证明不等式的定积分放缩法
- 格式:pdf
- 大小:826.22 KB
- 文档页数:3
热点追踪Җ㊀广东㊀李文东㊀㊀不等式的证明是高考的重要内容,证明的方法多㊁难度大,特别是一些数列和型的不等式.这类不等式常见于高中数学竞赛题和高考压轴题中,由于证明难度较大,往往令人望而生畏.其中有些不等式若利用定积分的几何意义证明,则可达到以简驭繁㊁以形助数的解题效果.1㊀利用定积分证明数列和型不等式数列和型不等式的一般模式为ðni =1a i <g (n )(或ðni =1a i >g (n )),g (n )可以为常数.不失一般性,设数列a n =f (n )>0,此类问题可以考虑如下的定积分证明模式.(1)若f (x )单调递减.因为f (i )<ʏii -1f (x )d x ,从而ðni =1a i =ðn i =1f (i )<ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏi i -1f (x )d x <f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏi i-1f (x )d x <ðn +1i =2f (i -1)=ðni =1a i.㊀㊀(2)若f (x )单调递增.因为f (i )>ʏi i -1f (x )d x ,从而ðni =1a i=ðni =1f (i )>ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏii -1f (x )d x >f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏii-1f (x )d x >ðn +1i =2f (i -1)=ðni =1a i .例1㊀(2013年广东卷理19,节选)证明:1+122+132+ +1n2<74(n ɪN ∗).分析㊀本题证法大多采用裂项放缩来证明,为了得到更一般的结论,我们这里采用定积分来证明.证明㊀因为函数y =1xα(α>0且αʂ1)在(0,+ɕ)上单调递减,故ʏii -11x αd x >1iα(i ȡ3),从而当αʂ1时,ðni =11i α<1+12α+ðni =3ʏii -11x αd x =1+12α+ʏn21x αd x =1+12α-1(α-1)x α-1n 2=1+12α+1(α-1)2α-1-1(α-1)nα-1.㊀㊀利用这个不等式可以得到一些常见的不等式.若α=12,则ðn i =11i<1-32+2n =2n -1+(2-32)<2n -1.㊀㊀当α>1时,ðni =11iα<1+12α+1(α-1)2α-1=1+α+1α-1 12α.特别地,若α=2,则ðni =11i 2<1+2+12-1 122=74;若α=3,则ðni =11i3<1+3+13-1 123=54;若α=32,则ðni =11ii<1+32+132-1 1232=1+524<3;若α=1,则1n<ʏnn -11x d x =l n x nn -1=l n n -l n (n -1),从而可以得到12+13+ +1n +1<ʏn +111xd x =l n (n +1),1n +1+1n +2+ +12n<ʏ2nn1xd x =l n2.㊀㊀另一方面,1n -1>ʏnn -11xd x =l n x n n -1=l n n -l n (n -1),则1+12+13+ +1n -1>ʏn11x d x =l n n .㊀㊀当α=1时,借助定积分的几何意义上述不等式42热点追踪还可以进一步加强.图1是函数y =1x的部分图象,显然S 曲边梯形A B C F <S 梯形A B C F ,于是ʏn +1n1x d x <12(1n +1n +1),得l n (1+1n )<12(1n +1n +1),令n =1,2, ,n ,并采用累加法可得1+12+13+ +1n>l n (n +1)+n2(n+1)(n ȡ1).图1例2㊀证明:l n 42n +1<ðni =1i4i 2-1(n ɪN ∗).分析㊀由于i 4i 2-1=14(12i -1+12i +1),l n 42n +1=14l n (2n +1),故证明l n (2n +1)<ðni =1(12i -1+12i +1).构造函数f (x )=12x +1,显然f (x )单调递减,考虑到ðni =1(12i -1+12i +1)的结构,对函数f (x )采用类似图1中的梯形面积放缩.证明㊀由分析得ʏii -112x +1d x <12(12i -1+12i +1),故12l n (2n +1)=ʏn012x +1d x =ðni =1ʏii -112x +1d x <12ðni =1(12i -1+12i +1),不等式两边除以12即为所证.例3㊀证明13+15+17+ +12n +1<12l n (n +1)(n ɪN ∗).分析㊀若考虑函数y =12x +1,则有12i +1<ʏii -112x +1d x ,则ðni =112i +1<ðni =1ʏii -112x +1d x =ʏn012x +1d x =12l n (2x +1)n0=12l n (2n +1),达不到所证的精度,必须改变定积分放缩的精度.证明㊀结合不等式的右边,考虑函数f (x )=1x.如图2所示,在区间[i ,i +1]上,取区间的中点i +12,并以1i +12为高作矩形A E F B ,则S 矩形A E F B <ʏi +1i 1x d x .于是有22i +1=1i +12<ʏi +1i1xd x ,则ðni =122i +1<ðni =1ʏi +1i1xd x =ʏn +111xd x =l n (n +1),即ðn i =112i +1<12ln (n +1).图2例4㊀设n 是正整数,r 为正有理数.(1)求函数f (x )=(1+x )r +1-(r +1)x -1(x >-1)的最小值;(2)证明:n r +1-(n -1)r +1r +1<n r<(n +1)r +1-nr +1r +1;(3)设x ɪR ,记[x ]为不小于x 的最小整数,例如[2]=2,[π]=4,[-32]=-1.令S =381+382+383+ +3125,求[S ]的值.(参考数据:8043ʈ344 7,8143ʈ350 5,12543ʈ625 0,12643ʈ631 7.)分析㊀出题者的本意是利用第(1)问中的伯努利不等式来证明后两问,但这里我们利用积分来证明.证明㊀(1)f m i n (x )=0(求解过程略).(2)因为r 为正有理数,函数y =x r 在(0,+ɕ)上单调递增,故ʏnn -1x r d x <nr,而52热点追踪ʏnn -1x rd x =x r +1r +1n n -1=n r +1-(n -1)r +1r +1,故n r +1-(n -1)r +1r +1<n r.同理可得n r<ʏn +1n x rd x =x r +1r +1n +1n =(n +1)r +1-n r +1r +1,从而n r +1-(n -1)r +1r +1<n r<(n +1)r +1-n r +1r +1.(3)由于i 13<ʏi +1i x 13d x <(i +1)13,故S =ð125i =81i13<ð125i =81ʏi +1ix 13dx =ʏ12681x 13dx =34x 4312681=34(12643-8143),34(12543-8043)=34x 4312580=ʏ12580x 13d x =ð124i =80ʏi +1ix 13d x <ð124i =80(i +1)13=S .34(12543-8043)<S <34(12643-8043).代入数据,可得34(12543-8043)ʈ210.2,34(12643-8143)ʈ210.9.由[S ]的定义,得[S ]=211.2㊀利用积分证明函数不等式我们知道ʏx 2x 1fᶄ(x )d x =f (x 2)-f (x 1),因此,对于与f (x 2)-f (x 1)有关的问题,可以从定积分的角度去思考.若f (x )的导数f ᶄ(x )在区间(a ,b )上单㊀图3调递减且f ᶄ(x )为凹函数,如图3所示.设A C 的中点为B ,过点B 作B G ʅx 轴与f (x )交于点G ,过点G 作f (x )的切线与直线AH 和C D 分别交于点F 和I .设A (x 1,0),C (x 2,0),则f (x 2)-f (x 1)=ʏx 2x 1fᶄ(x )d x =S 曲边梯形A C J H ,S 矩形A C D E =f ᶄ(x 2+x 12)(x 2-x 1).因为S 曲边三角形E G H >S әE F G =S әD I G >S 曲边三角形J D G ,S 曲边梯形A C J H -S 矩形A C D E =S 曲边三角形E G H -S 曲边三角形J D G >0,于是有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12).借助上述几何意义,一般地我们有如下结论.(1)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凹函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12);(2)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凸函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1<f ᶄ(x 2+x12).例5㊀(1)函数f (x )=l n x ,因为f ᶄ(x )=1x在(0,+ɕ)上为凹函数,则对任意0<x 1<x 2,有l n x 2-l n x 1x 2-x 1>1x 2+x 12,即x 2-x 1l n x 2-l n x 1<x 1+x 22,此为对数均值不等式.(2)函数f (x )=x l n x ,因为f ᶄ(x )=1+l n x 在(0,+ɕ)上为凸函数,则对任意0<x 1<x 2,有x 2l n x 2-x 1l n x 1x 2-x 1<1+l n x 2+x 12.许多考题都是以此为背景命题,比如,如下高三模拟考试的压轴题.例6㊀已知函数f (x )=l n x -a x 22+(a -1)x -32a(a >0),在函数f (x )的图象上是否存在不同两点A (x 1,y 1),B (x 2,y 2),线段A B 中点的横坐标为x 0,直线A B 的斜率为k ,使得k >f ᶄ(x 0).简证㊀由于f ᶄ(x )=1x-a x +a -1(a >0)在(0,+ɕ)上为凹函数,可见结论成立!例7㊀设函数f (x )=xex ,若x 1ʂx 2,且f (x 1)=f (x 2),证明:x 1+x 2>2.分析㊀本题的本质是极值点偏移问题,常见证法是利用对称性构造函数,这里采用定积分来证明.证明㊀不妨设x 1<x 2,由f ᶄ(x )=1-x ex ,可知f (x )在(-ɕ,1]上单调递增,在[1,+ɕ)上单调递减,且f (0)=0.当x >0时,f (x )>0,可知0<x 1<1<x 2.设x 1e x 1=x 2e x 2=t ,则x 1+x 2=t (e x 1+e x 2),x 2-x 1=t (e x 2-e x 1),考虑函数y =e x ,则根据定积分的梯形面积放缩有e x 2-e x 1=ʏx 2x 1e xd x <(e x 1+e x2)(x 2-x 1)2,则x 2-x 1t <12 x 2+x 1t(x 2-x 1),故x 1+x 2>2.(作者单位:广东省中山市中山纪念中学)62。
大学中常用不等式,放缩技巧大学中常用不等式,放缩技巧一:一些重要恒等式ⅰ:12+22+…+n2=n(n+1)(2n+1)/6ⅱ: 13+23+…+n3=(1+2+…+n)2Ⅲ:cosa+cos2a+…+cos2na=sin2n+1a/2n+1sinaⅳ: e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0<a<1)ⅴ:三角中的等式(在大学中很有用)cosαcosβ= 1/2[cos(α+β)+cos(α-β)]sinαcosβ= 1/2[sin(α+β)+sin(α-β)]cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]sinαsinβ=-1/2[cos(α+β)-cos(α-β)]sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)tan+tanB+tanC=tanAtanBtanCcotAcotB+cotBcotC+cotCcotA=1 tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1 sin2A+sin2B+sin2C=4sinAsinBsinCⅵ:欧拉等式e∏i=-1 (i是虚数,∏是pai)ⅶ:组合恒等式(你们自己弄吧,我不知怎样用word编)二重要不等式1:绝对值不等式︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式(1+x1)(1+x2)…(1+xn)≥1+x1+x2+…+xn(xi符号相同且大于-1)3:柯西不等式(∑ai bi)2≤∑ai2∑bi24:︱sin nx︱≤n︱sin x︱5; (a+b)p≤2pmax(︱ap︱,︱bp︱)(a+b)p≤ap+ bp (0<p<1)(a+b)p≥ap+ bp (p>1)6:(1+x)n≥1+nx (x>-1)7:切比雪夫不等式若a1≤a2≤…≤an, b1≤b2≤…≤bn∑aibi≥(1/n)∑ai∑bi若a1≤a2≤…≤an, b1≥b2≥…≥bn∑aibi≤(1/n)∑ai∑bi三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1);2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n4:nn+1>(n+1)n n!≥2n-15:2!4!…(2n)!>{(n+1)!}n6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x7:(2/∏)x≤sinx≤x8:均值不等式我不说了(绝对的重点)9:(1+1/n)n<4四:一些重要极限(书上有,但这些重要极限需熟背如流)假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
证明不等式的定积分放缩法定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过对不等式两边进行积分,利用积分的性质来证明不等式的正确性。
具体来说,我们可以通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。
下面我们以一个简单的例子来说明定积分放缩法的具体应用。
假设我们要证明如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{3}$$我们可以通过放缩被积函数$x^2$ 的大小来证明该不等式。
具体来说,我们可以将 $x^2$ 放缩为 $x$,即:$$x^2 \leq x, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \int_0^1 x dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 x dx = \frac{1}{2}$$因此,我们可以得到如下结论:$$\int_0^1 x^2 dx \leq \frac{1}{2}$$但是,这个结论并不能证明原不等式的正确性。
为了进一步放缩被积函数的大小,我们可以将 $x$ 放缩为 $1$,即:$$x \leq 1, \quad 0 \leq x \leq 1$$因此,我们可以得到如下不等式:$$\int_0^1 x dx \leq \int_0^1 1 dx$$对右侧的积分进行计算,可以得到:$$\int_0^1 1 dx = 1$$因此,我们可以得到如下结论:$$\int_0^1 x dx \leq 1$$综合以上两个结论,我们可以得到如下不等式:$$\int_0^1 x^2 dx \leq \frac{1}{2} \leq \frac{1}{3}$$因此,原不等式得证。
可以看出,通过定积分放缩法,我们成功地证明了该不等式的正确性。
总的来说,定积分放缩法是一种常用的证明不等式的方法,它的基本思想是通过放缩被积函数的大小,从而得到一个更加简单的不等式,进而证明原不等式的正确性。
放缩法证明不等式所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,以达到证明结果的方法。
但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。
比如:证a <b ,可先证a <h 1,成立,而h 1<b 又是可证的,故命题得证。
数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
“放缩法”可以和很多知识内容结合,对应变能力有较高的要求。
因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。
利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。
做到放大或缩小恰到好处,才有利于问题的解决。
一、用放缩法证明不等式的基本策略1、运用放大、缩小分母或分子的办法来达到放缩的目的分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.还可利用真分数的分子和分母加上同一个正数,则分数值变大;假分数的分子和分母加上同一个正数,则分数值变小来进行放缩. 例1、若a ,b ,c ,d 是正数.求证:12a b c d a b ca b db c da c d<+++<++++++++证明:a b c d a b c a b db c d a c d+++++++++++1abc da b c d a b c d a b c d a b c d>+++=++++++++++++又2a b c d a b c da b c a b d b c d a c d a b a b c d c d+++<+++=++++++++++++ 或a b c d a b ca b d b c da c d +++++++++++2a bb ca cb d a bcd a b c da b c da b c d++++<+++=++++++++++++(利用(0)a a mm b b m+<>+) ∴12a bcda b ca b d b c d a c d <+++<++++++++例2、求证:213121112222<++++n证明:∵nn n n n111)1(112--=-<∴2222111111*********232231nn nn++++<+-+-++-=-<-【变式】2222111171234n++++<∵nn n n n111)1(112--=-<∴2222211111111151171()()1232231424nn nn++++<++-++-=+-<-本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。
常见级数不等式放缩公式常见级数不等式放缩公式是数学中常用的一种技巧,可以用来对级数进行估计和近似计算。
在实际问题中,我们经常会遇到各种级数,通过对级数进行适当的放缩,可以更好地了解级数的性质和行为。
我们来介绍一些常见的级数不等式放缩公式。
这些公式可以帮助我们对级数进行估计,从而得到级数的一些重要性质。
下面是其中一些常见的放缩公式:1. 比较判别法:对于两个正项级数,如果它们的通项之间存在大小关系,那么级数之和也有相同的关系。
例如,如果对于所有的n,有an ≤ bn,那么an的级数之和小于等于bn的级数之和。
2. 比值判别法:对于正项级数,如果存在常数q,使得an+1/an ≤ q,那么级数收敛;如果an+1/an ≥ q,那么级数发散。
3. 根值判别法:对于正项级数,如果存在常数q,使得lim┬(n→∞)〖(an)〗^(1/n) ≤ q,那么级数收敛;如果lim┬(n→∞)〖(an)〗^(1/n) ≥ q,那么级数发散。
4. 积分判别法:对于正项级数,如果存在连续函数f(x),使得an = f(n),那么级数与定积分∫_(1 to ∞)▒f(x)dx之间有相同的收敛性。
以上是一些常见的级数不等式放缩公式,它们在级数的研究中起着重要的作用。
通过使用这些公式,我们可以得到级数的一些重要性质,比如级数的收敛性、发散性以及级数之和的估计。
接下来,我们来看一些具体的例子,展示如何应用这些级数不等式放缩公式。
以比较判别法为例,我们考虑两个级数an=1/n和bn=1/n^2。
显然,对于所有的n,an ≤ bn,根据比较判别法,我们可以得到an的级数之和小于等于bn的级数之和。
而bn的级数之和是一个著名的数学常数,即π^2/6。
因此,我们可以得到1/n 的级数之和小于等于π^2/6。
这个结果对于研究级数的性质和行为非常有用。
除了比较判别法,还有其他的级数不等式放缩公式可以应用到各种级数的研究中。
例如,比值判别法和根值判别法可以用来判断级数的收敛性,积分判别法可以用来估计级数的和。
放缩技巧放缩法:将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。
放缩法的方法有:⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n⑷利用常用结论: Ⅰ、kkk k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) 1.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a【巧证】:记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R+∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n3.求证:213121112222<++++n【巧证】:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n巧练一:设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 巧练一:【巧证】:yyx x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9•lg11 < 1巧练二:【巧证】:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅巧练三:1)1(log )1(log <+-n n n n巧练三:【巧证】: 222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n 巧练四:若a > b > c , 则0411≥-+-+-ac c b b a 巧练四: 【巧证】: c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((12112巧练五:)2,(11211112≥∈>+++++++n R n nn n n巧练五:【巧证】:左边11111122222=-+=++++>n nn n n n n n 巧练六:121211121<+++++≤nn n 巧练六:【巧证】: 11121<⋅+≤≤⋅n n n n 中式 巧练七:已知a , b , c > 0, 且a 2+ b 2= c 2,求证:a n + b n < c n (n ≥3, n ∈R *)巧练七:【巧证】: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0,∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n ∴1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛nn c b c a证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查知识的潜能与后继能力,因而成为压轴题及各级各类竞赛试题命题的极好素材。
定积分证明题方法总结六篇定积分证明题方法总结六篇篇一:定积分计算方法总结一、不定积分计算方法1.凑微分法2.裂项法3.变量代换法1)三角代换2)根幂代换3)倒代换4.配方后积分5.有理化6.和差化积法7.分部积分法(反、对、幂、指、三)8.降幂法二、定积分的计算方法1.利用函数奇偶性2.利用函数周期性3.参考不定积分计算方法三、定积分与极限1.积和式极限2.利用积分中值定理或微分中值定理求极限3.洛必达法则4.等价无穷小四、定积分的估值及其不等式的应用1.不计算积分,比较积分值的大小1)比较定理:若在同一区间[a,b]上,总有f(x)>=g(x),则>=()dx2)利用被积函数所满足的不等式比较之a)b)当0<x<兀2时,2兀<<12.估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m 则M(b-a)<=<=M(b-a)3.具体函数的定积分不等式证法1)积分估值定理2)放缩法3)柯西积分不等式≤%4.抽象函数的定积分不等式的证法1)拉格朗日中值定理和导数的有界性2)积分中值定理3)常数变易法4)利用泰勒公式展开法五、变限积分的导数方法篇二:定积分知识点总结1、经验总结(1)定积分的定义:分割—近似代替—求和—取极限(2)定积分几何意义:①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积ab②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a反数(3)定积分的基本性质:①kf(x)dx=kf(x)dx aabb②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa③f(x)dx=f(x)dx+f(x)dx aac(4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb①定义法:分割—近似代替—求和—取极限②利用定积分几何意义’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x)ba篇三:定积分计算方法总结1、原函数存在定理●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。
一:消参放缩(适合含参)1.已知函数f(x)=e x-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.解:(1)f′(x)=1e xx m -+.由x=0是f(x)的极值点得f′(0)=0,所以m=1.于是f(x)=e x-ln(x+1),定义域为(-1,+∞),f′(x)=1e1 xx-+.函数f′(x)=1e1xx-+在(-1,+∞)单调递增,且f′(0)=0.因此当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-1,0)单调递减,在(0,+∞)单调递增.(2)当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数f′(x)=1e2xx-+在(-2,+∞)单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0得0e x=01 2x+,ln(x0+2)=-x0,故f(x)≥f(x0)=01 2x++x0=212xx(+)+>0.综上,当m≤2时,f(x)>0.2.已知函数f(x)=m e x-ln x-1.(Ⅰ)当m =1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当m ≥1时,证明:f(x)>1.【答案】(Ⅰ)y =(e -1)x(Ⅱ)当m ≥1时,f (x)= m e x-ln x -1≥e x-ln x -1.(放缩)要证明f (x)>1,只需证明e x-ln x -2>0.3.知函数1()ln(1)(1)nf x a xx=+--,其中*x∈N,a为常数.(Ⅱ)当1a =时,证明:对任意的正整数n ,当2n ≥时,有()1f x x -≤. 当1a =时,1()ln(1)(1)nf x x x =+--.当2x ≥时,对任意的正整数n ,恒有11(1)nx -≤,故只需证明1ln(1)1x x +--≤.令()1(1ln(1))2ln(1)h x x x x x =--+-=---,[)2x ∈+∞,,则12()111x h x x x -'=-=--,当2x ≥时,()0h x '≥,故()h x 在[)2+∞,上单调递增,因此当2x ≥时,()(2)0h x h =≥,即1ln(1)1x x +--≤成立. 故当2x ≥时,有1ln(1)1(1)nx x x +---≤.即()1f x x -≤.二:构造放缩(适合f(x)或其变式的N 项和有关)4.设函数()()2ln 1f x x b x =++.(1)若x =1时,函数()f x 取最小值,求实数b 的值;(2)若函数()f x 在定义域上是单调函数,求实数b 的取值范围;(3)若1b =-,证明对任意正整数n ,不等式33311......31211)1(n <k f nk ++++∑=都成立解:(1)由x + 1>0得x > – 1∴f(x)的定义域为( - 1,+ ∞),对x ∈ ( - 1,+ ∞),都有f(x)≥f(1),∴f(1)是函数f(x)的最小值,故有f /(1) = 0,,022,12)(/=+∴++=bx b x x f 解得b= - 4. 经检验合题意;(2)∵,12212)(2/+++=++=x b x x x b x x f 又函数f(x)在定义域上是单调函数,∴f /(x) ≥0或f /(x)≤0在( - 1,+ ∞)上恒成立.若f /(x) ≥0,∵x + 1>0,∴2x 2+2x+b ≥0在( - 1,+ ∞)上恒成立,即b ≥-2x 2-2x =21)21(22++x 恒成立,由此得b ≥21; 若f /(x) ≤0, ∵x + 1>0, ∴2x 2+2x+b ≤0,即b ≤- (2x 2+2x)恒成立,因-(2x 2+2x) 在( - 1,+ ∞)上没有最小值,∴不存在实数b 使f(x) ≤0恒成立.综上所述,实数b 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21. (3)当b= - 1时,函数f(x) = x 2- ln(x+1),令函数h(x)=f(x) – x 3= x 2– ln(x+1) – x 3,则h /(x) = - 3x 2 +2x - 1)1(31123+-+-=+x x x x ,∴当[)+∞∈,0x 时,h /(x)<0所以函数h(x)在[)+∞∈,0x 上是单调递减.又h(0)=0,∴当()+∞∈,0x 时,恒有h(x) <h(0)=0,[ 即x 2– ln(x+1) <x 3恒成立.故当()+∞∈,0x 时,有f(x) <x 3..∵()1,0,,k N k +∈∴∈+∞取,1k x =则有311(),f k k < ∴33311 (312)11)1(n <k f nk ++++∑=,故结论成立。