描述液体运动的两种方法及液体运动的基本概念
- 格式:ppt
- 大小:1.01 MB
- 文档页数:12
液体运动的流束理论本章先建立液体运动的基本概念,然后依据流束理论,从质量守恒定律出发建立水流的连续性方程、从能量方程出发建立水流的能量方程,以及从动量定理出发建立水流的动量方程。
1、描述液体运动的两种方法:拉格朗日法和欧拉法。
拉格朗日法,以研究个别液体质点的运动为基础,通过对每个液体质点运动规律的研究来获得整个液体运动的规律性,所以这种方法又称为“质点系法”。
欧拉法,以考察不同液体质点通过固定的空间点的运动情况来了解整个流动空间的流动情况,即着眼于研究各种运动要素的分布场,所以这种方法又叫做“流场法”。
2、恒定流与非恒定流恒定流:在流场中,任何空间点上所有的运动要素都不随时间而改变,即“运动要素仅仅是空间坐标的连续函数,而与时间无关”。
非恒定流:流场中任何点上有任何一个运动要素是随时间而变化的。
3、迹线与流线迹线,拉格朗日法研究个别液体质点在不同时刻的运动情况而引出的,是指某一液体质点在运动过程中不同时刻所流经的空间点所连成的线,即液体质点运动时所走过的轨迹线。
流线,欧拉法考察同一时刻液体质点在不同空间位置的运动情况引出的,是指某一瞬时在流场中绘出的一条曲线,在该曲线上所有各点的速度向量都与该曲线相切。
流线具有瞬时性(对于非恒定流来说,其图形会随时间变化),迹线没有瞬时性;流线与迹线都具有族线。
流线的基本特性:1恒定流时,流线的形状和位置不随时间而改变;2恒定流时液体质点运动的流线与迹线相重合;3流线不能相交。
4、流管、微小流束、总流,过水断面、流量与断面平均流速流管:在水流中任意一微分面积dA ,通过该面积的周界上的每一个点均可作一根流线,这样就构成一个封闭的管状曲面,称为流管。
微小流束:充满以流管为边界的一束液流,称为微小流束。
微小流束性质:1微小流束内外液体不会发生交换;2恒定流微小流束的形状和位置不会随时间而改变,非恒定流时将会随时间而改变;3横断面上各点的流速和压强可看作是相等的。
总流:任何一个实际水流都具有一定规模的边界,这种有一定大小尺寸的实际水流称为总流。
描述液体运动的两种方法1.1 描述液体运动的两种方法描述液体运动的方法有拉格朗日法和欧拉法两种。
1.1.1 拉格朗日法拉格朗日法是以液体运动质点作为研究对象,研究这些质点在整个运动过程中的轨迹(称为迹线)以及运动要素随时间的变化规律。
每个质点运动状况的总和就构成了整个液体的运动。
所以,这种方法与一般力学中研究质点与质点系运动的方法是一样的。
由于液体质点的运动轨迹非常复杂,用拉格朗日法分析流动,在数学上会遇到很多的困难,同时实用上一般也不需要知道给定质点的运动规律,所以除少数情况外(如研究波浪运动),水力学通常不采用这种方法,而采用较简便的欧拉法。
1.1.2 欧拉法欧拉法是把液体当作连续介质,以充满运动质点的空间——流场作为研究对象,研究各时刻流场中不同质点运动要素的分布与变化规律,而不直接追踪给定质点在某时刻的位置及其运动状况。
用欧拉法描述液体运动时,运动要素是空间坐标x ,y ,z 与时间变量t 的连续可微函数。
变量x ,y ,z ,t 统称为欧拉变量。
因此,各空间点的流速所组成的流速场可表示为⎪⎭⎪⎬⎫===),,,(),,,(),,,(t z y x u u t z y x u u t z y x u u z z y y x x (2-1)各空间点的压强所组成的压强场可表示为),,,(t z y x p p = (2-2)加速度应是速度对时间的全导数。
注意到式(2-1)中x ,y ,z 是液体质点在t 时刻的运动坐标,对同一质点来说它们不是独立变量,而是时间变量t 的函数。
根据复合函数求导规则,得dtdz z u dt dy y u dt dx x u t u dt du a x x x x x x ⋅∂∂+⋅∂∂+⋅∂∂+∂∂== 式中x u dt dx =; y u dt dy =; z u dt dz = 故 z u u y u u xu u t u dt du a x z x y x x x x x ∂∂+∂∂+∂∂+∂== 同理 z u u y u u x u u t u dt du a y z y y y x yyy ∂∂+∂∂+∂∂+∂∂== (2-3)zu u x u u x u u t u dt du a z y z y z x z z z ∂∂+∂∂+∂∂+∂∂==上式右边第一项tu t u t u z y x ∂∂∂∂∂∂,,表示通过固定点的液体质点速度随时间的变化率,称为当地加速度;等号右边后三项反映了在同一时刻因地点变更而形成的加速度,称为迁移加速度。
学习单元一、液体流动的基本概念液体运动的两种方法要研究液体运动的规律,就要建立描述液体运动的方法。
在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。
1.拉格朗日法拉格朗日法是由法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用, 又称随体法。
该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。
按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标(a,b,c) (即当时间t等于起始值t0时的坐标)以及时间t的单值连续函数。
若以r代表任意选择的质点在任意时间t的矢径,则:矢径与质点坐标可以表示为:r = r(a,b, c, t)X=x (a,b,c,t)y=y (a,b,c,t)z=z (a,b,c,t)式中,r在x、y 、z 轴上的投影为x、y 、z ;a、b、c 称为拉格朗日变量。
当研究对象为某一确定的流体质点时,起始坐标a、b、c 将为常数,r 以及x、y 、z 将只是时间t的函数;此时上式所表达的将是这个流体质点运动的轨迹。
当研究的对象不是某一确定的流体质点,而是在某一确定时间中,各流体质点的分布情况,即时间t为一常数,r及x、y 、z 将只是起始坐标a、b、c的函数;在这种情况下,式子所表达的将不是某流体质点的历史情况,而是同一瞬间,由各质点所组成的整体状况.将式上述拉格朗日表达式对时间求一阶和二阶导数,可得任意流体质点的速度和加速度为:),,,(t c b a u t x u =∂∂= ),,,(t c b a v t y v =∂∂=),,,(t c b a w t z w =∂∂=),,,(22t c b a a t x t u a x x =∂∂=∂∂=),,,(22t c b a a t y t v a y y =∂∂=∂∂=),,,(22t c b a a t z t w a z z =∂∂=∂∂=描述了整个流场中所有质点的规律,就可以描述整个流动。