当前位置:文档之家› 求定积分的四种方法

求定积分的四种方法

求定积分的四种方法
求定积分的四种方法

定积分的四种求法

定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法.

一、定义法 例1 用定义法求

2

30

x dx ?

的值.

分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.

解:(1)分割:把区间[0,2] 分成n 等分,则△x =

2

n

. (2)近似代替:△3

2()i i i S f x x n ξ??

=?=? ???

(3)求和:3

3

111222n

n

n

i i i i i i S x n n n ===??????

?≈?=? ? ? ?????

??∑∑∑.

(4)取极限:S=333

2242lim n n n n n n →∞??

??????

+++?? ? ? ?

????

??????

L =4433322

44221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+??L =22

4(21)

lim n n n n →∞++==4.

2

30

x dx ?

=4..

评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.

二、微积分基本定理法

例2 求定积分

2

21

(21)x x dx ++?

的值.

分析:可先求出原函数,再利用微积分基本定理求解.

解:函数y =2

21x x ++的一个原函数是y =3

23

x x x ++. 所以.2

2

1

(21)x x dx ++?

=322

1()|3x x x ++=81421133????++-++ ? ?????

=193.

评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.

三、几何意义法 例3 求定积

1

1

dx -?

的值.

分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.

:1

1dx -?表示圆x 2+y 2=1在第一、

二象限的上半圆的面积.

因为2

S π

=半圆,又在x 轴上方.

1

1

dx -?

2

π

. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.

四、性质法

例4 求下列定积分: ⑴

44

tan xdx π

π-?;⑵22

sin 1

x x

dx x π

π

-

+?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很

找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.

解:由被积函数tan x 及22sin 1

x x

x +是奇函数,所以在对称区间的积分

值均为零.

所以⑴

44

tan xdx π

π-?=0;

22sin 1

x x

dx x π

π

-

+?=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a

a

f x dx -?=20

()a

f x dx ?;②当f (x )为奇函数时,()a

a

f x dx -?=

0. 小结

通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。

参考文献:

[1]《数学分析》上册(第二版)复旦大学数学系编.高等教育出版社,1983.07

[2]《数学分析》下册(第二版)复旦大学数学系编.高等教育出版社,1983.11

感谢下载!

欢迎您的下载,资料仅供参考

积分不等式的若干证明技巧

题目:积分不等式的若干证明技巧 学院:数学科学学院 专业班级:数学07-4实验班 学生姓名:努尔艾拉.阿西木 指导教师:塔实甫拉提副教授 答辩日期:2011年5月10日 新疆师范大学教务处

目录 1引言 (1) 2 利用有些定义证明积分不等式 (1) 2.1利用定积分的定义证明积分不等式 (1) 2.2利用积分和及凸函数的性质证明积分不等式 (2) 3 利用函数的单调性证明积分不等式 (4) 4利用微分中值定理证明积分不等式 (4) 5利用积分中值定理证明积分不等式 (6) 6利用一些基本不等式证明积分不等式 (7) 7利用泰勒展开式证明积分不等式 (7) 8利用将单积分化为重积分的方法 (8) 9利用分部积分法来证明积分不等式 (9) 10 结论 (10) 参考文献: (11) 致谢 (12)

积分不等式的若干证明技巧 摘要:不等式是高等数学和近代数学分析的重要内容之一,它反映了各变量之间很重要的一种联系。论证不等式的方法很多,本文的目的主要是利用徽积分学原理归纳、总结“高等数学”中证明积分不等式的常用方法.由于积分具有较大的灵活性,故积分不等式的证明往往富有很强的技巧性,是理工科学生学习的一个难点,以下我们仅从讨论过程中的关键步骤出发,大致地分成若干种方法,介绍有关证题的技巧和规律。 关键词:积分不等式,积分中值定理;Rolle中值定理;Cauchy中值定理;Lagrange中值定理 Integral inequality of several proof skills Abstracts:inequality is higher mathematics and the important content of modern mathematics analysis, it reflects the one between the variables a contact is very important. Demonstrates many methods, this paper the inequality in the main purpose of the principle is to use badge integral calculus "advanced mathematics synthesized and summarized in" the commonly used method proved integral inequality. Because integral has greater flexibility, so integral inequality proof often rich strong skilled, an engineering student learning a difficulty, below we only from a critical step in discussion, starting into several ways roughly, introduces relevant papers topic the skills and law. Keywords: integral inequality, integral mean-value theorem; Rolle mid-value theorem; Cauchy mid-value theorem; Lagrange mid-value theorem 。

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

不定积分知识点总结

不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F' (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m ( b-a ) ≤∫abf(x)≤dx≤M ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c ( a 定积分的应用 求平面图形的面积(曲线围成的面积) 直角坐标系下(含参数与不含参数) 极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式 S=R2θ/2)

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

积分不等式的证明及应用论文

广西科技大学毕业论文 题目:积分不等式的证明及应用 英文题目:The integral inequality proof and application.所在学院:理学院 所在专业:信息与计算科学 学号:200900901071 作者姓名:朱伟 指导老师:张明俊 二零一三年五月

摘要 积分不等式是学习高等数学中的一个重要内容,在数学分析中的应用也很广泛,也经常会在考研试卷中出现.有很多积分不等式的证明方法,一些方法综合性和技巧性也很强。利用导数和积分的相关知识去证明不等式,可以降低技巧性,使证明的思路变得简单,在此总结出可用于证明不等式的知识点。文中涉及到的知识有积分不等式、柯西不等式、拉格朗日中值定理、泰勒公式等高等数学中的内容。 【关键词】积分不等式、函数、拉格朗日中值定理、柯西不等式、泰勒公式

Abstract Mathematical analysis is an important information and calculation science specialized basic course,integral inequality is important content of mathematical analysis,using the integral inequality can solve many problems,thus the application of integral inequality is very wide.Proof of integral inequality and applications has always been a difficulty in mathematical analysis,it's proved that erected a bridge for different branches of mathematics,greatly improved our creative thinking.It's proof and application is also very cleverly,can solve some difficult problems.So,a deep understanding, to grasp the method of integral inequality proof, and its different applications in mathematical analysis,can improve our understanding of theoretical knowledge and application,at the same time also is good for our future study,to improve our thinking ability, innovation ability, and skill also has the very big help. 【Key words】Integral inequality, Probability mass function, Lagrange's mean value theorem, Cauchy inequality, Taylors formula.

不定积分的基本公式和运算法则直接积分法

·复习 1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ·引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ·讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以上十五个公式是求不定积分的基础,必须熟记,不仅要记右端的结果,还要熟悉左端被积函数的的形式。 求函数的不定积分的方法叫积分法。 例1.求下列不定积分.(1)dx x ?2 1 (2) dx x x ? 解:(1) dx x ? 21 =2121 21x x dx C C x -+-=+=-+-+? (2)dx x x ? =C x dx x +=? 25 235 2 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为x α 的形式,然后应用幂函 数的积分公式求积分。 二 不定积分的基本运算法则

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 dx x g dx x f dx x g x f ???±=±)()()]()([ 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 dx x f k dx x kf ??=)()( (0≠k ) 例2 求3(21)x x e dx +-? 解 3(21)x x e d x +-?=23x dx ?+dx ?-x e dx ? = 4 12 x x x e C +-+。 注 其中每一项的不定积分虽然都应当有一个积分常数,但是这里并不需要在每一项后面加上一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于41()2 x x x e C '+-+=321x x e +-,所以结果是正确的。 三 直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结果,这样的积分方法叫直接积分法。 例3 求下列不定积分. (1) 1)(x dx ? (2)dx x x ?+-1 122 解:(1)首先把被积函数 1)()x 化为和式,然后再逐项积分得 1)((1x dx x dx - =+-- ??

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

(整理)数学定积分知识总结

定积分 1. 概念: 定积分源自于求曲边梯形的面积, 它的 计算形式为:0 1 ()l i m ()n b k k a k f x dx f x λξ→==?∑?, 结果是一个数值, 其值的大小取决于两个因素(被积函数与 积分限). 2. 几何意义: 是曲线[](),y f x a b =介于之间与x 轴所围的面积的代数和; 3. 经济意义: 若()f x 是某经济量关于x 的变化率(边际问题), 则()b a f x dx ?是x 在区间[],a b 中的该 经济总量. 4. 性质: 本章共列了定积分的八条性质, 其中以下几条在计算定积分中经常用到. (1)() ()b a a b f x dx f x dx =-??; (2)[]()()()()b b b a a a f x g x d x f x d x g x d x ±= ±? ??; (3)()()b b a a kf x dx k f x dx =??; (4)()()()b c b a a c f x d x f x d x f x d x = +???; (5)0 0()2() a a a f x f x dx f x dx f x -?? =?????为奇函数时()()为偶函数时. 1.公式: 若()f x 在[],a b 上连续, ()F x 是()f x 的一个原函数, 则 ()()() b a f x d x F b F a =-?. 2.换元法: 若()f x 在[],a b 连续, ()x t ?=在[],c d 上有连续的导数'() t ?, 且()t ?单调, 则有 () ()(())'()b d x t a c f x dx f t t dt ???=?? ? . 3. 分部积分法: 若()u x 与()v x 在[],a b 上有连续的导数, 则有 ()()()()()()b b a a b u x dv x u x v x v x du x a =?-??. 1. =? __4 2 a π_____;

积分不等式的证明方法及其应用

积分不等式的证明方法及其应用 【摘要】本文根据定积分的定义、性质、定理等方面简单介绍了几个证明积分 不等式的基本方法,并给出了相应的例题,从而更好地掌握其积分不等式的证明方法。尔后再给出四个重要积分不等式及其证明方法和应用,最后详细举例说明积分不等式在求极限、估计积分、证明积分不等式等上的应用及两个重要积分不等式的应用。 【关键词】积分不等式 Schwarz 不等式 Ho .. lder 不等式 Gronwall 不等式 Young 不等式 1 引言 在学习中,我们常会遇到这样的问题:有些函数可积,但原函数不能用初等函数的有限形式来表达,或者说这种积分“积不出”,无法应用Newton-Leibniz 公式求出(如2 1 0x e dx -?),这时我们只能用其它方法对积分值进行估计,或近似计 算;另一种情况是,被积函数是没有明确给出,只知道它的结构或某些性质(例如设函数f 在[]0,1上连续可微,且(1)(0)1f f -=,求1 '20()f x dx ?),因此我们希 望对积分值给出某种估计.为此我们来研究下积分不等式. 我们把含有定积分的不等式称为积分不等式. ? ? ≤ 2 1 2 1 ln ln xdx x xdx x , ()() 2 2 ()cos ()sin 1b b a a f x kxdx f x kxdx +≤? ? 都是积分不等 式. 2积分不等式的证明方法 2.1 定义法 我们根据定积分的定义,把积分区间n 等分,得出积分和,再由离散型式子,得出积分和之间的大小关系,再令∞→n ,取极限即可. 例1设函数)(x f 在区间 []0,1上可积 .试证明有不等式1 12 00 ()()f x dx f x dx ≤ ?? . 证 先用Jensen 不等式法证明不等式 : 对 R x x x n ∈?,,,21 , 有不等式

定积分知识点总结.doc

定积分知识点总结 北京航空航天大学 李权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性 如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下 和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道 i i i M f m ≤≤)(ξ 将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

不定积分计算的各种方法论文.doc

不定积分计算的各种方法 广东石油化工学院高州师范学院312数学(1)班梁多彬 【摘要】本论文将要介绍常见的不定积分的各种计算方法以及某些特殊不定积分的求解方法,如:直接积分法(公式法)、分部积分法、换元积分法(第一换元积分法和第二换元积分法)、以及一些特殊函数的积分技巧与方法(有理函数的不定积分以及简单无理函数与三角函数的不定积分),并将结合例题探讨快捷方便的解题方法。 【关键词】不定积分直接积分法分部积分法换元积分法有理函数不定积分简单无理函数与三角函数有理式的不定积分 一、引言 不定积分是《数学分析》中的一个重要内容,它是定积分、广义积分,瑕积分、重积分、曲线积分以及各种有关积分的基础,掌握不定积分的计算方法对于学习这些后续内容具有重要意义。不定积分的解法不像微分运算有一定的法则,它需要根据不同的题型特点采用不同的解法,因此积分运算比起微分运算来,方法更多样,技巧性更强。下面将不定积分的各种计算方法分类归纳,以便于更好的掌握、运用。 二、不定积分的概念 定义:函数f(x)在区间I的所有的原函数()()R F∈ x C C +称为函数f(x)的不 ? 定积分,表为

?+=C x F dx x f )()( ()()('x f x F =,C 为积分常数), 其中∫称为积分符号,x 称为积分变量,f(x)称为被积函数,f(x)dx 称为被积表达式,C 称为积分常数。 在这里要特别注意:一个函数的不定积分既不是一个数,也不是一个函数,而是一个函数族。列如: at at =??? ? ??' 221,而?+=C at atdt 221; () x x cos sin ' =,而?+=C x xdx sin cos ; 2 ' 331x x =??? ? ??,而?+=C x dx x 3231. 这也就是说: ()?)(d x f dx 和?dx x f )(' 是不相等的,即前者的结果是一个函数, 而后者是无穷多个函数,所以,在书写计算结果时一定不能忘记积分常数。 三、不定积分的计算方法 1.直接积分法 既然积分运算是微分运算的逆运算,那么自然地可以从导数公式得到相应的积分公式,并且我们把一些基本的积分公式列成一个表,这个表通常叫作基本积分表: (1)、?+=C ax adx ,其中a 是常数. ?+=C x dx . (2)、?++= +C x dx 11 1 x ααα,其中α是常数,且α≠-1. (3)、? +=C x x dx ln ,x ≠0. (4)、C a a dx a x x +=?ln 1 ,其中a>0,且a ≠1.

微积分知识点归纳

知识点归纳 1. 求极限 2.1函数极限的性质P35 唯一性、局部有界性、保号性 P34 A x f x x =→)(lim 0 的充分必要条件是 :A x f x f x f x f x x x x == +==-+-→→)()0()()0(lim lim 0 000 2.2 利用无穷小的性质P37: 定理1有限个无穷小的代数和仍是无穷小。 0)sin 2(30 lim =+→x x x 定理2有界函数与无穷小的乘积是无穷小。 0)1 sin (20 lim =→x x x 定理3无穷大的倒数是无穷小。反之,无穷小的倒数是无穷大。 例如:lim ∞→x 12132335-++-x x x x ∞= , lim ∞→x 131 23523+--+x x x x 0= 2.3利用极限运算法则P41 2.4利用复合函数的极限运算法则P45 2.4利用极限存在准则与两个重要极限P47 夹逼准则与单调有界准则, lim 0→x x x sin 1=, lim 0→x x x s i n 1=, lim 0)(→x ?)()(sin x x ??1=,

lim 0→x x x tan 1=,lim 0→x x x arctan 1=,lim 0 →x x x arcsin 1=, lim ∞ →n n n )11(+e =,lim ∞→x x x )11(+e =,lim 0→x x x 1)1(+e =, lim )(∞→x ?)())(11(x x ??+e =,lim 0)(→x ?)(1 ))(1(x x ??+e = 2.6利用等价无穷小P55 当0→x 时, x x ~sin ,x x ~tan , x x ~arcsin ,x x ~arctan ,x x ~)1ln(+, x e x ~,22 1~cos 1x x -,x x αα++1~)1(,≠α0 为常数 2.7利用连续函数的算术运算性质及初等函数的连续性P64 如何求幂指函数)()(x v x u 的极限?P66 )(ln )()()(x u x v x v e x u =,)(ln )()(lim ) (lim x u x v x v a x a x e x u →=→ 2.8洛必达法则P120 lim a x →)()(x g x f ) ()(lim x g x f a x ''=→ 基本未定式:00,∞∞, 其它未定式 ∞?0,∞-∞,00,∞1,0∞(后三个皆为幂指函数) 2. 求导数的方法 2.1导数的定义P77: lim 00|)(→?==='='x x x dx dy x f y x x f x x f x y x ?-?+=??→?)()(000 lim h x f h x f h )()(000 lim -+=→

积分不等式的证明方法

摘要 在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结. 关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性

ABSTRACT When we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics better.Also our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem solving.The paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related content.In this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality,integral mean value theorem, integral property, Taylor formula,double integral and differential mean value theorem.Finally,the full paper is summarized. Key words: Integral Inequality, Definite Integral,Mean Value Theorem, Cauchy-Schwarz Inequality, Monotonicty

导数及定积分知识点的总结及练习(经典)

导数的应用及定积分 (一)导数及其应用 1.函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 Δy Δx =lim Δx → f (x 0+Δx )-f (x 0)Δx 。 2.导数的几何意义 函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 3.函数的导数 对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=lim Δx →0 f (x 0+Δx )-f (x 0) Δx . 4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。 5.常见函数的导数 (x n )′=__________.(1 x )′=__________.(sin x )′=__________.(cos x )′=__________. (a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则: (f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,?? ?? f (x ) g (x )′=___________________. (3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 6.函数的单调性 设函数y =f(x)在区间(a ,b)内可导, (1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________. (2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________. 7.函数的极值

高中数学高考总复习定积分与微积分基本定理习题及详解教学内容

定积分与微积分基本定理习题 一、选择题 1. a =??02x d x ,b =??02e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是( ) A .a

探讨定积分不等式的证明方法

探讨定积分不等式的证明方法 摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。 关键词:定积分 不等式 证法 不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明却一直是一个难点。要证明定积分不等式,首先要看被积函数,其性质确定证明方法。本文根据被积函数的连续性、单调性、可导性等分别给出几种证法。 1.运用定积分中值定理证明 定积分中值定理是将定积分转化为连续函数在该区间上某点的函数值与该区间长度的乘积,即将定积分转化为函数来证明不等式。 例1:设)(x f 在[0,1]上连续且单调不增,证明a ?∈[0,1]有 ? a dx x f 0 )(≥ ?1 )(dx x f a . 证明:由原不等式变形得? a dx x f 0 )(≥??+1 ))()(dx x f dx x f a a (, 即是要证:? -a dx x f a 0 )() 1(≥?10 )(dx x f a , 对左式,)(x f 在[0,1]上连续, 故 由定积分中值定理知: [] a ,01∈?ξ使 )()1()()110 ξf a a dx x f a a -=-?(, 同理对右式:[]12,a ∈ ?ξ使)()1()(21 0ξf a a dx x f a -=?, 显然,ξ1<ξ2又f(x)在[0,1]上单调不增,

∴f (ξ1)≥f (ξ2) 故原不等式 ? a dx x f 0 )(≥?1 )(dx x f a 成立. 定积分中值定理的运用直观易懂,它的条件也极其简单,易于掌握。 2.运用辅助函数证明 构造辅助函数F(x)证明不等式,首先是做函数将要证结论中的积分上限(下限)换成x ,移项使不等式的一边为零,另一边的表达式即是辅助函数。然后再求F ’(x),并运用单调性及区间端点值特性证明不等式。 例2:设)(x f 在[a ,b]上连续,且)(x f >0. 试证: 2b )() (1 )(a b dx x f dx x f a b a -≥? ? 证明:构造辅助函数2)() (1 )()(a x dt t f dt t f x F x a x a --=??(将b 换成x ), 则??--+=x a x a a x dt t f x f dt t f x f x F )(2)() (1)(1)()(' = ??? -+x a x a x a dt dt x f t f dt t f x f 2) ()()() ( =dt x f t f t f x f x a )2) ()()()((-+? ∵)(x f >0,∴ 02) ()()()(≥-+x f t f t f x f , 又a

相关主题
文本预览
相关文档 最新文档