化学专业英语第17课
- 格式:doc
- 大小:23.00 KB
- 文档页数:2
学而不思则惘,思而不学则殆Key to Exercise Unit 1 Chemical Industries1.the Industrial Revolutionanic chemicals3.the contact process4.the Haber process5.synthetic polymers6.intermediates7.artificial fertilizers 8.pesticides (crop protection chemicals)9.synthetic fibers10.pharmaceutical11.research and development12.petrochemicalputers(automatic control equipment)14.capital intensiveSome Chemicals Used In Our Daily LifeUnit 2 Research and Development1.R&D2.ideas and knowledge3.process and products4.fundamental5.applied6.product development7.existing product8.pilot plant9.profitbility10.environmental impact11.energy cost 12.technical support13.process improvement14.effluent treatment15.pharmaceutical16.sufficiently pure17.Reaction18.unreacted material19.by-products20.the product specification21.Product storageUnit 3 Typical Activities of Chemical Engineers1.Mechanical2.electrical3.civil4.scale-upmercial-size6.reactors7.distillation columns8.pumps9.control and instrumentation10.mathematics11.industry12.academia13.steam 14.cooling water15.an economical16.to improve17.P&I Drawings18.Equipment Specification Sheets19.Construction20.capacity and performance21.bottlenecks22.Technical Sales23.new or improved24.engineering methods25.configurationsUnit 4 Sources of Chemicals1.inorganic chemicals2.derive from (originate from)3.petrochemical processes4.Metallic ores5.extraction process6.non-renewable resource7.renewable sources8.energy source9.fermentation process10.selective 11.raw material12.separation and purification13.food industry14.to be wetted15.Key to success16.Crushing and grinding17.Sieving18.Stirring and bubbling19.Surface active agents20.OverflowingUnit 5 Basic Chemicals 1. Ethylene 2. acetic acid 3.4. Polyvinyl acetate5. Emulsion paintUnit 6 Chlor-Alkali and Related Processes 1. Ammonia 2. ammonia absorber 3. NaCl & NH 4OH 4.5. NH 4Cl6. Rotary drier7. Light Na 2CO 3Unit 7 Ammonia, Nitric Acid and Urea 1. kinetically inert 2. some iron compounds 3. exothermic 4. conversion 5. a reasonable speed 6. lower pressures 7. higher temperatures 8.9. energy 10. steam reforming 11. carbon monoxide 12. secondary reformer 13. the shift reaction 14. methane 15. 3:1Unit 8 Petroleum Processing 1. organic chemicals 2. H:C ratios3. high temperature carbonization4. crude tar5. pyrolysis6. poor selectivity7. consumption of hydrogen8. the pilot stage9. surface and underground 10.fluidized bed 11. Biotechnology 12. sulfur speciesUnit 9 PolymersUnit 10 What Is Chemical EngineeringMicroscale (≤10-3m)●Atomic and molecular studies of catalysts●Chemical processing in the manufacture of integrated circuits●Studies of the dynamics of suspensions and microstructured fluidsMesoscale (10-3-102m)●Improving the rate and capacity of separations equipment●Design of injection molding equipment to produce car bumpers madefrom polymers●Designing feedback control systems for bioreactorsMacroscale (>10m)●Operability analysis and control system synthesis for an entire chemicalplant●Mathematical modeling of transport and chemical reactions ofcombustion-generated air pollutants●Manipulating a petroleum reservoir during enhanced oil recoverythrough remote sensing of process data, development and use of dynamicmodels of underground interactions, and selective injection of chemicalsto improve efficiency of recoveryUnit 12 What Do We Mean by Transport Phenomena?1.density2.viscosity3.tube diameter4.Reynolds5.eddiesminar flow7.turbulent flow 8.velocity fluctuations9.solid surface10.ideal fluids11.viscosity12.Prandtl13.fluid dynamicsUnit 13 Unit Operations in Chemical Engineering 1. physical 2. unit operations 3. identical 4. A. D. Little 5. fluid flow6. membrane separation7. crystallization8. filtration9. material balance 10. equilibrium stage model 11. Hydrocyclones 12. Filtration 13. Gravity 14. VaccumUnit 14 Distillation Operations 1. relative volatilities 2. contacting trays 3. reboiler4. an overhead condenser5. reflux6. plates7. packing8.9. rectifying section 10. energy-input requirement 11. overall thermodynamic efficiency 12. tray efficiencies 13. Batch operation 14. composition 15. a rectifying batch 1 < 2 < 3Unit 15 Solvent Extraction, Leaching and Adsorption 1. a liquid solvent 2. solubilities 3. leaching 4. distillation 5. extract 6. raffinate 7. countercurrent 8. a fluid 9. adsorbed phase 10. 400,000 11. original condition 12. total pressure 13. equivalent numbers 14. H + or OH –15. regenerant 16. process flow rates17. deterioration of performance 18. closely similar 19. stationary phase 20. mobile phase21. distribution coefficients 22. selective membranes 23. synthetic24. ambient temperature 25. ultrafiltration26. reverse osmosis (RO).Unit 16 Evaporation, Crystallization and Drying 1. concentrate solutions 2. solids 3. circulation 4. viscosity 5. heat sensitivity 6. heat transfer surfaces 7. the long tube8. multiple-effect evaporators 9.10. condensers 11. supersaturation 12. circulation pump 13. heat exchanger 14. swirl breaker 15. circulating pipe 16. Product17. non-condensable gasUnit 17 Chemical Reaction Engineering1.design2.optimization3.control4.unit operations (UO)5.many disciplines6.kinetics7.thermodynamics,8.fluid mechanics9.microscopic10.chemical reactions 11.more valuable products12.harmless products13.serves the needs14.the chemical reactors15.flowchart16.necessarily17.tail18.each reaction19.temperature and concentrations20.linearUnit 18 Chemical Engineering Modeling1.optimization2.mathematical equations3.time4.experiments5.greater understanding6.empirical approach7.experimental design8.differing process condition9.control systems 10.feeding strategies11.training and education12.definition of problem13.mathematical model14.numerical methods15.tabulated or graphical16.experimental datarmation1.the preliminary economics2.technological changes3.pilot-plant data4.process alternatives5.trade-offs6.Off-design7.Feedstocks 8.optimize9.plant operations10.energy11.bottlenecking12.yield and throughput13.Revamping14.new catalystUnit 19 Introduction to Process Design1. a flowsheet2.control scheme3.process manuals4.profit5.sustainable industrial activities6.waste7.health8.safety9. a reactor10.tradeoffs11.optimizations12.hierarchyUnit 20 Materials Science and Chemical Engineering1.the producing species2.nutrient medium3.fermentation step4.biomass5.biomass separation6.drying agent7.product8.water9.biological purificationUnit 21 Chemical Industry and Environment1.Atmospheric chemistry2.stratospheric ozone depletion3.acid rain4.environmentally friendly products5.biodegradable6.harmful by-product7.efficiently8.power plant emissions 9.different plastics10.recycled or disposed11.acidic waste solutionsanic components13.membrane technology14.biotechnology15.microorganisms。
Key to Exercise Unit 1 Chemical Industries1.the Industrial Revolutionanic chemicals3.the contact process4.the Haber process5.synthetic polymers6.intermediates7.artificial fertilizers 8.pesticides (crop protection chemicals)9.synthetic fibers10.pharmaceutical11.research and development12.petrochemicalputers(automatic control equipment)14.capital intensiveSome Chemicals Used In Our Daily LifeUnit 2 Research and Development1.R&D2.ideas and knowledge3.process and products4.fundamental5.applied6.product development7.existing product8.pilot plant9.profitbility10.environmental impact11.energy cost 12.technical support13.process improvement14.effluent treatment15.pharmaceutical16.sufficiently pure17.Reaction18.unreacted material19.by-products20.the product specification21.Product storageUnit 3 Typical Activities of Chemical Engineers1.Mechanical2.electrical3.civil4.scale-upmercial-size6.reactors7.distillation columns8.pumps9.control and instrumentation10.mathematics11.industry12.academia13.steam 14.cooling water15.an economical16.to improve17.P&I Drawings18.Equipment Specification Sheets19.Construction20.capacity and performance21.bottlenecks22.Technical Sales23.new or improved24.engineering methods25.configurationsUnit 4 Sources of Chemicals1.inorganic chemicals2.derive from (originate from)3.petrochemical processes4.Metallic ores5.extraction process6.non-renewable resource7.renewable sources8.energy source9.fermentation process10.selective 11.raw material12.separation and purification13.food industry14.to be wetted15.Key to success16.Crushing and grinding17.Sieving18.Stirring and bubbling19.Surface active agents20.OverflowingUnit 5 Basic Chemicals 1. Ethylene 2. acetic acid 3.4. Polyvinyl acetate5. Emulsion paintUnit 6 Chlor-Alkali and Related Processes 1. Ammonia 2. ammonia absorber 3. NaCl & NH 4OH 4.5. NH 4Cl6. Rotary drier7. Light Na 2CO 3Unit 7 Ammonia, Nitric Acid and Urea 1. kinetically inert 2. some iron compounds 3. exothermic 4. conversion 5. a reasonable speed 6. lower pressures 7. higher temperatures 8.9. energy 10. steam reforming 11. carbon monoxide 12. secondary reformer 13. the shift reaction 14. methane 15. 3:1Unit 8 Petroleum Processing 1. organic chemicals 2. H:C ratios3. high temperature carbonization4. crude tar5. pyrolysis6. poor selectivity7. consumption of hydrogen8. the pilot stage9. surface and underground 10.fluidized bed 11. Biotechnology 12. sulfur speciesUnit 9 PolymersUnit 10 What Is Chemical EngineeringMicroscale (≤10-3m)●Atomic and molecular studies of catalysts●Chemical processing in the manufacture of integrated circuits●Studies of the dynamics of suspensions and microstructured fluidsMesoscale (10-3-102m)●Improving the rate and capacity of separations equipment●Design of injection molding equipment to produce car bumpers madefrom polymers●Designing feedback control systems for bioreactorsMacroscale (>10m)●Operability analysis and control system synthesis for an entire chemicalplant●Mathematical modeling of transport and chemical reactions ofcombustion-generated air pollutants●Manipulating a petroleum reservoir during enhanced oil recoverythrough remote sensing of process data, development and use of dynamicmodels of underground interactions, and selective injection of chemicalsto improve efficiency of recoveryUnit 12 What Do We Mean by Transport Phenomena?1.density2.viscosity3.tube diameter4.Reynolds5.eddiesminar flow7.turbulent flow 8.velocity fluctuations9.solid surface10.ideal fluids11.viscosity12.Prandtl13.fluid dynamicsUnit 13 Unit Operations in Chemical Engineering 1. physical 2. unit operations 3. identical 4. A. D. Little 5. fluid flow6. membrane separation7. crystallization8. filtration9. material balance 10. equilibrium stage model 11. Hydrocyclones 12. Filtration 13. Gravity 14. VaccumUnit 14 Distillation Operations 1. relative volatilities 2. contacting trays 3. reboiler4. an overhead condenser5. reflux6. plates7. packing8.9. rectifying section 10. energy-input requirement 11. overall thermodynamic efficiency 12. tray efficiencies 13. Batch operation 14. composition 15. a rectifying batch 1 < 2 < 3Unit 15 Solvent Extraction, Leaching and Adsorption 1. a liquid solvent 2. solubilities 3. leaching 4. distillation 5. extract 6. raffinate 7. countercurrent 8. a fluid 9. adsorbed phase 10. 400,000 11. original condition 12. total pressure 13. equivalent numbers 14. H + or OH –15. regenerant 16. process flow rates17. deterioration of performance 18. closely similar 19. stationary phase 20. mobile phase21. distribution coefficients 22. selective membranes 23. synthetic24. ambient temperature 25. ultrafiltration26. reverse osmosis (RO).Unit 16 Evaporation, Crystallization and Drying 1. concentrate solutions 2. solids 3. circulation 4. viscosity 5. heat sensitivity 6. heat transfer surfaces 7. the long tube8. multiple-effect evaporators 9.10. condensers 11. supersaturation 12. circulation pump 13. heat exchanger 14. swirl breaker 15. circulating pipe 16. Product17. non-condensable gasUnit 17 Chemical Reaction Engineering1.design2.optimization3.control4.unit operations (UO)5.many disciplines6.kinetics7.thermodynamics,8.fluid mechanics9.microscopic10.chemical reactions 11.more valuable products12.harmless products13.serves the needs14.the chemical reactors15.flowchart16.necessarily17.tail18.each reaction19.temperature and concentrations20.linearUnit 18 Chemical Engineering Modeling1.optimization2.mathematical equations3.time4.experiments5.greater understanding6.empirical approach7.experimental design8.differing process condition9.control systems 10.feeding strategies11.training and education12.definition of problem13.mathematical model14.numerical methods15.tabulated or graphical16.experimental datarmation1.the preliminary economics2.technological changes3.pilot-plant data4.process alternatives5.trade-offs6.Off-design7.Feedstocks 8.optimize9.plant operations10.energy11.bottlenecking12.yield and throughput13.Revamping14.new catalystUnit 19 Introduction to Process Design1. a flowsheet2.control scheme3.process manuals4.profit5.sustainable industrial activities6.waste7.health8.safety9. a reactor10.tradeoffs11.optimizations12.hierarchyUnit 20 Materials Science and Chemical Engineering1.the producing species2.nutrient medium3.fermentation step4.biomass5.biomass separation6.drying agent7.product8.water9.biological purificationUnit 21 Chemical Industry and Environment1.Atmospheric chemistry2.stratospheric ozone depletion3.acid rain4.environmentally friendly products5.biodegradable6.harmful by-product7.efficiently8.power plant emissions 9.different plastics10.recycled or disposed11.acidic waste solutionsanic components13.membrane technology14.biotechnology15.microorganisms。
化学工程与工艺专业英语试题卷参考答案一.Put the following into English or Chinese.1.石油化学制品2. alkali3. sodium carbonate4. 聚合作用5. ammonia6. 药物7. antioxidant8. 聚四氟乙烯9. 环己烷10..carbonmonoxide 11. 乙醇胺12. thermodynamics 13. 光谱学14. refinery 15. 多相的16. isothermal17. 聚氧化亚甲基18. chloride 19. ethanol 20. 聚氯乙烯二.Translation.1. 4 generations under one roof2. to be a winner of the family3. 教务处4.国家助学金5.Principles of chemistry(unit operations)6.生产实习7.graduation thesis8.妇产医院9.transport phenomena10.金窝,银窝,不如自己的狗窝11.normal university 12.综合性大学13.应试教育14.master of business administrator 15.分析化学16.税务局17.party committee 18.专卖店19.chain store(multiple shop) 20.主任医生三、Put the following sentences underlined into ChineseA在20世纪六、七十年代,由于聚乙烯、聚丙烯、尼龙、聚酯环氧树脂等聚合物合成需求量的大量增加,石油化工产品产量呈现爆炸式的增长。
B单一的化工厂产量有从精细化工领域的每年几吨到肥料、石油领域的化工巨头的每年500,000吨。
C一方面,化学生产工业的扩张,另一方面,化学工程与工艺科学的先进,这些使为化工生产奠定了理论基础成为了可能。
ContentPART 1 Introduction to Materials Science &Engineering 1 Unit 1 Materials Science and Engineering 1 Unit 2 Classification of Materials 9 Unit 3 Properties of Materials 17 Unit 4 Materials Science and Engineering: What does the Future Hold? 25 Part ⅡMETALLIC MATERLALS AND ALLOYS33 Unit 5 An Introduction to Metallic Materials 33 Unit 6 Metal Manufacturing Methods 47 Unit 7 Structure of Metallic Materials 57 Unit 8 Metal-Matrix Composites 68 Part ⅢCeramics 81 Unit 9 Introduction to Ceramics 81 Unit 10 Ceramic Structures —Crystalline and Noncrystalline 88 Unit 11 Ceramic Processing Methods 97 Unit 12 Advanced ceramic materials –Functional Ceramics 105 PARTⅣNANOMATERIALS 112 Unit 13 Introduction to Nanostructured Materials 112 Unit14 Preparation of Nanomaterials 117 Unit 15 Recent Scientific Advances 126 Unit 16 The Future of Nanostructure Science and Technology 130 Part ⅤPOLYMERS 136Unit17 A Brief Review in the Development of Synthetic Polymers 136 Unit18 Polymer synthesis: Polyethylene synthesis 146 Unit19 Polymer synthesis: Nylon synthesis 154 Unit 20 Processing and Properties Polymer Materials 165 PART VI POLYMERIC COMPOSITES 172 Unit21 Introduction to Polymeric Composite Materials 172 Unit22 Composition, Structure and Morphology of Polymeric Composites 178 Unit23 Manufacture of Polymer Composites 185 Unit24 Epoxy Resin Composites 191 Part 7 Biomaterial 196 Unit 25 Introduction to Biomaterials 196 Unit 26 Biocompatibility 205 Unit 27 Polymers as Biomaterials 213 Unit 28 Future of Biomaterials 224 PARTⅧMaterials and Environment 237 Unit29 Environmental Pollution & Control Related Materials 237 Unit30 Bio-degradable Polymer Materials 241 Unit 31 Environmental Friendly Inorganic Materials 248 Unit 32 A Perspective on the Future: Challenges and Opportunities 256 附录一科技英语构词法263 附录二科技英语语法及翻译简介269附录三:聚合物英缩写、全名、中文名对照表280附录四:练习题参考答案284PART 1 Introduction to Materials Science &EngineeringUnit 1Materials Science and EngineeringHistorical PerspectiveMaterials are probably more deep-seated in our culture than most of usrealize. Transportation, housing, clothing, communication, recreation, and food production —virtually every segment of our everyday lives is influenced to one degree or another by materials. Historically, the development and advancement of societies have been intimately tied to the members’ ability to produce and manipulate materi- als to fill their needs. In fact, early deep-seated根深蒂固的, 深层的civilizations have been designated by the level of their materials development (Stone Age, Bronze Age, Iron Age).The earliest humans had access to only a very limited number of materials, those that occur naturally: stone, wood, clay, skins, and so on. With time they discovered techniques for producing materials that had propertiessuperior to those of the natural ones; these new materials included pottery and various metals. Furthermore, it was discovered that the properties of a material could be altered by heat treatments and by the addition of other substances. At this point, materials utilization was totally a selection process that involved deciding from a given, rather limited set of materials the one best suited for an application by virtue of its characteristics.①It was not until relatively recent times that scientists came to understand the relationships between the structural elements of materials and their properties. This knowledge, acquired over approximately the past 100 years, has empowered them to fashion, to a large degree, the characteristics of materials. Thus, tens of thousands of different materials have evolved with rather specialized charac- teristics that meet the needs of our modern and complex society; these include metals, plastics, glasses, and fibers.The development of many technologies that make our existence so comfortable has been intimately associated with the accessibility of suitable materials. An advancement in the understanding of a material type is often the forerunner to the stepwise progression of a technology. For example, pottery // 陶器structural elements结构成分;property //.性能automobiles would not have been possibl- e without the availability of inexpensive steel or some other comparable substitute. In our contemporary era, sophisticated electronic devices rely on components that are made from what are called semiconducting materials.Materials Science and EngineeringThe discipline of materials science involves investigating the relationships that exist between the structures and properties of materials. In contrast, materials engineering is, on the basis of these structure–property correlations, designing or engineering the structure of a material to produce a predetermined set of properties.“Structure’’is at this point a nebulous term that deserves some explanation. In brief, the structure of a material usually relates to the arrangement of its internal components. Subatomic structure involves electrons within the individual atoms and interactions with their nuclei. On an atomic level, structure encompasses the organization of atoms or molecules relative to one another. The next larger structural realm, which contains large groups of atoms that are normally agglomerated together, is termed ‘‘microscopic,’’meaning that which is subject to direct observation using some type of microscope. Finally, structural elements that may be viewed with the naked eye are termed ‘‘macroscopic.’’The notion of ‘‘property’’ deserves elaboration. While in service use, all materials are exposed to external stimuli that evoke some type of response. stepwise//逐步的sophisticated//精制的,复杂的;semiconducting materials 半导体材料nebulous//含糊的,有歧义的subatomic//亚原子的microscopic//For example, a specimen subjected to forces will experience deformation; or a polished metal surface will reflect light. Property is a material trait in terms of the kind and magnitude of response to a specific imposed stimulus. Generally, definitions of properties are made independent of material shape and size.Virtually all important properties of solid materials may be grouped into six different categories: mechanical, electrical, thermal, magnetic, optical, and deteriorative. For each there is a characteristic type of stimulus capable of provoking different responses. Mechanical properties relate deformation to an applied load or force; examples include elastic modulus and strength. For electrical properties, such as electrical conductivity and dielectric constant, the stimulus is an electric field. The thermal behavior of solids can be represented in terms of heat capacity and thermal conductivity. Magnetic properties demonstrate the response of a material to the application of a magnetic field. For optical properties, the stimulus is electro- magnetic or light radiation; index of refraction and reflectivity are representative optical properties. Finally, deteriorative characteristics indicate the chemical reactivity of materials.In addition to structure and properties, two other important components are involved in the science and engineering of materials, viz. ‘‘processing’’and ‘‘performance.’’With regard to the relationships of these four components, the structure of a material will depend on how it is processed. 微观的// 宏观的deformation// 变形deteriorative//破坏(老化的)elastic modulus 弹性模量strength //强度;dielectric constant介电常数;heat capacity 热容量refraction。
Key to Exerci se Unit 1 Chemic al Indust ries1.the Indust rialRevolu tionani c chemic als3.the contac t proces s4.the Haberproces s5.synthe tic polyme rs6.interm ediat es7.artifi cialfertil izers 8.pestic ides9.synthe tic fibers10.pharma ceuti cal11.resear ch and develo pment12.petroc hemic alput ers14.capita l intens iveSome Chemic als Used In Our DailyLifeFood artifi cialfertil izers, pestic ide, veteri naryproduc ts Health antibi otics, β-blocke rsClothi ng synthe tic fibers (e.g. polyes ters, polyam ides),synthe tic dyesShelte r synthe tic polyme rs (e.g. urea-formal dehyd e,polyur ethan es),plasti csLeisur e plasti cs and polyme rs (e.g. nylon)Transp ort additi ves (e.g. anti-oxidan ts, viscos ity indeximpove ments),polyme rs, plasti csUnit 2 Resear ch and Develo pment1.R&D2.ideasand knowle dge3.proces s and produc ts4.fundam ental5.applie d6.produc t develo pment7.existi ng produc t8.pilotplant9. a emergi ng case10.enviro nment al impact11.energy cost 12.techni cal suppor t13.proces s improv ement14.efflue nt treatm ent15.pharma ceuti cal16.suffic ientl y pure17.Reacti on18.unreac ted materi al19.by-produc ts20.the produc t specif icati on21.Produc t storag eUnit 3 Typica l Activi tiesof Chemic al Engine ers1.Mechan ical2.electr ical3.civil4.scale-upmer cial-size6.reacto rs7.distil latio n column s8.pumps9.contro l and instru menta tion10.mathem atics11.indust ry12.academ ia13.steam14.coolin g water15.an econom ical16.to improv e17.P&I Drawin gs18.Equipm ent Specif icati on Sheets19.Constr uctio n20.capaci ty and perfor mance21.bottle necks22.Techni cal Sales23.new or improv ed24.engine ering method s25.config urati onsUnit 4 Source s of Chemic als1.inorga nic chemic als2.derive from3.petroc hemic al proces ses4.Metall ic ores5.extrac tionproces s6.non-renewa ble resour ce7.renewa ble source s8.energy source9.fermen tatio n proces s10.select ive 11.raw materi al12.separa tionand purifi catio n13.food indust ry14.to be wetted15.Key to succes s16.Crushi ng and grindi ng17.Sievin g18.Stirri ng and bubbli ng19.Surfac e active agents20.Overfl owingUnit 5 BasicChemic als1.Ethyle ne2.acetic acid3.Polyme rizat ion4.Polyvi nyl acetat e5.Emulsi on paintHigh-volume sector Low-volume sectorProduc tionscaletens to hundre ds of thousa ndstons per yeartens to a few thousa nds tonsper yearProduc ts / a plantsingle produc t multi-produc ts Operat ion manner contin uousbatchPriceor profit fairly cheapvery profit ableUsageinterm ediat es end-produc tsChalle ngesreduce d demand, enviro nment pollut ionProdu c ts in the secto r sulph u ric acid,phosp h orus -conta i ning compo u nds, nitro g en-conta i ning compo u nds, chlor -alkal i , petro c hemi c als, commo d ity polym e rsagroc h emic a ls,dyest u ffs, pharm a ceut i cals , speci a lity polym e rsUnit 6 Chlor -Alkal i and Relat e d Proce s ses 1. Ammon i a 2. ammon i a absor b er 3. NaCl & NH4OH 4. Carbo n dioxi d e5. NH4Cl 6. Rotar y drier 7. Light Na2CO 38. Water Produ c tRaw mater i alMajor steps or Princ i pal react i ons UsesSoda-ashbrine ,limes t oneammon i atin g ,carbo n atin g , preci p itat i ng, filte r ing, dryin g , calci n ingraw mater i al forglass m akin g , sodiu m silic a te; as an alkal i Chlor i ne brine 2Na + + 2Cl -+2H 2O →NaOH +Cl 2 +H 2as water purif i cati o n, bleac h ing of wood pulp;produ c tion of vinyl chlor i de, solve n ts,inorg a nic chlor i ne-conta i ning produ c ts Caust i c soda brine 2Na + + 2Cl - +2H 2O →NaOH +Cl 2 +H 2for paper -makin g ,manuf a ctur e of inorg a nicchemi c als, synth e ses of organ i cchemi c als,produ c tion of alumi n a andsoap Sulfu r ic acideleme n tal sulph u rS +O 2 → SO 2SO 2 + O 2 → SO 3 SO 3 + H 2O → H2SO4feeds t ock for ferti l izer s ; produ c tion of ethan o l, hydro f luor i c acid, alumi n um sulph a tesUnit 10 What Is Chemi c al Engin e erin gMicro s cale (≤10-3m) ● Atomi c and molec u lar studi e s of catal y sts● Chemi c al proce s sing in the manuf a ctur e of integ r ated circu i ts ●Studi e s of the dynam i cs of suspe n sion s and micro s truc t ured fluid sMesos c ale (10-3-102m)●Improv ing the rate and capaci ty of separa tions equipm ent●Design of inject ion moldin g equipm ent to produc e car bumper s madefrom polyme rs●Design ing feedba ck contro l system s for biorea ctorsMacros cale(>10m)●Operab ility analys is and contro l system synthe sis for an entire chemic alplant●Mathem atica l modeli ng of transp ort and chemic al reacti ons ofcombus tion-genera ted air pollut ants●Manipu latin g a petrol eum reserv oir during enhanc ed oil recove rythroug h remote sensin g of proces s data, develo pment and use of dynami cmodels of underg round intera ction s, and select ive inject ion of chemic alsto improv e effici encyof recove ryCourse Course conten tScienc e and Math. Chemis try, Physic s, Biolog y, Materi al Scienc e, Mathem atics,Comput er Instru ctionChemic al Engine eringThermo dynam ics, Kineti cs, Cataly sis,Rector Design and Analys is, Unit Operat ions, Proces s Contro l, Chemic al Engine ering Labora torie s, Design / Econom icsOtherENGINe ering Electr icalEngine ering, Mechan ics, Engine ering Drawin gHumani tiesand SocialSCIENc e Unders tandthe origin sofone’sowncultur e as well as that ofothersUnit 21 Chemic al Indust ry and Enviro nment1.ATMOSp heric chemis try2.strato spher ic ozonedeplet ion3.acid rain4.enviro nment allyfriend ly produc ts5.biodeg radab le6.harmfu l by-produc t7.effici ently8.powerplantemissi ons9.differ ent plasti cs10.recycl ed or dispos ed11.acidic wastesoluti onsani c compon ents13.membra ne techno logy14.biotec hnolo gy15.microo rgani smsFronti er Resear ch activi tiesor proble ms facedIn-site proces singFieldtests;Uncert ainti es of the proces s, Advers e enviro nment impact sProces s solidsImprov e solids fractu re proces ses,Resear ch on the mechan ics of pneuma tic and slurry transp ort, Unders tandthe chemic al reacti on proces ses,Equipm ent design and scale-upSepara tionproces sResear ch on:membra ne separa tions, chemic al select ive separa tionagents, shape-select ive porous solids,tradit ional separa tionmethod sMateri alsFind constr uctio n materi als, Develo p new proces s-relate d materi als, Develo p less energy intens ive materi alsDesign and scale-up Comple xity, Lack of basicdata,。
一、元素和单质的命名“元素”和“单质”的英文意思都是“element”,有时为了区别,在强调“单质”时可用“free element”。
因此,单质的英文名称与元素的英文名称是一样的。
下面给出的既是元素的名称,同时又是单质的名称。
2过渡元素和单质Fe : iron Mn : manganese Cu: copper Zn: zinc Hg: mercury Ag: silver Au: gold二化合物的命名:化合物的命名顺序都是根据化学式从左往右读,这与中文读法顺序是相反的。
表示原子个数时使用前缀:mono-di -tri- tetra -penta- hexa-hepta- octa-,nona-, deca-,但是在不会引起歧义时,这些前缀都尽可能被省去。
1.化合物正电荷部分的读法:直呼其名,即读其元素名称。
如CO: carbon monoxide Al2O3: aluminium oxideN2O4:Di nitrogen tetroxide对于有变价的金属元素,除了可用前缀来表示以外,更多采用罗马数字来表示金属的氧化态,或用后缀-ous表示低价,-ic表示高价。
如FeO: iron(II) oxide 或ferrous oxide Fe2O3: iron (III) oxide或ferric oxide Cu2O: copper(I) oxide 或cuprous oxide CuO: copper(II) oxide或cupric oxide 2.化合物负电荷部分的读法:2.1二元化合物:常见的二元化合物有卤化物,氧化物,硫化物,氮化物,磷化物,碳化物,金属氢化物等,命名时需要使用后缀-ide,如:fluoride,chloride,bromide,iodide,oxide ,sulfide ,nitride, phosphide, carbide,hydride; OH -的名称也是用后缀-ide:hydroxide,非金属氢化物不用此后缀,而是将其看成其它二元化合物(见2。
Unit 17 Chemical Reaction Engineering每一种工业化的化工过程的目的都是通过一系列的处理步骤从各种原料经济性地生成所需的产品。
图3-5表示一种典型的过程。
为了使原料处于能发生化学反应的形式,原料要经过(undergo)许多物理处理步骤,然后,通过反应器。
为了得到最终的所需的产品,反应的产物必须经过进一步的物理处理,如分离、纯化等。
用于物理处理步骤的设备的设计在单元操作中研究,这里我们关心的是过程的化学处理步骤。
经济上,化学处理步骤是不重要的装置,如一简单的混合槽。
然而,化学处理步骤通常是整个过程的核心,在经济方面可使过程发生或停止的因素。
反应器的设计不是例行公事(routine),对于某一过程可以提出许多其它的设计。
为了寻求最佳的设计,必须减少的费用不仅仅是反应器费用。
一种设计可以是反应器费用低,但离开该装置的物料可以是该情况:物料的处理费用比其它设计费用高得多。
所以全过程的经济性必须要考虑。
反应器的设计要运用各种领域(热力学、化学动力学、流体力学、传质、传热以及经济学)的信息、知识和经验。
化学反应工程是这些所有的因素的综合(synthesis),其目的是精确地设计化学反应器。
化学反应器的设计可能是化学工程师的独特(unique)的一种活动,这可能较其它方面更能证明化学工程作为工程学科的独特的分支的存在。
在化学反应器设计时,必须要回答两个问题:(1)我们期望发生什么变化?(2)变化发生有多快?。
第一个问题关于热力学,而第二个问题是关于各种速率过程——化学动力学、传热,等等。
把这些过程综合起来以及要确定这些过程是如何关联的,是相当难的问题(事情)。
因此我们必须从简单的情况开始,利用考虑其它的因素来增长(帮助)我们的分析,直到我们能处理更困难的问题。
1. Thermodynamics热力学给出了设计所需的两条重要的信息:反应释放(或吸收)的热量以及反应的最大的可能程度。
17 有机化学中的氧化和还原
醇转变为羰基化合物是伯醇、仲醇的重要反应,是有机化学中许多氧化反应的实例之一。
我们如何知道一个种有机化合物已经被氧化了呢?在最后部分,我们认识到醇反应生成酮也是氧化反应,因为它是Cr(Ⅵ)还原反应引起的。
但是还有一些其它的氧化反应其氧化剂不明显。
在这部分我们的目标是能够识别出氧化或者还原反应仅仅通过观察有机化合物自身的转变。
这个判断的过程包含三个步骤:
步骤1:对于每一个反应物和产物的每一个碳原子指定反应级数(这个只需要于在转化过程中有化学变化的碳原子的氧化级数的指定)特定碳原子的氧化级数是这样的:考虑相关的碳原子与基团成键的相对电负性,例如:
(a).对于一种元素的每一个电负性小于碳的键(包括氢原子)在碳原子周围每一个价态都是-1价;
(b).对于与其它碳原子之间的键,C上每一个未成键的电子,指定为0价;
(c).对于与电负性高于碳的元素之间的键,在碳原子上呈正价态,为+1价;
(d).添加在(a). (b). (c)中分配的数得到碳原子的氧化个数。
下面来让我们把步骤运用于异丙醇向丙醇的转化,由于两个甲基团中的碳原子价态未改变,我们不需要对这些碳原子指定氧化级数,应该注意酮中间的羰基双键可视为两个键;每个键为+1价,双键共为+2价。
步骤2:每个化合物的氧化数NOX是通过将所有C原子的氧化级数相加计算而得的。
在上面的结构中,仅仅只有一个C原子的氧化级数发生了改变,因此,反应物和产物的NOX 仅仅等于各自的碳原子的氧化级数。
因此,反应物的氧化级数为0而产物为+2,在其他的包含多于一个C原子的反应中,NOX的计算是通过所有发生化学变化的C原子的氧化数的加和。
步骤3:计算不同。
NOX(产物)=NOX(反应物)
如果这个价态是正的,则是氧化反应,如果是负的,则为还原反应。
如果为0,则非氧化非还原反应。
对于反应(17-1)这个价态差是+2-0=+2,故这个反应就是一个氧化反应。
尽管氧化数这个非常有用,但是我们不能忽略下面的两个一般的有机氧化和还原的特征。
这两点可以让我们一眼分辨出氧化或者还原反应。
1.在多数有机化合物的氧化反应中,既不会有C-H上的H也不会有C-C上的C被一个
电负性高的元素所取代,例如卤素或者氧,这种变化是还原反应。
2.一个分子的氧化态是由它的各个C原子的氧化态决定的。
氧化级数概念可以被简单的与有机化学中常用的氧化反应定义相联系。
根据这个定义,氧化态失去电子,还原态得电子,这个定义,在有机化合物中被广泛应用。
看下面的乙醇氧
化为乙酸的例子。
我们能利用水平衡失去的氧,用质子平衡失去的氢和用设定的电子平衡电荷,从而把该氧化反应写成一个平衡的半反应。
根据这个半反应,乙醇分子失去四个电子当醋酸形成的时候(由于这仅是一个半反应,相应的电子数肯定是增加的。
)据说,乙醇被氧化为乙酸是四电子氧化,这种类型的术语,在生化中应用频繁,来自于半反应形式。
如果计算乙醇和乙酸的氧化数,我们可以看到式(17-2)氧化值为+4.这个例子说明下面这一点:氧化数的变化数等于失去的电子数,如果氧化数的变化是负的,则是还原反应,变化数等于得到电子数。
氧化反应和还原反应,像酸碱中和,总是成对发生。
因此,当有物质被氧化时,其它的物质被还原。
当一种有机物质被氧化,引起反应的试剂叫氧化剂。
同样地,当一种有机物被还原,引起反应的试剂叫还原剂。
例如,假设铬酸根离子被用来引发乙醇向乙酸的反应如17-2.在这一反应中,铬酸根被还原成Cr3+8H++3e-+CrO42-~4H2O+Cr3+,在铬酸盐(Ⅵ)还原为Cr3+获得了电子,由于在反应(17-3)中失去4个电子,化学计量学要求每三个乙醇分子氧化为乙酸,四个CrO42-被还原。
通过考虑反应过程中氧化数的变化,我们可以说氧化或还原剂需要引发反应。
例如,下面的反应为非氧化非还原反应。
尽管一个C被氧化一个C被还原,即使我们对这个反应一无所知,很显然对,仅有氧化剂或还原剂是不会发生这种反应的。
氧化数的概念可以用来组织有机化合物形成具有相同氧化级数的反应中,一个给定基团的化合物可以通过一个既不是氧化剂也不是还原剂的试剂进行交换。
如:我们知道醇可以与HBr生成卤烷,HBr既不是氧化剂也不是还原剂。
另一方面,醇变为羧酸包含有一个氧化级数的变化,事实上这个反应需要氧化剂才可以实现。
含有大量的H和C有更多可能的氧化态数。
因此,叔醇不能在α-C上被氧化(不含断裂的C-C键),因为这个C没有携带H。
甲烷,一方面可以被氧化为CO2.(当然,如果C-C键断裂,任何烷烃都可以被氧化成CO2)。