学、免疫学等原理,对生物样本中的特定物质进行定性和定量分析的方法。
本实验主要涉及以下几种检测技术:1. 比色法:通过溶液颜色变化来检测生物分子,如蛋白质、糖类、脂肪等。
2. 电泳法:利用分子在电场中的迁移速率差异,对生物分子进行分离和鉴定。
3. 免疫学检测:利用抗原-抗体反应,检测生物样本中的特定蛋白质。
三、实验器材与试剂1. 实验器材:离心机、电泳仪、凝胶成像系统、显微镜、移液器、试管等。
2. 试剂:蛋白质标准品、糖类标准品、脂肪标准品、抗体、酶联免疫吸附剂、凝胶电泳试剂、染色剂等。
四、实验步骤1. 蛋白质检测(1)制备蛋白质样品:取适量生物组织,用组织匀浆机处理,离心取上清液。
(2)进行电泳:将蛋白质样品与凝胶电泳试剂混合,加样到电泳槽中,进行电泳分离。
(3)染色:用考马斯亮蓝染色,观察蛋白质条带。
(4)分析结果:根据蛋白质条带与标准品条带比对,鉴定蛋白质种类。
2. 糖类检测(1)制备糖类样品:取适量生物组织,用组织匀浆机处理,离心取上清液。
(2)进行比色法:将糖类样品与比色试剂混合,在特定波长下测定吸光度。
(3)分析结果:根据吸光度与标准品吸光度比对,鉴定糖类种类。
3. 脂肪检测(1)制备脂肪样品:取适量生物组织,用组织匀浆机处理,离心取上清液。
(2)进行比色法:将脂肪样品与比色试剂混合,在特定波长下测定吸光度。
(3)分析结果:根据吸光度与标准品吸光度比对,鉴定脂肪种类。
4. 免疫学检测(1)制备抗体:制备针对特定蛋白质的抗体。
(2)进行酶联免疫吸附试验:将抗体与酶联免疫吸附剂混合,加入生物样本,进行抗原-抗体反应。
(3)分析结果:根据酶联免疫吸附剂的颜色变化,鉴定生物样本中是否存在特定蛋白质。
五、实验结果与分析1. 蛋白质检测:实验中观察到蛋白质条带,与标准品条带比对,鉴定出蛋白质种类。
NANCHANG UNIVERSITY现代检测技术实验报告专业:自动化班级:自动化163班学号: 6101216090 学生姓名:王劲昌2019年12月目录实验一差动变压器的应用——电子秤实验二热电偶的原理及分度表的应用实验三热敏电阻测温演示实验实验四霍尔式传感器的静态位移特性—直流激励实验一差动变压器的应用——电子秤实验目的:了解差动变压器的实际应用所需单元及部件:音频振荡器、差动放大器、移相器、相敏检波器、低通滤波器、V/F表、电桥、砝码、振动平台。
有关旋钮初始位置:音频振荡器调至4KH Z,V/F表打到2V档。
实验步骤:(1)按图1接线,组成一个电感电桥测量系统,开启主、副电源,利用示波器观察,调节音频振荡器的幅度旋钮,使音频振荡器的输出为V P-P值为lV。
图1 接线图(2)将测量系统调零,将V/F表的切换开关置20V档,示波器X轴扫描时间切换到0.1~0.5ms(以合适为宜),Y轴CHl或CH2切换开关置5V/div,音频振荡器的频率旋钮置5KHz,幅度旋钮置中间位置。
开启主、副电源,调节电桥网络中的W1,W2,使V/F表和示波器显示最小,再把V/F表和示波器Y轴的切换开关分别置2V和50mv/div,细条W1和W2旋钮,使V/F表显示值最小。
再用手按住双孔悬臂梁称重传感器托盘的中间产生一个位移,调节移相器的移相旋钮,使示波器显示全波检波的图形。
放手后,粱复原。
(3)适当调整差动放大器的放大倍数,使在称重平台上放上一定数量的砝码时电压表指示不溢出。
(4)去掉砝码,必要的话将系统重新调零。
然后逐个加上砝码,读出表头读数,记下实验数据,填入下表;Wq(g)0 20 40 60 80 100V P-P(V)-0.837 -0.790 -0.747 -0.706 -0.660 -0.621(5)去掉砝码,在平台上放一重量未知的重物,记下电压表读数,关闭主副电源。
(6)利用所得数据,求得系统灵敏度及重物重量。
测试与检测技术基础实验报告总结1. 引言测试与检测技术在现代科学研究和工程实践中占据着重要的地位。
在各个领域中,测试和检测的准确性和可靠性对于确保产品质量、发现问题和提高工作效率至关重要。
本实验报告总结了测试与检测技术基础实验的目的、方法、结果和结论,并对实验过程中的主要问题和改进方法进行了讨论。
2. 实验目的本实验旨在通过实际操作来学习测试与检测技术的基本原理和方法,培养学生的实践能力。
具体目标包括:•理解测试和检测的概念及其在不同领域中的应用;•学习基本的测试与检测方法和工具;•掌握测试计划的编制和实施过程;•分析测试和检测结果,形成结论和建议。
3. 实验方法3.1 实验设备本实验使用的设备和软件如下:•计算机•特定领域的测试设备(例如,网络分析仪、信号发生器等)•数据采集仪•编程工具(例如,MATLAB、LabVIEW等)3.2 实验步骤本实验包括以下步骤:1.研究测试对象和测试要求,明确测试的目标和范围。
2.设计测试计划,确定测试方法和工具。
3.准备测试环境,安装和配置必要的设备和软件。
4.实施测试计划,采集测试数据并记录结果。
5.对测试数据进行分析和处理,得出结论和建议。
6.撰写实验报告,总结实验过程、结果和改进措施。
4. 实验结果与讨论4.1 实验结果本实验中,我们选择了某个特定领域的测试对象,并根据具体要求进行了一系列的测试。
通过测试,我们采集了大量的测试数据并进行了分析。
4.2 结果分析与讨论根据对测试数据的分析,我们得出了一些结论和发现。
然后,我们对实验过程中的问题进行了讨论,并提出了改进的方法和建议。
5. 结论本次实验通过实际操作,增强了我们对测试与检测技术的理解和应用能力。
我们深入学习了测试与检测技术的基本原理和方法,并通过实验获得了实际的测试经验。
通过分析实验结果,我们得出了相关结论,并提出了改进方法和建议。
6. 参考文献[1] Smith, A. B., & Johnson, C. D. (2018). Introduction to Testing and Measurement Techniques. Journal of Test and Measurement, 10(2), 45-58.[2] Thompson, R. W., & Brown, S. T. (2019). Test Design Techniques for Quality Assurance. Quality Assurance Journal, 15(4), 78-89.[3] Chen, L., & Liu, W. (2020). Practical Guide to Testing and Inspection Techniques. Testing and Inspection Today, 25(3), 112-124.。
接线示意图
实验步骤:
应变传感器实验模板说明:
拆去放大器输入端口的短接线,根据图2 接线。
注意R2 应和
反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。
调节实验模板上的桥路平衡电位器RW1,使主机箱电压表显
拆去放大器输入端口的短接线,根据图3—1 接线。
实验方法与实验二相同,将实验数据填入表3 画出实验曲线;进行灵敏度和非线性误差计算。
实验完毕,关闭电源。
实验器材:
主机箱、应变式传感器实验模板、砝码实验步骤:
1.8.1将主机箱中的转速调节2-24V 旋钮旋到最小(逆时针旋到底
调节测微头使被测体与传感器端部接触,将电压表显示选择开关切换到档,检查接线无误后开启主机箱电源开关,记下电压表读数,然后每隔个数,直到输出几乎不变为止。
将数据列入表8-1。
图位移-电压曲线
1.12思考题
图位移-电压1-3mm曲线
1.1
2.1电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何设
计传感器?
1.1
2.2答:电涡流的大小与金属导体的电阻率c,厚度t,线圈的励磁电流角频率ω
以及线圈与金属块之间的距离x等参数有关。
若固定某些参数,就能根据电涡流的大小推算出另外某一参数. 量程越大,探头线圈也要随着大
1.1
2.3用电涡流传感器进行非接触位移测量时,如何根据量程使用选用传感器。
答: 电涡流传感器对金属材料的成分比较敏感,一般选择推荐的标准材料,例如45钢;一般来说电涡流传感器擅长微小位移的检测,例如,此时最大量程一般在几毫米的最常用。
如果量程较大,则分辨率下降,线圈直径也较大。
15
(1mm-3mm)表格 3 铁片位移-电压曲线
图表1 铝片位移-电压实验曲线
x(mm)v(v)x(mm)v(v)。