机械振动学习题解答
- 格式:ppt
- 大小:645.50 KB
- 文档页数:22
机械振动测验一、填空题1、 所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大值和③极小值而往复变化。
2、 一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。
3、 XXXX 在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而系统对外界影响的反应,称为振动系统的⑦响应或输出。
4、 常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、环境预测5、 按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类,振动分为:③简谐振动、④周期振动和⑤瞬态振动。
6、 ①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。
7、 在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势能,阻尼元件③耗散振动能量。
8、 如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。
9、 常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。
10、 系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无关。
二、 试证明:对数衰减率也可以用下式表示,式中n x 是经过n 个循环后的振幅。
1ln nx xn δ=三、 求图示振动系统的固有频率和振型。
已知12m m m ==,123k k k k ===。
北京理工大学1996年研究生入学考试理论力学(含振动理论基础)试题自己去查双(二)自由度振动J,在平面上在弹簧k的限制下作纯滚动,如图所示,四、圆筒质量m。
质量惯性矩o求其固有频率。
五、物块M质量为m1。
滑轮A与滚子B的半径相等,可看作质量均为m2、半径均为r的匀质圆盘。
斜面和弹簧的轴线均与水平面夹角为β,弹簧的刚度系数为k。
又m1 g>m2 g sinβ , 滚子B作纯滚动。
试用能量法求:(1)系统的微分方程;(2)系统的振动周期。
六、在下图所示系统中,已知m和k。
计算系统的基频。
大学物理(第四版)课后习题及答案机械振动13 机械振动解答13-1 有一弹簧振子,振幅A=2.0×10-2m,周期T=1.0s,初相ϕ=3π/4。
试写出它的运动方程,并做出x--t图、v--t 图和a--t图。
13-1分析弹簧振子的振动是简谐运动。
振幅A、初相ϕ、角频率ω是简谐运动方程x=Acos(ωt+ϕ)的三个特征量。
求运动方程就要设法确定这三个物理量。
题中除A、ϕ已知外,ω可通过关系式ω=2π确定。
振子运动的速度T和加速度的计算仍与质点运动学中的计算方法相同。
解因ω=2π,则运动方程 T⎛2πt⎛x=Acos(ωt+ϕ)=Acos t+ϕ⎛⎛T⎛根据题中给出的数据得x=(2.0⨯10-2m)cos[(2πs-1)t+0.75π]振子的速度和加速度分别为v=dx/dt=-(4π⨯10-2m⋅s-1)sin[(2πs-1)t+0.75π] a=d2x/dt2=-(8π2⨯10-2m⋅s-1)cos[(2πs-1)t+0.75πx-t、v-t及a-t图如图13-l所示π⎛⎛13-2 若简谐运动方程为x=(0.01m)cos⎛(20πs-1)t+⎛,求:(1)振幅、频率、角频率、周期和4⎛⎛初相;(2)t=2s 时的位移、速度和加速度。
13-2分析可采用比较法求解。
将已知的简谐运动方程与简谐运动方程的一般形式x=Acos(ωt+ϕ)作比较,即可求得各特征量。
运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t值后,即可求得结果。
解(l)将x=(0.10m)cos[(20πs-1)t+0.25π]与x=Acos(ωt+ϕ)比较后可得:振幅A= 0.10 m,角频率ω=20πs-1,初相ϕ=0.25π,则周期T=2π/ω=0.1s,频率ν=1/T=10Hz。
(2)t= 2s时的位移、速度、加速度分别为x=(0.10m)cos(40π+0.25π)=7.07⨯10-2m v=dx/dt=-(2πm⋅s-1)sin(40π+0.25π)a=d2x/dt2=-(40π2m⋅s-2)cos(40π+0.25π)13-3 设地球是一个半径为R的均匀球体,密度ρ5.5×103kg•m。
一、选择题1.两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为1cos()x A t ωα=+。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处,则第二个质点的振动方程为 [ ](A ))π21cos(2++=αωt A x ; (B ))π21cos(2-+=αωt A x ;(C ))π23cos(2-+=αωt A x ; (D ))cos(2π++=αωt A x 。
答案:B解:由题意,第二个质点相位落后第一个质点相位π/2,因此,第二个质点的初相位为π21-α,所以答案应选取B 。
2.劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为 [ ](A )21212)(2k k k k m T +π=; (B ))(221k k mT +π= ;(C ) 2121)(2k k k k m T +=π; (D )2122k k mT +π=。
答案:C解:两根弹簧串联,其总劲度系数2121k k k k k +=,根椐弹簧振子周期公式,k mT π2=,代入2121k k k k k +=可得答案为C 。
3.一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),作成一复摆.已知细棒绕通过其一端的轴的转动惯量231ml J =,此摆作微小振动的周期为 [ ] (A )g l π2; (B )g l 22π; (C )g l 322π; (D )gl 3π。
答案:C解:由于是复摆,其振动的周期公式为glmgl J T 322222πππ===ω,所以答案为C 。
4.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[ ] 答案:B解:根椐题意,此简谐振动的初相位为3π-,或35π,所以答案为B 。
5-1 有一弹簧振子,振幅m A 2100.2-⨯=,周期s T 0.1=,初相.4/3πϕ=试写出它的振动位移、速度和加速度方程。
分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
解:振动方程为:]2cos[]cos[ϕπϕω+=+=t TA t A x 代入有关数据得:30.02cos[2]()4x t SI ππ=+ 振子的速度和加速度分别是:3/0.04sin[2]()4v dx dt t SI πππ==-+ 2223/0.08cos[2]()4a d x dt t SI πππ==-+5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.分析 通过与简谐振动标准方程对比,得出特征参量。
解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N =5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量.分析 根据简谐振动频率公式比较即可。
©物理系_2015_09《大学物理AII 》作业 No.01 机械振动班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、 判断题:(用“T ”表示正确和“F ”表示错误)1/3/5 2 4[ F ] 1.只有受弹性力作用的物体才能做简谐振动。
解:如单摆在作小角度摆动的时候也是简谐振动,其回复力为重力的分力。
[ F ] 2.简谐振动系统的角频率由振动系统的初始条件决定。
解:P5. 根据简谐振子角频率公式mk=ω,可知角频率是一个完全由振动系统本身性质决定的常量,与初始条件无关。
我们也将角频率称为固有角频率。
[ F ] 3.单摆的运动就是简谐振动。
解:P14-15 单摆小角度的摆动才可看做是简谐振动。
[ T ] 4.孤立简谐振动系统的动能与势能反相变化。
解:P9 孤立的谐振系统 机械能守恒,动能势能反相变化。
[ F ] 5.两个简谐振动的合成振动一定是简谐振动。
解: 同向不同频率的简谐振动的合成结果就不一定是简谐振动。
总结:1、3、5小题均为简谐振动的定义性判断.简谐运动是最基本也是最简单的一种机械振动。
当某物体进行简谐运动时,物体所受的力跟位移成正比,并且力总是指向平衡位置。
二、选择题:1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相位为[ C ] (A) θ; (B) π23; (C) 0; (D) π21。
解:对于小角度摆动的单摆,可以视为简谐振动,其运动方程为:()()0cos ϕωθθ+=t t m ,根据题意,t = 0时,摆角处于正最大处,θθ=m,即:01cos cos 0000=⇒=⇒==ϕϕθϕθθ。
类似公式: ()()0cos ϕω+=t A t x2.一个简谐振动系统,如果振子质量和振幅都加倍,振动周期将是原来的 [D] (A) 4倍(B) 8倍(C) 2倍(D)2倍解: P5 公式(12.1.8) m T k m T m k T ∝⇒=⇒⎪⎭⎪⎬⎫==/2/2πωωπ,所以选D 。
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。
1.1 试举出振动设计、系统识别和环境预测的实例。
1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3 设有两个刚度分别为1k ,2k 的线性弹簧如图T —1.3所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k Px k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++1.4 求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为1t k ,2t k 。
解:对系统施加扭矩T ,则两轴的转角为: 1122t t Tk T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+故等效刚度为:12111eq t t k k k =+1.5 两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&1.6 一简谐运动,振幅为0.5cm,周期为0.15s,求最大速度和加速度。
单自由度系统的自由振动2.1求习题图2-l(a),(b),(c)所示系统的固有频率。
图Q)所示的系统悬怦梁的质量可以忽略不计,其等效弹赞刚度分别为码和居。
图(b)所示的系统为一质最m连接在刚性杆上,杆的质量忽略不计。
图(C)所示的系统中悬挂质帚为加,梁的质帚忽略不计,梁的挠度5由式5 = PL3ZASEJ 给出,梁的刚度为H °习题图2-1机械根动习題鮮答解:(a〉系统简化过程如习题图2-l(a)所示。
4和息串联MZ=H⅛;也和b并联:Z= ^eql + &3^«)2 和上4 串联:Hl =即■r _ (焦层+以3 +心3低)加S = d层十(怡1十层)(爲=G所以固有频率为(B)习题图2-1 (B)所示系统可能有下面两种运动帖况:①在机垂i⅛振动的整个过稈中•杆被约束保持水平位置(见图(b)■①);②在悬挂的铅垂面内,杆可以自由转动(见图(b"②)。
①在杆保持水平的情况下,弹簧d和屜并联,有怎q =血+缸所以固有频率为②当杆可以自由转动时•杆和质虽m的运动会出现非水平的一般状态。
设A点的位移为点的位移为H2,加的位移为工,则静力方程利静力矩方程为ZIlXl + k2X3 = Aa l HQJrILl = k2x z L2几何关系又LI 十L2 = L 由以匕方程解得=kλk z∖}eq ki L↑±k z Ll所以固有频率为ω,17 m第2幸单自由度糸统的自由振动(C)系统简化过程如习题图2-1(C)所示。
等效弹簧刚度为其中所以固有频率为2.2如习题图2・2所示的系统中均质刚杆AB的质帚为加,A端弹簧的刚度为仁求()点铃链支座放在何处时系统的固有频率最高。
解:设&坐标如习题图2-2所示。
系统的动能为=-ym(nZ)2^l — + + 右片=-I-^eq(WZ^)2 (I)等效质量加“可以表示为山于固有频率与质量的平方根成反比,即3严厲、欲得最高的固有频率,必须使〃G为最小,即d叫 _ 3”_2 _ dn 3n3得2n = T代入二阶导数•得d'/Meq _ 2(1 —”)、∩~ln r _ ~^√>是极小值•故饺链应放在距A端彳L处。
机械振动学习题解答11-4一简谐振动频率为10Hz,最大速度为4.57m/,-求其振幅、周期和最大加速度。
解:简谐振动的位移某(t)=Ain(ωnt+)速度&某(t)=ωnAco(ωnt+)&速度幅值某ma某=ωnA某加速度幅值&&ma某=ωn2A 某加速度&&(t)=ωn2Ain(ωnt+)&由题意,fn=10Hz,某ma某=4.57m/所以,圆频率ωn=2πfn=20π圆频率振幅A=&某ma某ωn=0.072734m周期T=1/fn=0.1最大加速度2&&ma某=ωnA=ωn某ma某=287.14m/2&某1-6一台面以一定频率作垂直正弦运动,如要求台-面上的物体保持与台面接触,则台面的最大振幅可有多大?解:对物体受力分析&&mgN=m 某物体N当N=0时,物体开始脱离台面,此时台面的加速度为最大值。
即&&mg=m某ma某2&&ma某=ωnA某2A=g/ωn台面mg&&某又由于所以1-7计算两简谐运动某1=某coωt和某2=某co(ω+ε)t-之和。
其中ε<<ω。
如发生拍的现象,求其振幅和拍频。
解:某1+某2=2某co(t)co(2ε当ε<<ω时,某1+某2≈2某co(2t)coωt可变振幅ε2ω+εt)210co(2πt)εε拍振的振幅为2某,拍频为f=(不是)2π4π例:当ω=80π,ε=4π,某=5时,某1+某2≈10co(2πt)co(80πt)10振幅为10拍频为2Hz0-1000.510co(2πt)1拍的周期为0.5(不是)(不是1)1.52补充若两简谐运动振幅和频率都不同:=某1coωt+(某2coωt某2coωt)+某2co(ω+ε)t某=某1+某2=某1coωt+某2co(ω+ε)t 可变振幅A(t)=某1某2+2某2coεε≈(某1某2)coωt+2某2cotcoωt=某1某2+2某2cotcoωt22可变振幅ε%2t%%拍振的振幅为Ama某Amin=2某2(假设某2较小),拍频为f=例:当ω=80π,ε=4π,某1=8,某2=5时,13ε2π某1+某2=[3+10co(2πt)]co(80πt)振幅为13-1303+10co(2πt)0.511.52拍频为1Hz2-2如图所示,长度为L、质量为m的均质刚性杆-由两根刚度为k的弹簧系住,求杆绕O点微幅振动的微分方程。