实际问题与一元二次方程——利润问题
- 格式:doc
- 大小:128.00 KB
- 文档页数:2
课题:实责问题与一元二次方程〔销售利润问题〕星海中学 潘楚驹【学习目标】 1. 会依照详尽问题中的数量关系列一元二次方程并求解。
2. 能依照问题的实质意义,检验所得结果可否合理。
【重点】掌握依照详尽问题中的数量关系列一元二次方程并求解的方法与步骤。
【难点】研究问题中的数量关系 。
【学习过程】 环节一、【师生研学】 一、课前学生研学( 一 ) 回忆:会找出销售问题中的等量关系 1、填空:⑴、某件商品,进价 4 元,售价 6 元,那么利润为元。
这些数量之间的等量关系为 。
⑵、某件商品进价 35 元,售价为 40 元,共卖出 150 件,总合盈利元这些数量之间的等量关系为 。
⑶、某件商品本钱为30 元,假设想盈利 50%,那么售价应该定为元。
这些数量之间的等量关系为。
⑷、某种衣饰,每 .降价 1 元,那么每天可多销售 5 件,假设降价x 元,那么每天多售件。
某种衣饰,每.降价 3 元,那么每天可多销售 5 件,假设降价x 元,那么每天多售件。
2、销售中常有的等量关系售价、进价、利润 的关系式:单件利润 = 售价—进价..进价、利润、利润率 的关系:利润率 = 单件利润100%...进价标价、折扣数、商品售价关系: 售价= 标价折扣数10售价、进价、利润率 的关系:售价 =进价× (1+ 利润率 )...( 二 ) 、研究新知〔 利润问题〕, 列方程解应用题的根本步骤:审,设,列,解,验,作答。
某百货商店衣饰柜在销售中发现:“宝乐〞牌童装平均单件利润销量总利润每天可售出 20 件,每件盈利 40 元。
商场决定采用合适的降价措施, 扩大销售量, 减少库存 ,经市场检查发现:降价前....若是每件童装每降价 1 元,那么平均每天即可多售出2降价后件。
要想平均每天在销售这种童装上盈利 1200 元,那么每件童装应降价多少元?环节二、【难点导学】单件利润销量总利润( 一 ) 、课堂生生交流互评、学生分组显现预习成就,教师谈论。
21.3实际问题与一元二次方程第三课时销售利润问题1.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?2. 某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月卖出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)3.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加_________件,每件商品盈利_________元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?4.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?,5.某单位于“三•八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是领队与旅行社导游收费标准的一段对话:领队:组团去“星星竹海”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2700元.请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人?6.某公司投资新建了一商场共有商铺30间,据预测,当每间的年租金定为10万元时,可以全部租出,每件的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元。
九年级数学上分层优化堂堂清二十一章 一元二次方程第二课时 面积问题,销售利润问题学习目标:1.根据实际问题中的数量关系,正确列出一元二次方程。
2.通过列方程解应用题体会一元二次方程在实际生活中的应用,经历将实际问题转化为数学问题的过程,提高数学应用意识。
老师对你说:1.几何面积问题:利用勾股定理建立一元二次方程。
利用面积公式建立二元一次方程。
2.销售利润问题:总利润=单利润×数量现单利润=原单利润+涨价部分(-降价部分)现数量=原数量-变化基数涨价基础涨价部分⨯(原数量+变化基数降价基础降价部分⨯) 3.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位数.如:一个三位数,个位上数为a ,十位上数为b ,百位上数为c ,则这个三位数可表示为:100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x,则另两个数分别为x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x,则另两个数分别为x-2,x+2.教材核心知识点精练知识点1:几何图形问题【例1-1】如图,一农户要建一个矩形鸡舍,为了节省材料,鸡舍的一边利用长为12米的墙,另外三边用长为27米的建筑材料围成,为方便进出,在垂直墙的一边留下一个宽1米的门,所围成矩形鸡舍的长、宽分别是多少时,鸡舍面积为90平方米?【例1-2】如图,矩形ABCD中,6cmAB=,8cmBC=,点P从A开始沿AB边向点B以1厘米/秒的速度,同时出发,求经移动,点Q从点B开始沿BC边向点C以2厘米/秒的速度移动,如果P、Q分别是从A B过几秒时,(1)PBQ的面积等于8平方厘米?(2)五边形APQCD的面积最小?最小值是多少?知识点2:数字问题【例2-1】阅读材料,回答下列问题:反序数:有这样一对数,一个数的数字排列完全颠倒过来变成另一个数,简单的说,就是顺序相反的两个数,我们把这样的一对数称为“反序数”,比如:12的反序数是21,456的反序数是654.用方程知识解决问题:若一个两位数,其十位上的数字比个位上的数字大3,这个两位数与其反序数之积为1300,求这个两位数.【例2-2】下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为().A.32B.126C.135D.144知识点3:销售利润问题【例3-1】水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg.(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元.若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元.【例3-2】2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数?(2)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?能力强化提升训练1 .某电厂规定,该厂家属区的每户居民如果一个月的用电量不超过x 度,那么这个月这户居民只交10元电费;如果超过x 度,这个月除了交10元电费外,超过部分按每度100x 元交费. (1) 该厂某户居民1月份用电90度,超过了x 度的规定,试写出超过部分应交的电费.(用含x 的代数式表示)(2)下表是这户居民2月、3月的用电情况,请根据其中的数据,求电厂规定的x 度是多少.2 .某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且率为x .(1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______kg (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg ,求南瓜亩产量的增长率.3.甲、乙两工程队共同承建某高速路隧道工程,隧道总长2000米,甲、乙分别从隧道两端向中间施工,计划每天各施工6米.因地质情况不同,两支队伍每合格完成1米隧道施工所需成本不一样.甲每合格完成1米,隧道施工成本为6万元;乙每合格完成1米,隧道施工成本为8万元.(1)若工程结算时乙总施工成本不低于甲总施工成本的43,求甲最多施工多少米? (2)实际施工开始后因地质情况比预估更复杂,甲乙两队每日完成量和成本都发生变化.甲每合格完成1米隧道施工成本增加m 万元时,则每天可多挖12m 米,乙因特殊地质,在施工成本不变的情况下,比计划每天少挖14m 米,若最终每天实际总成本比计划多(11m -8)万元,求m 的值. 4 .解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.堂堂清 一、选择题(每小题4分,共32分) 1.有一个两位数,个位数字与十位数字之和为8,把它的个位数字与十位数字对调,得到一个新数,新数与原数之积为1855,则原两位数是( )A .35B .53C .62D .35或532. 修建一个面积为 100 平方米的矩形花园,它的长比宽多 10 米,设宽为 x 米,可列方程为 ( ) A .()10100x x -=B .()2210100x x +-=C .()2210100x x ++=D .()10100x x +=3 .某网店销售一批运动装,平均每天可销售20套,每套盈利45元;为扩大销售量,增加盈利,采取降价措施,一套运动服每降价1元,平均每天可多卖4套,若网店要获利2100元,设每套运动装降价x 元,则列方程正确的是( )A .()()452042100x x -+=B .()()452042100x x ++=C .()()452042100x x --=D .()()452042100x x +-=4 .如图,要设计一幅宽20cm 、长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,则横彩条和竖彩条的宽度分别是( )A .2cm 和3cmB .1cm 3和1cm 2C .5cm 3和5cm 2D .2cm 5和3cm 5 5 .某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价x 元,则符合题意的方程是( )A .(1612)(36040)1680x x +--=B .(12)(36040)1680x x --=C .(12)[36040(16)]1680x x ---=D .(1612)[36040(16)]1680x x +---=6 .如图,将一张正方形铁皮的四个角同时切去边长为2的四个小正方形,制成一个无盖箱子,若箱子的底面边长为x ,原正方形铁皮的面积为224x x +,则无盖箱子的外表面积为( )A .1B .4C .6D .97.为加快推动生态巩义建设步伐,形成“城在林中、园在城中、山水相依,林路相随”的生态格局,市政府计划在某街心公园的一块矩形空地上修建草坪,如图,矩形长为40m ,宽为30m ,在矩形内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为2816m ,道路的宽度应为多少设矩形地块四周道路的宽度为x m ,根据题意,下列方程不正确的是( )A .()2120080604816x x x -+-=B .()()4030816x x --=C .()()402302816x x --=D .()8023021200816x x x +-=- 8 .《九章算术》是我国传统数学中重要的著作之一,奠定了我国传统数学的基本框架其中,方程术是《九章算术》最高的数学成就《九章算术》记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一扇形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,问它的高与宽各是多少?利用方程思想设矩形门宽为x 尺,则依题意所列方程为( )(1丈10==10尺,1尺10==10寸)A .222( 6.8)10x x ++=B .()2226.8100x x +-=C.()222x x+-=D.2226.810x+=6.8100二、填空题(每小题4分,共20分)9 .如图,在宽为20m,长为30m的矩形地面上修建两条同样宽且互相垂直的道路,其余部分作为耕地为10 .已知一个两位数,个位上的数字比十位上的数字小4,且个位上的数字与十位上的数字的平方和比这个,将BCP沿BP三、解答题(共48分)14 .(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个,因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,定价为多少元?15 .(8分)有一块长32cm、宽14cm的矩形铁皮.(1)如图1,如果在铁皮的四个角裁去四个边长一样的正方形后,将其折成底面积为2280cm的无盖长方体盒子,求裁去的正方形的边长;(2)由于需要,计划制作一个有盖的长方体盒子,为了合理利用材料,某学生设计了如图2所示的裁剪方案,阴影部分为裁剪下来的边角料,其中左侧的两个阴影部分为正方形,问能否折出底面积为2180cm的有盖盒子?如果能,请求出盒子的体积;如果不能,请说明理由.16.(8分)如图,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15米,花圃一面利用墙,其余三面用篱笆围成,篱笆总长为24米.(1)若围成的花圃面积为40平方米时,求BC的长;(2)围成的花圃面积能否为75平方米,如果能,请求BC的长;如果不能,请说明理由.17 .(8分)某网店专门销售某种品牌的工艺品,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天工艺品的销售量不低于240件且有盈利,销售单价x应定在什么范围?(3)如果在(2)的条件下,网店每天销售利润为3750元,求该种工艺品销售单价是多少元?18 .(8分)阅读材料,回答下列问题:反序数:有这样一对数,一个数的数字排列完全颠倒过来变成另一个数,简单的说,就是顺序相反的两个数,我们把这样的一对数称为“反序数”,比如:12的反序数是21,456的反序数是654.用方程知识解决问题:若一个两位数,其十位上的数字比个位上的数字大3,这个两位数与其反序数之积为1300,求这个两位数.19 .(8分)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形……按此规律排列下去,解答下列问题:(1)第5个图案中黑色三角形的个数有个.(2)第n个图案中黑色三角形的个数能是50个吗?如果能,求出n的值;如果不能,试用一元二次方程的相关知识说明道理.1.今年某村农产品喜获丰收,该村村委会在网上直播销售A、B两种优质农产品礼包.(1)已知今年7月份销售A种农产品礼包256包,8、9月该礼包十分畅销,销售量持续走高,在售价不变的基础上,9月份的销售量达到400包.若设8、9两个月销售量的月平均增长率为x,求x的值;(2)若B种农产品礼包每包成本价为16元,当售价为每包30元时,每月销量为200包.为了尽快减少库存,该村准备在10月进行降价促销,经调查发现,若B种农产品礼包每包每降价1元,月销售量可增加20包,当B种农产品礼包每包降价多少元时,该村销售B种农产品礼包在10月份可获利2860元?2.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算,第一年有40家工厂用乙方案治理,共使Q值降低了12 .经过三年治理,境内长江水质明显改善.(1)求的n值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;。