胶体溶液
- 格式:doc
- 大小:106.50 KB
- 文档页数:4
高中化学胶体与溶液教案
主题:胶体与溶液
时间:1课时
目标:
1. 了解胶体与溶液的区别和特点;
2. 掌握胶体的制备方法和应用;
3. 了解溶液的分类和性质。
教学内容:
1. 胶体的定义和分类;
2. 胶体的制备方法和应用;
3. 溶液的分类和性质。
教学重难点:
1. 胶体与溶液的区别;
2. 胶体的制备方法和应用;
3. 溶液的分类和性质。
教学过程:
一、导入(5分钟)
1. 通过实验或图例展示一些胶体和溶液的例子,引发学生对胶体与溶液的兴趣;
2. 提问:你知道胶体和溶液的区别吗?
二、讲解(15分钟)
1. 讲解胶体的定义和分类,如胶体的悬浮液、乳胶和凝胶等;
2. 讲解胶体的制备方法和应用,如凝胶制备、胶体应用于医学和工业等;
3. 讲解溶液的分类和性质,如气体溶液、固体溶液和液体溶液等。
三、实践(20分钟)
1. 实验:制备一种胶体,并观察其性质;
2. 实验:制备一种溶液,并观察其性质。
四、总结(10分钟)
1. 总结胶体与溶液的区别和特点;
2. 总结胶体的制备方法和应用;
3. 总结溶液的分类和性质。
五、作业(5分钟)
1. 阅读相关资料,了解更多关于胶体与溶液的知识;
2. 准备一个小组报告,介绍一种胶体或溶液的制备方法和应用。
教学反思:
通过这堂课的教学,学生可以初步了解胶体与溶液的区别和特点,掌握胶体的制备方法和应用,了解溶液的分类和性质。
同时,通过实验和讨论,培养学生的实践能力和团队合作意识,提高他们的化学素养和创新能力。
鉴别胶体和溶液的方法胶体和溶液是化学中常见的两种混合物。
虽然它们看起来相似,但它们之间还是有一些明显的区别的。
在本文中,我们将对胶体和溶液的区别进行详细的讨论,并介绍一些鉴别胶体和溶液的方法。
一、胶体和溶液的定义1、胶体胶体是一种混合物,其中两种或多种物质以微小的颗粒分散在另一种物质中。
这些被悬浮在溶液中的微小颗粒称为胶体粒子。
这些颗粒通常在1纳米到1000纳米之间。
2、溶液溶液是一种混合物,其中一个物质(溶质)被另一个物质(溶剂)完全溶解。
在溶液中,溶质的颗粒大小通常在1纳米以下。
二、胶体和溶液的性质区别1、性质胶体和溶液的物理和化学性质很不同。
例如,胶体的粘度通常比溶液的粘度高,而溶液通常呈透明状态,而胶体则表现出浑浊或乳白色。
2、导电性溶液中的离子可以传播电荷,因此溶液的导电性很高。
然而,在胶体中,胶体粒子太小,不能传播电荷,所以胶体的导电能力很小。
3、沉淀溶液在静止状态下通常是稳定的。
当两个液体混合时,一些物质会溶解,而另一些物质会沉淀下来。
但胶体在静止状态下并不稳定,因为粒子会相互吸引而聚集在一起,形成大颗粒。
这就是为什么胶体需要被持续搅拌或震动以保持其分散状态。
4、光学性质溶液是透明的,而胶体通常呈浑浊或乳白色。
这是因为当光线穿过胶体时,胶体粒子会散射光线,使胶体呈现出不透明的外观。
三、鉴别胶体和溶液的方法1、运用Tyndall效应鉴别胶体和溶液Tyndall效应是一种鉴别胶体和溶液的简单方法。
当光线穿过溶液时,光线被完全吸收而不会散射,因此没有可见光散射。
但光线穿过胶体时,胶体中的颗粒会散射光线,这导致胶体呈现出浑浊外观。
因此,通过观察光线在混合物中的散射,在混合物中检测到光线的射线可以确定混合物是胶体还是溶液。
2、运用表征胶体和溶液的光学性质的迈克尔斯–明兹曼散射光谱鉴别胶体和溶液迈克尔斯-明兹曼散射光谱是一种专门用于分析胶体和溶液的光学性质的方法。
该方法可以测量在散射角度的变化中光线的强度。
第十三章胶体溶液1861年英国科学家Graham T使用胶体(colloid)这个名词来描述扩散速度小,不能透过如羊皮纸一类的半透膜,溶剂蒸发后不结晶而形成无定形胶状物的物质。
四十多年后,俄国科学家Веймарн(韦曼)研究了200多种物质,证明任何能结晶的物质在一定介质中用适当的方法都能成为胶体。
后来胶体的概念改变为物质的一种分散状态,“胶体”的涵意就是高度分散的意思,准确地讲,粒子大小范围在1 100nm的物质称为胶体。
一些高分子物质粒子的大小与前述胶体物质具有共性,属于胶体研究的范围;随着二十世纪三十年代以后高分子研究的发展,阐明了这些物质中因存在柔性程度不同的线性长链而又具有其自身的本质特征。
液体介质中,胶体的质点也可由许多较小的两亲性分子(分子具亲水的极性基团和亲油的碳键烃基)缔合而成,此类胶体称为缔合胶体。
胶体系统在医学上有特殊的实际意义。
在活的机体、组织和细胞结构中,作为基础的物质如蛋白质、核酸、淀粉、糖原、纤维素等是由链状分子组成的,且体液具有胶体系统的性质。
哺乳动物的乳汁是油脂和酪蛋白等物质分散在水中所成的乳状液;将药材制成乳状液,有剂量大、疗效好的优点。
乳状液也属于胶体化学讨论的内容。
第一节分散系统和胶体分散系一、分散系统及其分类一种或数种物质分散在另一种物质中所形成的系统称为分散系(dispersed system)。
例如矿物分散在岩石中生成矿石,水滴分散在空气中形成云雾,聚苯乙烯分散在水中形成乳胶,溶质分散在溶剂中形成溶液等。
被分散的物质称为分散相(dispersed phase),容纳分散相的连续介质称为分散介质(dispersed medium)。
按照分散相粒子的大小,可以把分散系分为真溶液、胶体分散系和粗分散系三类(表13-1),它们具有不同的扩散速度、膜的通透性和滤纸的通透性能。
真溶液的分散相粒子小于1nm,粗分散系分散相粒子大于100nm,介于两者之间的是胶体分散系。
大一化学溶液与胶体知识点在大一的化学学习中,溶液与胶体是两个重要的概念。
本文将详细介绍溶液和胶体的定义、特点、分类以及相关的知识点。
一、溶液的定义和特点溶液是由溶质和溶剂组成的一种均匀混合物。
其中,溶质是指能够被溶解的物质,溶剂是指能够溶解其他物质的介质。
溶液具有以下特点:1. 透明度:溶液通常呈透明状态,能够使光线通过。
2. 溶解度:溶液中溶质的溶解度是指单位溶剂中最多能溶解多少溶质。
不同的溶质在不同的溶剂中具有不同的溶解度。
3. 浓度:溶液的浓度是指单位溶液中溶质的量。
常用的浓度单位包括摩尔浓度和质量浓度等。
二、溶液的分类根据溶剂的性质,溶液可以分为以下几种类型:1. 水溶液:以水作为溶剂的溶液称为水溶液。
例如,盐水和糖水都属于水溶液。
2. 非水溶液:以非水溶剂作为介质的溶液称为非水溶液。
例如,乙醇溶液和二氧化碳溶液都属于非水溶液。
3. 气溶液:气体在液体中的溶液称为气溶液。
例如,碳酸氢钠溶液中的二氧化碳就是气体在水中的溶液。
三、胶体的定义和特点胶体是介于溶液与悬浊液之间的一种混合态物质。
在胶体中,溶质以极微小颗粒的形式分散在溶剂中,且能够长时间保持均匀分散状态。
胶体的特点包括:1. 稳定性:胶体具有较好的稳定性,即能够长时间保持分散状态,不易发生沉淀。
2. 散射性:胶体溶液能够散射光线,呈现浑浊的外观。
3. 过滤性:胶体溶液不能通过常规的过滤器进行过滤,只能通过特殊的方法进行分离。
四、胶体的分类根据溶剂与溶质的相态、形状和粒径大小等,胶体可以分为以下几种类型:1. 溶胶:溶剂为液体,溶质为固体的胶体称为溶胶。
例如,颜料溶液就是一种溶胶。
2. 凝胶:在溶胶基础上,加入适量的胶态剂后形成的胶体称为凝胶。
凝胶具有较高的黏稠度和凝固性质,可以保持形状。
3. 乳胶:溶剂为液体,溶质为固体或液体的胶体称为乳胶。
例如,牛奶是由水、脂肪、蛋白质等组成的乳胶。
4. 气溶胶:溶剂为气体,溶质为固体或液体的胶体称为气溶胶。
十大常用胶体溶液胶体溶液是指由两种或两种以上的物质组成的混合物,其中一种物质是微粒子,另一种物质是溶液。
胶体溶液具有很多特殊的性质,因此在生产和生活中得到了广泛的应用。
下面介绍十大常用胶体溶液。
1. 水凝胶水凝胶是一种高分子化合物,具有吸水性和保水性。
它可以吸收大量的水分,形成凝胶状物质,被广泛应用于农业、医疗、化妆品等领域。
2. 胶原蛋白溶液胶原蛋白溶液是一种天然的胶体溶液,由胶原蛋白和水组成。
它具有良好的生物相容性和生物可降解性,被广泛应用于医疗、化妆品等领域。
3. 聚乙烯醇溶液聚乙烯醇溶液是一种高分子化合物,具有良好的溶解性和粘度。
它被广泛应用于纺织、造纸、印刷等领域。
4. 聚丙烯酰胺溶液聚丙烯酰胺溶液是一种高分子化合物,具有良好的吸水性和保水性。
它被广泛应用于土壤改良、水处理等领域。
5. 硅胶溶液硅胶溶液是一种无机胶体溶液,由硅酸盐和水组成。
它具有良好的吸附性和稳定性,被广泛应用于干燥剂、催化剂等领域。
6. 纳米银溶液纳米银溶液是一种胶体溶液,由纳米银粒子和水组成。
它具有良好的抗菌性能,被广泛应用于医疗、食品、饮料等领域。
7. 纳米二氧化钛溶液纳米二氧化钛溶液是一种胶体溶液,由纳米二氧化钛粒子和水组成。
它具有良好的光催化性能和抗菌性能,被广泛应用于环境治理、医疗、食品等领域。
8. 聚合物乳液聚合物乳液是一种胶体溶液,由聚合物和水组成。
它具有良好的粘度和稳定性,被广泛应用于涂料、胶粘剂、纸张等领域。
9. 聚合物胶体聚合物胶体是一种胶体溶液,由聚合物和水组成。
它具有良好的粘度和稳定性,被广泛应用于涂料、胶粘剂、纸张等领域。
10. 聚合物微球聚合物微球是一种胶体溶液,由聚合物和水组成。
它具有良好的吸附性和稳定性,被广泛应用于药物缓释、催化剂等领域。
胶体溶液在生产和生活中得到了广泛的应用,它们的特殊性质为我们的生活带来了很多便利。
分离胶体和溶液的方法胶体和溶液是常见的两种混合物,它们在日常生活和工业生产中都有着重要的应用。
然而,由于它们的性质不同,我们在实际应用中需要对它们进行分离。
本文将介绍分离胶体和溶液的方法,希望能够对您有所帮助。
首先,我们来看看分离胶体和溶液的物理方法。
其中最常见的方法之一是过滤。
过滤是利用不同孔径的过滤介质,将胶体和溶液中的固体颗粒分离出来的方法。
通过选择合适的过滤介质,可以有效地分离胶体和溶液。
另外,离心也是一种常用的物理方法。
离心是利用离心机产生的离心力,将胶体和溶液中的固体颗粒或液体分离的方法。
这两种物理方法都是简单易行的,适用于实验室和工业生产中的分离操作。
除了物理方法,化学方法也可以用来分离胶体和溶液。
其中最常见的化学方法是沉淀法。
沉淀法是利用化学反应产生的沉淀物与胶体或溶液中的物质发生作用,使其沉淀下来,从而实现分离的方法。
沉淀法通常需要在一定的温度、pH值和反应时间下进行,需要根据具体情况选择合适的沉淀剂和条件。
另外,电泳也是一种常用的分离方法。
电泳是利用电场作用于胶体或溶液中的带电粒子,使其在电场中移动,从而实现分离的方法。
电泳可以根据粒子的大小、形状和电荷来进行选择合适的电场条件,从而实现高效的分离。
除了上述方法,还有一些其他的分离方法,如超滤、逆渗透等,这些方法都是根据胶体和溶液的性质和特点来选择合适的分离方法。
在实际应用中,我们需要根据具体的情况来选择合适的方法进行分离操作。
总的来说,分离胶体和溶液的方法有物理方法和化学方法两大类,每种方法都有其特点和适用范围,我们需要根据具体情况来选择合适的方法进行分离操作。
希望本文能够对您有所帮助,谢谢阅读。
第四章胶体溶液
[教学目标]
1.掌握表面现象、表面能、吸附、表面活性剂等概念,掌握分散系的组成与分类
2.认识溶胶的稳定性,掌握溶胶聚沉的方法;了解大分子化合物对溶胶的保护作用,认识乳化作用
3.熟悉溶胶的性质
4.了解胶体的概念和胶团结构
[教学重点]
大分子化合物溶液对溶胶的保护作用,乳化作用
[教学难点]
溶胶的稳定性和聚沉
[教学方法]
讲授,演示,讨论
[教学内容]
胶体与医学有密切的关系,是构成人体组织和细胞的基础物质,体液是胶体物质,许多药物也制成胶体形式使用。
因此,学习胶体溶液的基本概念非常重要。
第一节表面现象
一、表面现象
1、相和相的分类
2、界面和表面
3、表面现象:吸附、毛细现象、润湿、乳化等。
二、表面能和表面张力
1、液体内部分子与表面分子的受力差别
2、表面张力(f):
定义:相邻的各部分液面相互吸引的力
f = α×L α—液体表面张力系数(牛/米);
L —液面分界线的长度(米)
3、比表面能(δ):
定义:一定条件下比表面上所有分子比内部分子多出的能量
单位:J/m2或N/m
4、表面能(Es ):
定义:表面层分子比内部分子多出的能量
Es = δ×S δ—比表面能;S—表面积
应用:一切物体都有自动降低其势能的趋势,由公式可知:
降低表面能有两条途径:
①减小表面积;②降低表面张力
三、吸附:
定义:是物质在两相界面上浓度自动发生变化的现象。
(一)固体表面的吸附:
1、物理吸附——范德华力
2、化学吸附——化学键力
应用
(二)液体表面的吸附:
1、溶液浓度与表面张力的关系
2、表面活性剂:液体表面均匀散布一些物质,能显著降低水的表面张力,降低了液体的表面能。
这些能均匀散布的物质称为“表面活性剂”。
(反之,称为表面惰性物质)结构特点:分子中同时有疏水基团(烷烃基)和亲水基团(羧基、氨基)。
例如:肥皂(高级脂肪酸钠)
3、液体表面的吸附
4、液体内胶束的形成
(1)液体内胶束的形成:
(2)胶束的种类:
球形胶束;层状胶束;棒状胶束。
(3)胶束的形成与应用
胶束的形成
形成胶束的作用:
①助溶作用
②乳化作用
乳化:一种液体分散到另一种互不相溶的液体中,形成高度分散体系的过程
乳化作用:乳化剂使乳状液稳定性增强的作用
乳化剂亲水性强——形成O/W型
乳化剂亲油性强——形成W/O型
乳化作用在医学上的意义:油脂的消化,药物的制剂
③形成气泡
第二节分散系
一、分散系的基本概念
1、分散系:
一种或几种物质分散在另一物质中所形成的体系
(1)分散质(相):被分散的物质
(2)分散介质(剂):容纳分散相的连续介质
2、分散系的构成
分散相;分散介质
举例说明:(略)
3、分散系的分类:分子离子分散系;胶体;粗分散系
1、分子、离子分散系(也称为真溶液):
定义:是指分散相粒子的直径大于1nm的分散系。
分散相:溶质;分散介质:溶剂
特点:透明,很均匀,很稳定,分散相粒子能透过滤纸和半透膜
2、粗分散系:
定义:是指分散相粒子的直径大于100nm的分散系。
分散相:固体小颗粒或小液滴;分散介质:其它物质
特点:不透明,不均匀,不稳定,分散相粒子不能透过滤纸和半透膜。
分类:
(1)悬浊液:由难溶的固体小颗粒分散在液体介质中形成的粗分散系。
(2)乳浊液:由小液滴分散在互不相溶的另一种液体介质中形成的粗分散系。
3、胶体分散系
定义:分散相粒子直径大小介于1nm~100nm之间的分散系
分散相:胶粒;分散介质:其它物质
分类与特点:溶胶——透明度不一,不均匀,较稳定,分散相粒子能透过滤纸但不能透过半透膜。
高分子溶液——透明,均匀,很稳定,分散相粒子能透过滤纸但不能透过半透膜。
小结:
1、表面现象:
受到具有产生形成表面分子→表面张力→表面能→表面现象→吸附
2、三类分散系的比较:(见教材,略)
第三节胶体溶液
一、胶团结构
1、胶体溶液(即溶胶)的分类:
(1)气溶胶;(2)液溶胶;(3)固溶胶。
2、胶团的结构
如下图所示:
二、溶胶的性质
1.光学性质——丁达尔现象:1869年由丁达尔(Tyndall)发现,将溶胶放置暗处,以一束汇聚光通过溶胶时,可在与光束垂直的方向上观察到溶胶中有一明亮光柱的现象。
丁达尔现象的实质是:光的散射现象。
应用:1、利用该现象来区别其它分散系
2、医用注射液质量检查——应无乳光现象
2.动力学性质——布朗运动:胶粒在分散介质中的无规则运动。
1903年发明了超显微镜,为研究布朗运动提供了物质条件。
用超显微镜可以观察到溶胶粒子不断地作不规则“之”字形的运动,而且能够测出在一定时间内粒子的平均位移。
通过大量观察,得出结论:粒子越小,布朗运动越激烈。
其运动激烈的程度不随时间而改变,但随温度的升高而增加。
(1)扩散与渗透
Brown运动是分散介质分子以不同大小和方向的力对胶体粒子不断撞击而产生的。
由于受到的力不平衡,所以连续以不同方向、不同速度作不规则运动。
随着粒子增大,
撞击的次数增多,而作用力抵消的可能性亦大。
当半径大于5 μm,Brown运动消失。
(2)沉降与沉降平衡:
沉降:
分散相粒子在分散介质中因受到重力作用而下降的现象。
沉降平衡:
溶胶是高度分散体系,胶粒一方面受到重力吸引而下降,另一方面由于布朗运动的扩散过程促使浓度趋于均一。
当沉降速率与扩散速率相等时,粒子分布达到平衡,此时,愈靠近容器底部,胶粒数愈多,形成一定的浓度梯度。
3.电学性质——电泳现象:在外电场作用下,胶粒在液相介质中定向移动的现象。
解释:胶粒带电。
应用:净化溶剂
(1)简单渗析
(2)电渗——在外电场作用下,分散介质通过多孔性物质做定向移动的现象。
四. 溶胶的稳定性和聚沉
1. 溶胶稳定的主要因素
胶粒带电;溶剂化作用
2. 溶胶聚沉的方法
聚沉和聚沉值
聚沉方法:
(1)电解质对溶胶的聚沉
反离子的价数越高,聚沉能力越强(实验演示)
(2)溶胶的相互聚沉
(3)加热
第四节高分子化合物的溶液
一. 大分子化合物溶液的特点
1. 均相体系
2. 属于胶体分散系
3. 具有稳定性
二. 大分子化合物对溶胶的保持作用
1. 对胶粒包裹形成保护层
2. 水化作用形成水化膜
三. 医学意义
结石形成的解释
小结:总结本单元知识结构(略)
单元形成性检测:另案。