高考数学复习专题 含导函数的抽象函数的构造
- 格式:docx
- 大小:784.80 KB
- 文档页数:10
专题1-5 抽象函数赋值与构造一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过的变换判定单调性;3、令式子中出现及判定抽象函数的奇偶性;4、换为确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试. ①若给出的是“和型”抽象函数,判断符号时要变形为:或;()()12−f x f x ()f x ()−f x x +x T () =+y x f ()()()()111212)(x f x x x f x f x f −+−=−()()()()221212)(x x x f x f x f x f +−−=−②若给出的是“积型”抽象函数,判断符号时要变形为:或. 三、常见的抽象函数模型1、可看做的抽象表达式;2、可看做的抽象表达式(且);3、可看做的抽象表达式(且);4、可看做的抽象表达式.2022新高考2卷T8 1.已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++−==,则221()k f k ==∑( )A .3−B .2−C .0D .12023新高考1卷T112.(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点2023·山东青岛·统考三模() =xy f ()()()112112x f x x x f x f x f −⎪⎪⎭⎫ ⎝⎛⋅=−()()()⎪⎪⎭⎫⎝⎛⋅−=−212212x x x f x f x f x f ()()()+=+f x y f x f y ()=f x kx ()()()+=f x y f x f y ()=xf x a 0>a 1≠a ()()()=+f xy f x f y ()log =a f x x 0>a 1≠a ()()()=f xy f x f y ()=af x x 重点题型·归类精讲1.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f =______.2023·山东滨州·三模2.(多选)已知连续函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,(1)2f =-,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x −<+的解集为213xx ⎧⎫<<⎨⎬⎩⎭安徽省皖江名校联盟2024届高三上学期10月第二次联考3.已知函数不是常数函数,且满足以下条件:①,其中;②,则( )A .0B .1C .2D .4.(多选)已知定义在R 上的函数()f x 满足()()()()()()()()2,02,01f xy f x f y f x f y f f f =−−+<≠,且()0f x >,则( ) A .()01f =B .()12f −=C .()()2f x f x −=D .()()f x f x −=5.已知函数及其导函数的定义域均为,对任意的,恒有,则下列说法正确的个数是( )①;②必为奇函数;③;④若,则.A .1B .2C .3D .42023·浙江嘉兴·统考模拟6.已知函数的定义域为,且,,则的值是( )A .9B .10C .11D .12(),y f x x =∈R ()()()()f a b f a b f a f b ++−=,a b ∈R ()10f =()2026f −=2−()f x ()f x 'R ,R x y ∈()()()()2f x y f x y f x f y ++−=()00f =()f x '()()00f x f +≥1(1)2f =202311()2n f n ==∑()f x R ()()()()31,00,f x x f x x ⎛⎫=∈−∞+∞ ⎪⎝⎭()()()2f x f y xy f x y ++=+()3f2023届江苏连云港校考7.已知函数,任意,满足,且,则的值为( )A .B .0C .2D .48.已知,都是定义在上的函数,对任意x ,y 满足,且,则下列说法正确的是( )A .B .函数的图象关于点对称C .D .若,则2023绍兴·高二期末9.已知函数的定义域为R ,且,为奇函数,,则( ) A . B . C .0 D .10.(多选)已知函数()f x 的定义域为R ,()()()f x y f x f y +=+,则( )A .()00f =B .()f x 是奇函数 C .0x =为()f x 的极小值点D .若()11f =,则()20232023f =11.(多选)设()f x 是定义在R 上的函数,对,x y ∀∈R ,有()()()()22f x y f x y f x f y +−−=++,且()00f ≠,则( )A .()()0f x f x −−=B .()()40f x f x +−=C .()()()()02420242f f f f ++++=−()f x x y R ∈,()()()()22f x y f x y f x f y +−=−()()1220f f ==,()()()1290f f f +++2−()f x ()g x R ()()()()()f x y f x g y g x f y −=−()()210f f −=≠()01f =()21g x +()1,0()()110g g +−=()11f =()202311n f n ==∑()f x ()()()28f x f x f ++=()21f x +1122f ⎛⎫= ⎪⎝⎭22112k kf k =⎛⎫−= ⎪⎝⎭∑11−12−212D .()()()()222212320244048f f f f ++++=12.(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的,R x y ∈,恒有()()()()2f x y f x y f x f y ++−=,则下列说法正确的有( )A .()00f =B .()f x '必为奇函数C .()()00f x f +≥D .若1(1)2f =,则202311()2n f x ==∑13.已知函数()f x 的定义域为R ,满足()()()()f x y f x y f x f y ++−=⋅,且12f ,则( )A .()02f =B .()f x 为奇函数C .()()()()12320232f f f f +++⋅⋅⋅⋅⋅⋅+=−D .()22f x −≤≤14.(多选)已知定义域为R 的函数()f x 对任意实数,x y 都有()()()()2f x y f x y f x f y ++−=,且102f ⎛⎫= ⎪⎝⎭,则以下结论一定正确的有( )A .()01f =−B .()f x 是偶函数C .()f x 关于1,02⎛⎫⎪⎝⎭中心对称D .()()()1220230f f f +++=15.函数()f x 的定义域为R ,且()()()21f x f x f x +=−+−,()()2f x f x =−,()3651f =−,则()20231k f k ==∑ .16.已知函数()f x 满足:1(1),4()()()()(,R)4f f x f y f x y f x y x y ==++−∈,则()2023f = .17.已知函数()f x 定义域为R ,满足()()()()()11,f f x y f x y f x f y =++−=,则()8f = .18.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f = .19.(2024届厦门一中校考)若定义域为R 的奇函数()f x 满足()(1)(1)f x f x f x =++−,且(1)2f =,则(2024)f = .20.函数()f x 的定义域为R ,对任意,x y ∈R ,恒有()()222x y x y f x f y f f +−⎛⎫⎛⎫+=⋅⎪ ⎪⎝⎭⎝⎭,若()112f =,则()1f −= ,()20221n f n ==∑ .深圳市宝安区2024届高三上学期10月调研数学试题21.已知函数()f x 的定义域为R ,且()()()()22f x y f x y f x f y +−=−,()13f =,322f x ⎛⎫+ ⎪⎝⎭为偶函数,则( ) A .()f x 为偶函数 B .()23f = C .()()33f x f x +=−−D .()202313k f k ==∑专题1-5 抽象函数赋值与构造一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过的变换判定单调性;3、令式子中出现及判定抽象函数的奇偶性;4、换为确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试. ①若给出的是“和型”抽象函数,判断符号时要变形为:或;()()12−f x f x ()f x ()−f x x +x T () =+y x f ()()()()111212)(x f x x x f x f x f −+−=−()()()()221212)(x x x f x f x f x f +−−=−②若给出的是“积型”抽象函数,判断符号时要变形为:或. 三、常见的抽象函数模型1、可看做的抽象表达式;2、可看做的抽象表达式(且);3、可看做的抽象表达式(且);4、可看做的抽象表达式.2022新高考2卷T8 1.已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++−==,则221()k f k ==∑( )A .3−B .2−C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++−=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +−=,即()()f y f y =−,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++−==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=−−,()()14f x f x −=−−,故()()24f x f x +=−,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =−=−=−,()()()321112f f f =−=−−=−,()()()4221f f f =−==−,()()()5111f f f =−==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,() =xy f ()()()112112x f x x x f x f x f −⎪⎪⎭⎫ ⎝⎛⋅=−()()()⎪⎪⎭⎫⎝⎛⋅−=−212212x x x f x f x f x f ()()()+=+f x y f x f y ()=f x kx ()()()+=f x y f x f y ()=xf x a 0>a 1≠a ()()()=+f xy f x f y ()log =a f x x 0>a 1≠a ()()()=f xyf x f y ()=af x x所以()()()()()221123411213k f k f f f f ==+++=−−−=−∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++−=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++−=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=,所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++−=++−== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =−=−=−==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=−−−=−∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2023新高考1卷T112.(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点【答案】ABC【分析】方法一:利用赋值法,结合函数奇遇性的判断方法可判断选项ABC ,举反例()0f x =即可排除选项D.方法二:选项ABC 的判断与方法一同,对于D ,可构造特殊函数2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩进行判断即可.【详解】方法一:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==−,(1)(1)(1)2(1)f f f f =−+−=−,则(1)0f −=,令21,()()(1)()y f x f x x f f x =−−=+−=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误. 方法二:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==−,(1)(1)(1)2(1)f f f f =−+−=−,则(1)0f −=, 令21,()()(1)()y f x f x x f f x =−−=+−=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,当220x y ≠时,对22()()()f xy y f x x f y =+两边同时除以22x y ,得到2222()()()f xy f x f y x y x y=+, 故可以设2()ln (0)f x x x x =≠,则2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩,当0x >肘,2()ln f x x x =,则()212ln (2ln 1)x x x x xf x x =+⋅=+', 令()0f x '<,得120e x −<<;令0fx,得12e x −>;故()f x 在120,e −⎛⎫ ⎪⎝⎭上单调递减,在12e ,−⎛⎫+∞ ⎪⎝⎭上单调递增,因为()f x 为偶函数,所以()f x 在12,0e −⎛⎫− ⎪⎝⎭上单调递增,在12,e −⎛⎫ ⎪⎝∞⎭−上单调递减,显然,此时0x =是()f x 的极大值,故D 错误.故选:ABC .2023·山东青岛·统考三模1.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f =______.重点题型·归类精讲【答案】1−【分析】采用赋值的方式可求得()()0,1f f −,令1y =和y x =−可证得()f x 的对称轴和奇偶性,由此可推导得到()f x 的周期性,利用周期性可求得函数值.【详解】令1x y ==,则()()()()()()21001200f f f f f f =+==,()00f ∴=;令2x =,1y =−,则()()()()22212111f f f f =+−=−=,又()10f −<,()11f ∴−=−;令1y =,则()()()()()()10111f x f x f f x f f x +=+−=−,f x 关于直线1x =对称;令y x =−,则()()()()()()()()01110f f x f x f x f x f x f x f x =++−−=+−+=⎡⎤⎣⎦, ()10f x +=不恒成立,()()0f x f x ∴+−=恒成立,f x 为奇函数,()()()2f x f x f x +=−=−,()()()42f x f x f x ∴+=−+=,f x 是周期为4的周期函数,()()()55414111f f f ∴=⨯−=−=−.故答案为:1−.2023·山东滨州·三模2.(多选)已知连续函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,(1)2f =-,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x −<+的解集为213xx ⎧⎫<<⎨⎬⎩⎭【答案】ABC【分析】根据函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,令0x y ==,可得(0)0f =,判断奇偶性和单调性,即可判断选项;【详解】解:对于A ,函数()f x 对任意实数x 恒有()()()f x y f x f y +=+, 令0x y ==,可得(0)0f =,A 正确;对于B ,令x y =−,可得(0)()()0f f x f x =+−=,所以()()f x f x =−−,所以()f x 是奇函数;B 正确;对于C ,令x y <,则()()()()()f y f x f y f x f y x −=+−=−, 因为当x >0时,f (x )<0,所以()0f y x −<,即()()0f y f x −<, 所以()f x 在()()0,,,0+∞−∞均递减, 因为()0f x <,所以()f x 在R 上递减;12f ,可得(1)2f −=;令1y =,可得()()12f x f x +=− ()24f =−,()36f =−;()3(3)6f f =−−=,()f x ∴在[3−,3]上的最大值是6,C 正确;对于D ,由不等式2(3)2()(3)4f x f x f x −<+的可得2(3)()()(3)4f x f x f x f x <+++, 即2(3)(23)4f x f x x <++,4(2)f =−,2(3)(23)(2)f x f x x f ∴<++−,则2(3)(52)f x f x <−,2352x x ∴>−,解得:23x <或1x >; D 不对;故选:ABC . 安徽省皖江名校联盟2024届高三上学期10月第二次联考3.已知函数不是常数函数,且满足以下条件:①,其中;②,则( )A .0B .1C .2D .【答案】D(),y f x x =∈R ()()()()f a b f a b f a f b ++−=,a b ∈R ()10f =()2026f −=2−【分析】先令,得到,再令,得到,根据函数的周期性得到函数的周期为,即可求解.【详解】由题意令,得,又不是常数函数, 所以,再令,得, 即,则, 即,故, 所以函数的周期为,所以, 故选:D.4.(多选)已知定义在R 上的函数()f x 满足()()()()()()()()2,02,01f xy f x f y f x f y f f f =−−+<≠,且()0f x >,则( ) A .()01f = B .()12f −= C .()()2f x f x −= D .()()f x f x −=【答案】ABD【分析】由已知,利用赋值法计算判断得解.【详解】定义在R 上的函数()f x 满足()()()()()2f xy f x f y f x f y =−−+,令0x y ==,得()()()20[0]202f f f =−+,而()02f <,则()01f =,A 正确;令x y ==1,得()()()21[1]212f f f =−+,而()()01f f ≠,则()12f =, 令1x y ==−,得()()()21[1]212f f f =−−−+,即()()2[1]21f f −=−,而()0f x >,即()10f −>,则()12f −=,B 正确;令1y =−,得()()()()()112f x f f x f f x −=−−−−+,即有()()()222f x f x f x −=−−+,因此()()f x f x −=,C 错误,D 正确. 故选:ABD5.已知函数及其导函数的定义域均为,对任意的,恒有,则下列说法正确的个数是( )0b =()02f =1b =()()2f a f a +=−()y f x =40b =()()()20f a f a f =()y f x =()02f =1b =()()()()111f a f a f a f ++−=()()110f a f a ++−=()()2f a f a +=−()()2f a f a −=−()()4f a f a =+()y f x =4()()()()202624506202f f f f −=+⨯==−=−()f x ()f x 'R ,R x y ∈()()()()2f x y f x y f x f y ++−=①;②必为奇函数;③;④若,则.A .1B .2C .3D .4【答案】C【分析】利用赋值法可判断①;利用赋值法结合函数奇偶性定义判断②;赋值,令,得出,变量代换可判断③;利用赋值法求出部分函数值,推出其值具有周期性,由此可计算,判断④,即可得答案.【详解】令,则由可得,故或,故①错误;当时,令,则,则,故,函数既是奇函数又是偶函数;当时,令,则,所以,则,即,则为奇函数,综合以上可知必为奇函数,②正确;令,则,故.由于,令,即,即有,故③正确; 对于D ,若,令 ,则,则, 令,则,即,令,则,即, 令,则,即, 令,则,即,令,则,即, 令,则,即, 令,则,即,,()00f =()f x '()()00f x f +≥1(1)2f =202311()2n f n ==∑y x =()()200f x f +≥()f n 20231()n f n =∑0x y ==()()()()2f x y f x y f x f y ++−=()()22020f f =(0)0f =()01f =(0)0f =0y =()()2()(0)0f x f x f x f +==()0f x =()0f x '=()f x '(0)1f =0x =()()2(0)()f y f y f f y +−=()()−=f y f y ()()f y f y −''−=()()f y f y −='−'()f x '()f x 'y x =()()()2202f x f f x +=()()200f x f +≥x ∈R 2,R t x t =∈()()00f t f +≥()()00f x f +≥()112f =1,0x y ==()()()()11210+=f f f f (0)1f =1x y ==()()()22021f f f +=()()1121,222f f +=∴=−2,1x y ==()()()()31212f f f f =+()113,(3)122f f +=−∴=−3,1x y ==()()()()42231f f f f +=()1141,(4)22f f −=−∴=−4,1x y ==()()()()53241f f f f +=()1151,(5)22f f −=−∴=5,1x y ==()()()()64251f f f f +=()116,(6)122f f −=∴=6,1x y ==()()()()75261f f f f +=()1171,(7)22f f +=∴=7,1x y ==()()()()86271f f f f +=()1181,(8)22f f +=∴=−由此可得的值有周期性,且6个为一周期,且 ,故,故④正确, 即正确的是②③④, 故选:C.2023·浙江嘉兴·统考模拟6.已知函数的定义域为,且,,则的值是( )A .9B .10C .11D .12【答案】D【分析】由赋值法先得,再由与关系列式求解. 【详解】中令,则,中令,,则,又中令,则,所以,中,令,则,再令,,则. 故选:D2023届江苏连云港校考7.已知函数,任意,满足,且,则的值为( )A .B .0C .2D .4【答案】C【分析】抽象函数利用特殊值的思路可以得到函数在取奇数和偶数的时候的规律,然后可以得到函数值的和.【详解】令,,则,所以;令,,则,所以;令,则,所以,(),N f n n *∈(1)(2)(3)(4)(5)(6)0f f f f f f +++++=()202311337[(1)(2)(3)(4)(5)(6)](1)2n f n f f f f f f f ==⨯++++++=∑()f x R ()()()()31,00,f x x f x x ⎛⎫=∈−∞+∞ ⎪⎝⎭()()()2f x f y xy f x y ++=+()3f ()00f =()1f ()1f −()()()2f x f y xy f x y ++=+0x y ==()00f =()()()2f x f y xy f x y ++=+1x =1y =−()()()11200f f f +−−==()31f x x f x ⎛⎫= ⎪⎝⎭=1x −()10f −=()12f =()()()2f x f y xy f x y ++=+1x y ==()()22126f f =+=1x =2y =()()()312426412f f f =++=++=()f x x y R ∈,()()()()22f x y f x y f x f y +−=−()()1220f f ==,()()()1290f f f +++2−()f x 2x =1y =()()()()223121f f f f =−()32f =−3x =2y =()()()()2251324f f f f =−=()52f =2y =()()()222f x f x f x +−=()72f =−()92f =.令,,则①,令,,则②,令,,则③,假设,那么由③可知,将,代入②式发现与矛盾,所以不成立,.同理可得当x 为偶数时,. 所以原式=.故选:C.8.已知,都是定义在上的函数,对任意x ,y 满足,且,则下列说法正确的是( )A .B .函数的图象关于点对称C .D .若,则【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取可判断B ,对于D ,通过观察选项可以推断很可能是周期函数,结合的特殊性及一些已经证明的结论,想到令和时可构建出两个式子,两式相加即可得出,进一步得出是周期函数,从而可求的值.【详解】解:对于A ,令,代入已知等式得,得,故A 错误;对于B ,取,满足及, 因为,所以的图象不关于点对称, 所以函数的图象不关于点对称,故B 错误;对于C ,令,,代入已知等式得, 可得,结合得,,()()()2112kf k k Z +=−⋅∈3x =1y =()()420f f =4x =2y =()()()2624f f f =5x =1y =()()640f f =()40f ≠()60f =()20f =()60f =()40f ≠()40f ≠()40f =()0f x =()()()()138925f f f f ++++=()f x ()g x R ()()()()()f x y f x g y g x f y −=−()()210f f −=≠()01f =()21g x +()1,0()()110g g +−=()11f =()202311n f n ==∑()()2π2πsin,cos 33f x xg x x ==()f x ()()()(),f x g y g x f y 1y =−1y =()()()11f x f x f x ++−=−()f x ()20231n f n =∑0x y ==()()()()()000000f f g g f =−=()00f =()()2π2πsin,cos 33f x xg x x ==()()()()()f x y f x g y g x f y −=−()()210f f −=≠()3cos 2π10g ==≠()g x ()3,0()21g x +()1,00y =1x =()()()()()11010f f g g f =−()()()()110100f g g f ⎡⎤−=−=⎣⎦()10f ≠()100g −=()01g =再令,代入已知等式得,将,代入上式,得,所以函数为奇函数. 令,,代入已知等式,得, 因为,所以,又因为,所以, 因为,所以,故C 错误;对于D ,分别令和,代入已知等式,得以下两个等式:,,两式相加易得,所以有, 即:,有:, 即:,所以为周期函数,且周期为3,因为,所以,所以,, 所以, 所以,故D 正确.故选:D.【点评】:对于含有的抽象函数的一般解题思路是:观察函数关系,发现可利用的点,以及利用证明了的条件或者选项;抽象函数一般通过赋值法来确定、判断某些关系,特别是有双变量,需要双赋值,可以得到一个或多个关系式,进而得到所需的关系,此过程中的难点是赋予哪些合适的值,这就需要观察题设条件以及选项来决定.2023绍兴·高二期末9.已知函数的定义域为R ,且,为奇函数,,则( ) 0x =()()()()()00f y f g y g f y −=−()00f =()01g =()()f y f y −=−()f x 1x =1y =−()()()()()21111f f g g f =−−−()()11f f −=−()()()()2111f f g g =−+⎡⎤⎣⎦()()()221f f f =−−=−()()()()1111f f g g −=−+⎡⎤⎣⎦()10f ≠()()111g g +−=−1y =−1y =()()()()()111f x f x g g x f +=−−−()()()()()111f x f x g g x f −=−()()()11f x f x f x ++−=−()()()21f x f x f x ++=−+()()()12f x f x f x =−+−+()()()()()()11120f x f x f x f x f x f x −+=++−−+−+=()()12f x f x −=+()f x ()11f =()21f −=()()221f f =−−=−()()300f f ==()()()1230f f f ++=()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑,x y ,x y ()f x ()()()28f x f x f ++=()21f x +1122f ⎛⎫= ⎪⎝⎭22112k kf k =⎛⎫−= ⎪⎝⎭∑A .B .C .0D .【答案】B【分析】根据即可得出周期为4,赋值可求出.进而由为奇函数,可推得函数关于点对称,由已知可求出,,,然后即可求得,.进而即可根据周期性得出函数值,求出,即可得出,代入数值,即可得出答案.【详解】由,则, 所以,,周期为4,所以.由,令,则有,所以,. 因为为奇函数,所以,所以,,所以函数关于点对称, 所以,. 令,则.令可得,,所以,所以, 所以,有,即有.令,则有;令,则.综上,,,,. 所以,,所以,. 11−12−212()()()28f x f x f ++=()f x ()20f =()21f x +()y f x =()1,03122f ⎛⎫=− ⎪⎝⎭()00f =()80f =5122f ⎛⎫=− ⎪⎝⎭2721f ⎛⎫=⎪⎝⎭()()()()135741442443444402222m f m m f m m f m m f m ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2211132122222k kf k f f =⎛⎫⎛⎫⎛⎫−=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑()()()28f x f x f ++=()()()428f x f x f +++=()()4f x f x +=()f x ()()()840f f f ==()()()28f x f x f ++=0x =()()()()2080f f f f +==()20f =()21f x +()()2121f x f x −+=−+()()11f x f x −+=−+()y f x =()1,0()()2f x f x −=−12x =311222f f ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭0x =()()200f f =−=()00f =()80f =()()()280f x f x f ++==()()2f x f x +=−12x =511222f f ⎛⎫⎛⎫=−=− ⎪ ⎪⎝⎭⎝⎭32x =731222f f ⎛⎫⎛⎫=−= ⎪ ⎪⎝⎭⎝⎭1114222f m f ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭3314222fm f ⎛⎫⎛⎫+==− ⎪ ⎪⎝⎭⎝⎭5514222f m f ⎛⎫⎛⎫+==− ⎪ ⎪⎝⎭⎝⎭7714222f m f ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭()()()()13574144244344442222m f m m f m m f m m f m ⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()11114142434402222m m m m ⎛⎫⎛⎫=+⨯++⨯−++⨯−++⨯= ⎪ ⎪⎝⎭⎝⎭2211111321212222212222222k kf k fff f =⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−=−+−=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑1112122222⎛⎫=⨯+⨯−=− ⎪⎝⎭故选:B.10.(多选)已知函数()f x 的定义域为R ,()()()f x y f x f y +=+,则( )A .()00f =B .()f x 是奇函数 C .0x =为()f x 的极小值点 D .若()11f =,则()20232023f =【答案】ABD【分析】利用赋值法,令0x y ==判断A 得正误;令y x =−,结合奇函数的定义判断B 的正误;举例判断C 的正误;令1y =,则()()11f x f x +=+,再利用累加法即可判断D 的正误. 【详解】令0x y ==,则()()()000f f f =+,所以()00f =,故A 正确; 令y x =−,则()()()0f x x f x f x −=+−=,所以()f x 是奇函数,故B 正确;令()f x x =,其定义域为R ,且()()()f x y f x f y +=+满足题意,因为函数()f x x =为R 上的增函数,所以0x =不是()f x 的极小值点,故C 错误;令1y =,则()()11f x f x +=+,即()()11f x f x +−=,()()()()()()()2023202320222022202120212020f f f f f f f ⎡⎤⎡⎤⎡⎤=−+−+−⎣⎦⎣⎦⎣⎦ ()()()21111112023f f f ++−+=++++=⎡⎤⎣⎦,故D 正确.故选:ABD.11.(多选)设()f x 是定义在R 上的函数,对,x y ∀∈R ,有()()()()22f x y f x y f x f y +−−=++,且()00f ≠,则( )A .()()0f x f x −−=B .()()40f x f x +−=C .()()()()02420242f f f f ++++=− D .()()()()222212320244048f f f f ++++=【答案】ACD【分析】利用赋值法判断函数的奇偶性和周期性,再结合假设法、函数的周期性逐一判断即可. 【详解】A :在()()()()22f x y f x y f x f y +−−=++中,令0x y ==,则有()()20220f f =⇒=,在()()()()22f x y f x y f x f y +−−=++中,令0x =,则有()()()()()()2200f y f y f f y f x f x −−=+=⇒−−=, 因此本选项正确;B :若()()40f x f x +−=成立,即有()()04f f =, 在()()()()22f x y f x y f x f y +−−=++中,令2x y ==,则有()()()()()24044000f f f f f −=⇒=⇒=,这与()00f ≠相矛盾,所以假设不成立,因此本选项不正确; C :在()()()()22f x y f x y f x f y +−−=++中, 以x −代y ,得()()()()0222f f x f x f x −=+−+,以x 代y ,得()()()2202f x f f x −=+,上面两个等式相加,得()()()()()()222202220f x f x f x f x f x f x ⎡⎤+++−+=⇒+++−+=⎣⎦()20f x ⇒+=,或()()220f x f x ++−+=,当()20f x +=时,则有()00f =,显然与()00f ≠矛盾,因此()()220f x f x ++−+=,于是有()()()()()()44()8f x f x f x f x f x f x f x =−−⇒+=−−=−⇒+=, 因此函数()f x 的周期为8,由()()()202060f f f =⇒−=⇒=, 由()()()()440f x f x f f =−−⇒=−, 在()()()()22f x y f x y f x f y +−−=++中,令2,1x y ==,得()()()()()()()()31433103f f f f f f f f −=⇒−=−,令1x y ==,得()()()()()2220330f f f f f −=⇒=−,由()()()()22031f x f x f f ++−+=⇒=−,于是有()()()()()()()()()()2331033023331f f f f f f f f f f ⎧−=−⎪=−⇒=⎨⎪=−⎩, 因为()()2300f f =−≠,所以由()()()3223332f f f =⇒=,于是()02f =−,因此()()()()02460f f f f +++=,()()()()()()02420242530202402f f f f f f ++++=⨯+==−,因此本选项正确;D :在()()()()22f x y f x y f x f y +−−=++中,令()2N x y n n *==−∈,所以有()()()2240f n f f n −−=,因此有:()()()()22221232024f f f f ++++()()()()()()()()()()2000204040440f f f f f f f f f f =−−+−+−+−++−⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦因为()02f =−,()()220f f −==,()()()()02460f f f f +++=, 函数()f x 的周期为8,所以()()()()22221232024f f f f ++++()050620240f ⎡⎤=⨯+⋅−⎣⎦020*******=+⨯=,因此本选项正确, 故选:ACD.12.(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的,R x y ∈,恒有()()()()2f x y f x y f x f y ++−=,则下列说法正确的有( )A .()00f =B .()f x '必为奇函数C .()()00f x f +≥D .若1(1)2f =,则202311()2n f x ==∑【答案】BCD【分析】赋值法求()0f 的值,判断A ;赋值法结合导数以及函数奇偶性的定义,判断B ;赋值法结合换元法判断C ;利用赋值法求得(),N f n n *∈的值有周期性,即可求得()20231n f n =∑的值,判断D.【详解】对于A ,令0x y ==,则由()()()()2f x y f x y f x f y ++−=可得()()22020f f =,故(0)0f =或()01f =,故A 错误;对于B ,当(0)0f =时,令0y =,则()()2()(0)0f x f x f x f +==,则()0f x =, 故()0f x '=,函数()f x '既是奇函数又是偶函数;当(0)1f =时,令0x =,则()()2(0)()f y f y f f y +−=,所以()()−=f y f y , 则()()f y f y −''−=,即()()f y f y −='−',则()f x '为奇函数, 综合以上可知()f x '必为奇函数,B 正确;对于C ,令y x = ,则()()()2202f x f f x +=,故()()200f x f +≥.由于x ∈R ,令2,R t x t =∈,即()()00f t f +≥,即有()()00f x f +≥,故C 正确;对于D ,若()112f =,令1,0x y == ,则()()()()11210+=f f f f ,则(0)1f = ,令1x y ==,则()()()22021f f f +=,即()()1121,222f f +=∴=−,令2,1x y ==,则()()()()31212f f f f =+,即()113,(3)122f f +=−∴=−, 令3,1x y ==,则()()()()42231f f f f +=,即()1141,(4)22f f −=−∴=−, 令4,1x y ==,则()()()()53241f f f f +=,即()1151,(5)22f f −=−∴=,令5,1x y ==,则()()()()64251f f f f +=,即()116,(6)122f f −=∴=, 令6,1x y ==,则()()()()75261f f f f +=,即()1171,(7)22f f +=∴=,由此可得(),N f n n *∈的值有周期性,且6个为一周期,且(1)(2)(3)(4)(5)(6)0f f f f f f +++++= , 故()202311337[(1)(2)(3)(4)(5)(6)](1)2n f n f f f f f f f ==⨯++++++=∑,故D 正确, 故选:BCD.13.已知函数()f x 的定义域为R ,满足()()()()f x y f x y f x f y ++−=⋅,且12f ,则( )A .()02f =B .()f x 为奇函数C .()()()()12320232f f f f +++⋅⋅⋅⋅⋅⋅+=−D .()22f x −≤≤【答案】ACD【分析】A.通过赋值,求()0f 的值;B.赋值0x =,即可判断函数的奇偶性;C.赋值1y =,利用函数()()()1f x f x g x −+=的周期性,即可求和;D.通过多次赋值,可证明()24f x ≤,即可判断.【详解】A.令1,0x y ==,有()()()()1110f f f f +=⋅,得()02f =,A 正确;B.令0x =,得()()()()0f y f y f f y +−=⋅,()02f =,则()()−=f y f y ,函数的定义域为R ,所以函数为偶函数,故B 错误;C.令1y =,得()()()()111f x f x f x f ++−=⋅,即()()()()110f x f x f x f x +++−+=⎡⎤⎡⎤⎣⎦⎣⎦, 设()()()1f x f x g x −+=,则()()10g x g x ++=,所以()()()21g x g x g x +=−+=,所以函数()g x 的周期为2,()()()101220g f f =+=−=,()()()3230g f f =+=,…,()()()2023202220230g f f =+=,所以()()()()()0123...20230f f f f f +++++=,()02f =, 所以()()()()123...20232f f f f ++++=−,故C 正确, D.由()()()()f x y f x y f x f y ++−=⋅,()02f =,12f ,令12x y ==,得()()211002f f f ⎛⎫+== ⎪⎝⎭,所以102f ⎛⎫= ⎪⎝⎭, 将y 换成x ,得()()()220f x f f x +=,①,将,x y 换成12x +,得()()212102f x f f x ⎛⎫++=+ ⎪⎝⎭,②,将x 换成122x +,y 换成12,得()()112122022f x f x f x f ⎛⎫⎛⎫++=+⋅= ⎪ ⎪⎝⎭⎝⎭,③, ①+②-③,得()()2212042f f x f x ⎛⎫=++= ⎪⎝⎭,则()24f x ≤,得()22f x −≤≤,故D 正确.故选:ACD【点睛】关键点睛:本题关键的方法是赋值法,尤其是D 选项,通过三次赋值,找到等式间的关系,再可进行判断.14.(多选)已知定义域为R 的函数()f x 对任意实数,x y 都有()()()()2f x y f x y f x f y ++−=,且102f ⎛⎫= ⎪⎝⎭,则以下结论一定正确的有( )A .()01f =−B .()f x 是偶函数C .()f x 关于1,02⎛⎫⎪⎝⎭中心对称D .()()()1220230f f f +++=【答案】BC【分析】根据赋值法,可判断()01f =或()00f =,进而判断A ,根据赋值法结合奇偶性的定义可判断C ,根据偶函数即可判断对称性,根据对称性以及奇偶性可得函数的周期性,进而可判断CD. 【详解】令0x y ==,则()()()()()0020000f f f f f +=⇒=或()01f =,故A 错误, 若()01f =时,令0x =,则=20=f y fy f y f fy f y ,此时()f x 是偶函数,若()00f =时,令0y =,则=20=0f x f x f x f f x ,此时()f x 既是偶函数又是奇函数;因此B 正确,令12x =,则()111112=0=022222f y f y f f y f y f y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++−=⇒++− ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以()f x 关于1,02⎛⎫ ⎪⎝⎭中心对称,故C 正确,由()f x 关于1,02⎛⎫⎪⎝⎭中心对称可得=1f x f x,结合()f x 是偶函数,所以=1=1=2=2f x f x f x f x f x ,所以()f x 的周期为2,令12x y ==,则()()11102=022f f f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,故12=10=0f f f f ,进而()()()()()122022101112=0f f f f f ⎡⎤+++=⨯+⎣⎦,而()2023(1)(0)f f f ==−,由A 选项知()00f =或()01f =,所以()()()1220230f f f +++=或1−,故D 错误.故选:BC15.函数()f x 的定义域为R ,且()()()21f x f x f x +=−+−,()()2f x f x =−,()3651f =−,则()20231k f k ==∑ .【答案】2【分析】根据给定条件,探讨函数()f x 的周期,再结合()()2f x f x =−求出(1),(2),(3)f f f 即可求解作答. 【详解】函数()f x 的定义域为R ,由()()()21f x f x f x +=−+−,得(3)(2)(1)(1)()(1)()f x f x f x f x f x f x f x +=−+−+=++−+=,因此函数()f x 是以3为周期的周期函数,且()(1)(2)0f x f x f x ++++=,即(1)(2)(3)0f f f ++=, 由()3651f =−,得(2)1f =−,又()()2f x f x =−,(3)(0)(2)1f f f ===−,从而(1)(2)(3)2f f f =−−=,所以20231()674(2(1)(2)3[((1]1)))k f f k f f f f =+=⨯=++=∑.故答案为:216.已知函数()f x 满足:1(1),4()()()()(,R)4f f x f y f x y f x y x y ==++−∈,则()2023f = .【答案】14【分析】由已知等式联想到三角公式()()cos cos 2cos cos x y x y x y ++−=,构造函数()1cos 23xf x π=求解. 【详解】由已知等式联想到三角公式()()cos cos 2cos cos x y x y x y ++−=, 注意它们结构相似,通过尝试和调整,构造函数()1cos 23x f x π=,则()111cos 234f π==, ()()()()11cos cos 23323311cos cos 4cos cos 4,332323x y x y f x y f x y x y x y f x f y ππππ⎛⎫⎛⎫++−=++− ⎪ ⎪⎝⎭⎝⎭ππππ==⋅⋅=故函数()1cos 23xf x π=满足题意,而函数()f x 是周期2π6π3T ==的函数,()()()120233376114f f f ∴=⨯+==. 故答案为:14.【点睛】:抽象函数可以选择构造函数(特例构造法),此题主要是联想到三角公式()()cos cos 2cos cos x y x y x y ++−=,并且还要根据1(1)4f =构造出合适的函数()1cos 23x f x π=,再由周期性解决问题,达到富有创造力的解题效果。
导数中的构造函数(最全精编)导数小题中构造函数的技巧函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想。
在导数题型中,构造函数的解题思路恰好是这两种思想的良好体现。
下面我将分享导数小题中构造函数的技巧。
一)利用 $f(x)$ 进行抽象函数构造1、利用 $f(x)$ 与 $x$ 构造;常用构造形式有 $xf(x)$ 和$\frac{f(x)}{x}$。
在数导数计算的推广及应用中,我们对 $u\cdot v$ 的导函数观察可得,$u\cdot v$ 型导函数中体现的是“加法”,$\frac{u}{v}$ 型导函数中体现的是“除法”。
由此,我们可以猜测,当导函数形式出现的是“加法”形式时,优先考虑构造$u\cdot v$ 型;当导函数形式出现的是“除法”形式时,优先考虑构造 $\frac{u}{v}$ 型。
我们根据得出的“优先”原则,看一看例1和例2.例1】$f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,当$x0$ 的解集为?思路点拨:出现“加法”形式,优先构造 $F(x)=xf(x)$,然后利用函数的单调性、奇偶性和数形结合求解即可。
解析】构造 $F(x)=xf(x)$,则 $F'(x)=f(x)+xf'(x)$。
当$x0$ 的解集为 $(-\infty,-4)\cup(0,4)$。
例2】设 $f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,且$f(1)=2$。
当 $x0$ 恒成立。
则不等式 $f(x)>0$ 的解集为?思路点拨:出现“除法”形式,优先构造$F(x)=\frac{f(x)}{x-f(x)}$,然后利用函数的单调性、奇偶性和数形结合求解即可。
解析】构造 $F(x)=\frac{f(x)}{x-f(x)}$,则$F'(x)=\frac{xf'(x)-2f(x)}{(x-f(x))^2}$。
因为 $xf'(x)-f(x)>0$,所以 $F'(x)>0$,$F(x)$ 在 $(-\infty,0)$ 上单调递增。
第8讲抽象函数7种导函数构造【题型目录】题型一:具体函数抽象化解不等式题型二:构造幂函数型解不等式题型三:构造指数函数型解不等式题型四:构造对数函数型解不等式题型五:构造三角函数型解不等式题型六:构造()kx x f +型函数解不等式题型七:复杂型:二次构造【典例例题】题型一:具体函数抽象化解不等式【例1】(2022·广东·南海中学高二阶段练习)已知()2cos ,R f x x x x =+∈,若()()1120f t f t ---≥成立,则实数t 的取值范围是()A .20,3⎛⎫ ⎪⎝⎭B .20,3⎡⎤⎢⎥⎣⎦C .()2,0,3∞∞⎛⎫-⋃+ ⎪⎝⎭D .()20,,03⎛⎤-∞ ⎥⎝⎦ 【答案】B 【解析】【分析】由奇偶性的定义得出函数()y f x =为偶函数,利用导数知函数()y f x =在区间[)0,∞+上为增函数,由偶函数的性质将不等式()()1120f t f t ---≥变形为()()112f t f t -≥-,利用单调性得出112t t -≥-,从而可解出实数t 的取值范围.【详解】解:函数()y f x =的定义域为R ,关于原点对称,()()()2cos 2cos f x x x x x f x -=-+-=+=Q ,∴函数()y f x =为偶函数,当0x ≥时,()2cos f x x x =+,()2sin 0f x x '=->,则函数()y f x =在[)0,∞+上为增函数,由()()1120f t f t ---≥得()()112f t f t -≥-,由偶函数的性质得()()112f t f t -≥-,由于函数()y f x =在[)0,∞+上为增函数,则112t t -≥-,即()()22112t t -≥-,整理得2320t t -≤,解得203t ≤≤,因此,实数t 的取值范围是20,3⎡⎤⎢⎥⎣⎦.故选:B.【题型专练】1.(2022·贵州遵义·高二期末(理))已知函数()ln e xxf x x =-,设()3log 2a f =,()0.2log 0.5b f =,()ln 4c f =,则a ,b ,c 的大小为()A .c a b >>B .a c b>>C .b c a>>D .c b a>>【答案】A 【解析】【分析】利用函数解析式求导数,判断导数大于零恒成立,故确定函数单调性,比较自变量大小确定函数值a ,b ,c 的大小即可.【详解】解:因为()ln e x x f x x =-,则,()0x ∈+∞,所以()2211e 11e e e (4e 2x x x x x xf x x x x x x x +--+-'==-=-又,()0x ∈+∞时,21111,(24e 4xx >--≥-,所以()0f x '>恒成立所以()ln e xxf x x =-在,()0x ∈+∞上单调递增;又30log 21<<,0.215351log 0.5log log 2log 22==<,ln 41>所以30.2ln 4log 2log 0.5>>,则c a b >>.故选:A.2.(2022·上海·复旦附中高二期末)设()2sin f x x x =+,若()()20221120210f x f x ++-≥,则x 的取值范围是___________.【答案】2x ≥-【解析】【分析】奇偶性定义判断()f x 奇偶性,利用导数研究()f x 的单调性,再应用奇偶、单调性求x 的范围.【详解】由()2sin (2sin )()f x x x x x f x -=--=-+=-且R x ∈,易知:()f x 为奇函数,所以(20221)(20211)f x f x +≥-,又()2cos 0f x x =+>',故()f x 在R x ∈上递增,所以2022120211x x +≥-,可得2x ≥-.故答案为:2x ≥-题型二:构造幂函数型解不等式【例1】(2022·黑龙江·哈师大附中高二期末)已知定义在(0,+∞)上的函数()f x 满足()()0xf x f x '-<,其中()f x '是函数()f x 的导函数,若()()()202220221f m m f ->-,则实数m 的取值范围为()A .(0,2022)B .(2022,+∞)C .(2023,+∞)D .(2022,2023)【答案】D 【解析】【分析】构造函数()g x ,使得()()2()0xf x f x g x x'-=<,然后根据函数()g x 的单调性解不等式即可.【详解】由题设()()2()()()0xf x f x f x g x g x x x'-'=⇒=<,所以()g x 在()0,∞+上单调递减,又()()()()()2022120222022120221f m f f m m f m -->-⇒>-,即(2022)(1)202212023g m g m m ->⇒-<⇒<,又函数()f x 的定义域为()0,∞+,所以202202022m m ->⇒>,综上可得:20222023m <<.故选:D.【例2】(2022·四川雅安·高二期末(理))设奇函数()()0f x x ≠的导函数是()f x ',且()20f -=,当0x >时,()()20xf x f x '-<,则不等式()0f x <的解集为______.【答案】()()2,02,-+∞ 【解析】【分析】设()()2f x g x x=,利用导数求得()g x 在(0,)+∞为单调递减函数,进而得到函数()g x 为奇函数,且()g x 在(,0)-∞为单调递减函数,结合函数()g x 的单调性,即可求解.【详解】设()()2f x g x x =,可得()()()32xf x f x g x x'-'=,因为当0x >时,()()20xf x f x '-<,可得()0g x '<,所以()g x 在(0,)+∞为单调递减函数,又因为函数()f x 为奇函数,且()20f -=,可得()20f =,则满足()()()()22()f x f x g x g x x x --==-=--,所以函数()g x 也为奇函数,所以()g x 在(,0)-∞为单调递减函数,且()()220g g -==,当0x >时,由()0f x <,即()0g x <,即()()2g x g <,可得2x >;当0x <时,由()0f x <,即()0g x <,即()()2g x g <-,可得20x -<<;所以不等式()0f x <的解集为()()2,02,-+∞ .故答案为:()()2,02,-+∞ .【例3】(2022·河南信阳·高二期中(理))已知定义域为R 的函数()f x 满足()()1f x xf x '+>(()f x '为函数()f x 的导函数),则不等式()()()2111x f x f x x +->-+的解集为()A .()0,∞+B .(]0,1C .(],1-∞D .()[),01,-∞⋃+∞【答案】A 【解析】【分析】构造函数()()g x xf x x =-,由题意可知()g x 在R 上单调递增,再对x 分情况讨论,利用函数()g x 的单调性即可求出不等式的解集.【详解】由2(1)(1)(1)x f x f x x +->-+,(1)当1x <时,可得2(1)(1)(1)(1)(1)(1)x x f x x f x x x -+->--+-,即222(1)(1)(1)(1)x f x x f x x x -->--+-,即222(1)(1)(1)(1)(1)(1)x f x x x f x x ---->----,构造函数()(),()()()10g x xf x x g x f x xf x ''=-=+->,所以函数()g x 单调递增,则211x x ->-,此时01x <<,即01x <<满足;(2)当1x >时,可得222(1)(1)(1)(1)(1)(1)x f x x x f x x ----<----,由函数()g x 递增,则211x x -<-,此时0x <或1x >,即1x >满足;(3)当1x =时,2(0)(0)1f f >+,即(0)1f >满足()()1f x x f x '+⋅>.综上,,()0x ∈+∞.故选:A.【例4】已知定义在R 上的奇函数()f x ,其导函数为()'f x ,当0x ≥时,恒有())03(xf f x x '+>.则不等式33()(12)(12)0x f x x f x -++<的解集为().A .{|31}x x -<<-B .1{|1}3x x -<<-C .{|3x x <-或1}x >-D .{|1x x <-或1}3x >-【答案】D 【解析】先通过())03(x f f x x '+>得到原函数()()33x f x g x =为增函数且为偶函数,再利用到y 轴距离求解不等式即可.【详解】构造函数()()33x f x g x =,则()()()()()322'''33x x g x x f x f x x f x f x ⎛⎫=+=+ ⎪⎝⎭由题可知())03(x f f x x '+>,所以()()33x f x g x =在0x ≥时为增函数;由3x 为奇函数,()f x 为奇函数,所以()()33x f x g x =为偶函数;又33()(12)(12)0x f x x f x -++<,即33()(12)(12)x f x x f x <++即()()12g x g x <+又()g x 为开口向上的偶函数所以|||12|x x <+,解得1x <-或13x >-故选:D 【点睛】此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目.【例5】函数()f x 是定义在区间()0,∞+上的可导函数,其导函数为()f x ',且满足()()20xf x f x '+>,则不等式(2020)(2020)3(3)32020x f x f x ++<+的解集为A .{}|2017x x >-B .{}|2017x x <-C .{}|20200x x -<<D .{}|20202017x x -<<-【答案】D 【解析】设函数()()()2,0g x x f x x =>,根据导数的运算和题设条件,求得函数()g x 在()0,∞+上为增函数,把不等式转化为22(2020)(2020)3(3)x f x f ++<,即()()20203g x g +<,利用单调性,即可求解.【详解】由题意,设函数()()()20g x x f x x =>,则()()()()()222()2g x x f x x f x x f x xf x ''''=⋅+⋅=+,因为()f x 是定义在区间()0,∞+上的可导函数,且满足()()20xf x f x '+>,所以()0g x '>,所以函数()g x 在()0,∞+上为增函数,又由(2020)(2020)3(3)32020x f x f x ++<+,即22(2020)(2020)3(3)x f x f ++<,即()()20203g x g +<,所以020203x <+<,解得20202017x -<<-,即不等式的解集为{}|20202017x x -<<-.故选:D .【点睛】本题主要考查了函数的导数与函数的单调性的关系及应用,其中解答中根据题设条件,构造新函数()()()20g x x f x x =>是解答的关键,着重考查了构造思想,以及推理与计算能力.【题型专练】1.(2021·新疆维吾尔自治区喀什第二中学高三阶段练习(理))定义在R 上的偶函数()f x 的导函数为()f x ',且当0x >时,()()20xf x f x '+<.则()A .()()2e 24ef f >B .()()931f f >C .()()2e 39ef f -<D .()()2e 39ef f ->【答案】D 【解析】【分析】由题构造函数()()2g x x f x =,利用导函数可得函数()()2g x x f x =在(0,+∞)上为减函数,且为偶函数,再利用函数的单调性即得.【详解】设()()2g x x f x =,则()()()()()222g x xf x x f x x f x xf x ⎡⎤=+='+'⎣'⎦,又当0x >时,()()20xf x f x '+<,∴()()()()()2220g x xf x x f x x f x xf x '''=+=+<⎡⎤⎣⎦,则函数()()2g x x f x =在(0,+∞)上为减函数,∵()f x 是定义在R 上的偶函数,∴()()()()()22g x x f x x f x g x -=--==,即g (x )为偶函数,所以()()e 2g g <,即()()2e 24ef f <,故A 错误;()()31g g <,即()()931f f <,故B 错误;()()e 3g g >,即()()2e 39ef f >因为()f x 为偶函数,所以()()33f f -=,所以()()2e 39ef f ->,故C 错误,D 正确.故选:D.【点睛】关键点点睛:本题的关键是构造函数()()2g x x f x =,结合条件可判断函数的单调性及奇偶性,即得.2.(2022·黑龙江·哈尔滨市阿城区第一中学校高二期末)已知()f x 是定义在()(),00,∞-+∞U 上的奇函数,当0x >时,()()0f x xf x '+>且()122f =,则不等式()1f x x>的解集是______.【答案】()()2,02,-+∞ 【解析】【分析】根据已知条件构造函数()()g x xf x =并得出函数()g x 为偶函数,利用导数与单调性的关系得出函数()g x 的单调性进而可以即可求解.【详解】设()()g x xf x =,则()()()g x f x xf x ''=+因为()f x 是定义在()(),00,∞-+∞U 上的奇函数,所以()()()()g x xf x xf x g x -=--==,所以()g x 是()(),00,∞-+∞U 上的偶函数,当0x >时,()()()0g x f x xf x ''=+>,所以()g x 在()0,+∞上单调递增,所以()g x 在(),0-∞上单调递减.因为()122f =,所以()()1222212g f ==⨯=,所以()()221g g -==.对于不等式()1f x x>,当0x >时,()1xf x >,即()()2g x g >,解得2x >;当0x <时,()1xf x <,即()()2g x g <-,解得20x -<<,所以不等式()1f x x>的解集是()()2,02,-+∞ .故答案为:()()2,02,-+∞ 【点睛】解决此题的关键是构造函数,进而讨论新函数的单调性与奇偶性,根据函数的性质即可求解不等式的解集.3.设函数()f x 是定义在(,0)-∞上的可导函数,其导函数为()'f x ,且有()()22'f x xf x x +>则不等式()()()220192019420x f x f ++--<的解集为()A .()20192017--,B . 20211()209--,C .()20192018--,D .(2020,2019)--【答案】B 【解析】【分析】令()()2F x x f x =,确定()F x 在(,0)-∞上是减函数,不等式等价为()()201920F x F +--<,根据单调性解得答案.【详解】由()()()22',0f x xf x x x +><,得()()23 2'xf x x f x x +<,即()23'0x f x x ⎡⎤⎣⎦<<,令()()2F x x f x =,则当0x <时,得()F'0x <,即()F x 在(,0)-∞上是减函数,()()()2201920192019f F x x x +∴+=+,()() 242F f -=-,即不等式等价为()()201920F x F +--<,()F x Q 在(),0-∞是减函数,∴由()()20192F x F +<-得20192x +>-,即2021x >-,又20190x +<,解得2019x <-,故 20212019x -<<-.故选::B .【点睛】本题考查了利用函数单调性解不等式,构造函数()()2F x x f x =,确定其单调性是解题的关键.4.已知()f x 是定义在()(),00,-∞+∞ 上的奇函数,且0x >时,()()20f x f x x'+<,又()10f =,则()0f x >的解集为()A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()(),10,1-∞-D .()()1,01,-⋃+∞【答案】C 【解析】【分析】令2()()g x x f x =,则()[()2()]g x x xf x f x ''=+,由题设易知0x >上()2()0xf x f x '+<,且()g x 在()(),00,-∞+∞ 上是奇函数,即()g x 在0x >、0x <都单调递减,同时可知(1)(1)0=-=g g ,利用单调性求()0>g x 的解集,即为()0f x >的解集.【详解】令2()()g x x f x =,则2()()2()[()2()]g x x f x xf x x xf x f x '''=+=+,由0x >时,()()20f x f x x'+<知:()2()0xf x f x '+<,∴在0x >上,()0g x '<,()g x 单调递减,又()(),00,-∞+∞ 上()f x 为奇函数,∴22()()()()()g x x f x x f x g x -=--=-=-,故()g x 也是奇函数,∴()g x 在0x <上单调递减,又()10f =,即有(1)(1)0=-=g g ,∴()0f x >的解集,即()0>g x 的解集为(,1)(0,1)-∞- .故选:C5.设函数()f x '是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x <成立的x 的取值范围是()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()(),11,0-∞--UD .()()0,11,+∞ 【答案】B 【解析】【分析】设()()f x F x x=,求其导数结合条件得出()F x 单调性,再结合()F x 的奇偶性,得出()F x 的函数值的符号情况,从而得出答案.【详解】设()()f x F x x =,则()()()2xf x f x F x x'-'=,∵当0x >时,()()0xf x f x '-<,当0x >时,()0F x '<,即()F x 在()0,∞+上单调递减.由于()f x 是奇函数,所以()()()()f x f x F x F x x x--===-,()F x 是偶函数,所以()F x 在(),0∞-上单调递增.又()()110f f =-=,所以当1x <-或1x >时,()()0=<f x F x x;当10x -<<或01x <<时,()()0f x F x x=>.所以当10x -<<或1x >时,()0f x <.故选:B.题型三:构造指数函数型解不等式【例1】(2022·四川省资阳中学高二期末(理))已知定义域为R 的函数()f x 的导函数为()f x ',且满足()()(),41f x f x f '>=,则不等式()224e xf x ->的解集为___________.【答案】()2,2-【解析】【分析】令()()xf xg x =e,利用导数说明函数的单调性,则原不等式等价于()()24g xg >,再根据函数的单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:令()()xf xg x =e ,R x ∈,则()()()e xf x f xg x '-'=,因为()()f x f x '>,即()()0f x f x '-<,所以()0g x '<,即()g x 在R 上单调递减,又()41f =,所以()()4444e e f g -==,所以不等式()224ex f x->,即()242eexf x ->,即()()24g xg >,即24x <,解得22x -<<,所以原不等式的解集为()2,2-.故答案为:()2,2-【例2】(2023·全国·高三专题练习)已知函数()f x 的导函数为()f x ',若对任意的R x ∈,都有()()2f x f x >'+,且()12022f =,则不等式()12020e 2x f x --<的解集为()A .()0,∞+B .1,e ⎛⎫-∞ ⎪⎝⎭C .()1,+∞D .(),1-∞【答案】C 【解析】【分析】设函数()()2e xf xg x -=,根据题意可判断()g x 在R上单调递减,再求出()01202e g =,不等式()12020e 2x f x --<整理得()22020e ex f x -<,所以()()1g x g <,利用()g x 单调性解抽象不等式即可.【详解】设函数()()2e xf xg x -=,所以()()()()()2e 2e2e ex xxxf x f x f x f xg x '⎡⎤⨯--⨯'-+⎣⎦'==,因为()()2f x f x >'+,所以()()20f x f x '-+<,即()0g x '<,所以()g x 在R 上单调递减,因为()12022f =,所以()()122020e 1e f g -==,因为()12020e 2x f x --<,整理得()22020e ex f x -<,所以()()1g x g <,因为()g x 在R 上单调递减,所以1x >.故选:C.【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.【例3】(2023·全国·高三专题练习)已知定义在R 上的可导函数()f x 的导函数为()'f x ,满足()()f x f x '<且()3f x +为偶函数,(1)f x +为奇函数,若(9)(8)1f f +=,则不等式()e x f x <的解集为()A .()3,-+∞B .()1,+∞C .(0,)+∞D .()6,+∞【答案】C【解析】【分析】先证明出()f x 为周期为8的周期函数,把(9)(8)1f f +=转化为(0)1f =.记()()xf xg x =e ,利用导数判断出()g x 在R 上单调递减,把原不等式转化为()()0g x g <,即可求解.【详解】因为()3f x +为偶函数,(1)f x +为奇函数,所以()()33f x f x +=-+,(1)(1)0f x f x ++-+=.所以()()6f x f x =-+,()(2)0f x f x +-+=,所以(6)(2)0f x f x -++-+=.令2t x =-+,则(4)()0f t f t ++=.令上式中t 取t -4,则()(4)0f t f t +-=,所以(4)(4)f t f t +=-.令t 取t +4,则()(8)f t f t =+,所以()(8)f x f x =+.所以()f x 为周期为8的周期函数.因为(1)f x +为奇函数,所以(1)(1)0f x f x ++-+=,令0x =,得:(1)(1)0f f +=,所以(1)0f =,所以(9)(8)1f f +=,即为(1)(0)1f f +=,所以(0)1f =.记()()xf xg x =e,所以()()()exf x f xg x '-'=.因为()()f x f x '<,所以()0g x '<,所以()()xf xg x =e在R 上单调递减.不等式()xf x e <可化为()1exf x <,即为()()0g x g <.所以0x >.故选:C 【点睛】解不等式的常见类型:(1)一元二次不等式用因式分解法或图像法;(2)指对数型不等式化为同底的结构,利用单调性解不等式;(3)解抽象函数型不等式利用函数的单调性.【例4】(2022·山西省长治市第二中学校高二期末)已知可导函数f (x )的导函数为()'f x ,f (0)=2022,若对任意的x ∈R ,都有()()f x f x '<,则不等式()2022e xf x <的解集为()A .()0,∞+B .22022,e ∞⎛⎫+ ⎪⎝⎭C .22022,e ∞⎛⎫- ⎪⎝⎭D .(),0∞-【答案】D 【解析】【分析】根据题意,构造函数()()xf xg x =e ,求导可知()g x 在x ∈R 上单调递增,利用单调性求解即可.【详解】令()(),e xf xg x =对任意的x ∈R ,都有()()()()(),0e xf x f x f x f xg x -<∴=''>',()g x ∴在x ∈R 上单调递增,又()()()()()02022,02022,2022e 0xf g f x g x g =∴=∴<⇔<,0,x ∴<∴不等式()2022e x f x <的解集(),0∞-,故选:D.【例5】(2022·重庆巴蜀中学高三阶段练习)已知奇函数()f x 的定义域为R ,当0x >讨,()()20f x f x '+>,且()20f =,则不等式()0f x >的解集为___________.【答案】()(2,02,)-⋃+∞【解析】【分析】构造函数2()e ()=x g x f x ,利用导函数判断出当x >0时,()g x 单调递增,得到当x >2时()0g x >,从而()0f x >;当02x <<时,()0g x <,从而()0f x <.由()f x 为奇函数得到不等式()0f x >的解集.【详解】构造函数2()e ()=x g x f x ,则当0x >时,[]2()e2()()0xg x f x f x ''=+>,所以当x >0时()g x 单调递增.因为f (2)=0,所以()()42e 20g f ==,所以当x >2时()0g x >,从而()0f x >.当02x <<时,()0g x <,从而()0f x <.又奇函数()f x 的图像关于原点中心对称,所以()0f x >的解集为()(2,02,)-⋃+∞.故答案为:()(2,02,)-⋃+∞.【题型专练】1.(2022·陕西榆林·三模(理))已知()f x 是定义在R 上的函数,()'f x 是()f x 的导函数,且()()1f x f x '+>,(1)2f =,则下列结论一定成立的是()A .12(2)f +<e eB .1(2)f +<e eC .12(2)f +>eeD .1(2)f +>e e【答案】D 【解析】【分析】构造()()e e x xg x f x =-利用导数研究其单调性,即可得()()21g g >,进而可得答案.【详解】令()()e e x x g x f x =-,则()()()e 10xg x f x f x ⎡⎤=+->⎣⎦'',则()g x 是增函数,故()()21g g >,即22e (2)e e (1)e e f f >--=,可得()1e2ef +>.故选:D2.(2022·江西·萍乡市上栗中学高二阶段练习(理))定义在R 上的函数()f x 满足()()e 0x f x f x '-+<(e 为自然对数的底数),其中()'f x 为()f x 的导函数,若3(3)3e f =,则()e x f x x >的解集为()A .(,2)-∞B .(2,)+∞C .(3),-∞D .(3,)+∞【答案】D 【解析】【分析】构造新函数,并利用函数单调性把抽象不等式()e x f x x >转化为整式不等式即可解决.【详解】设()()e x f x g x x =-,则3(3)(3)30ef g =-=,所以()e x f x x >等价于()0(3)g x g >=,由()()e 0x f x f x '-+<,可得()()e 0x f x f x '->>则()()()10e xf x f xg x '-'=->,所以()g x 在R 上单调递增,所以由()(3)g x g >,得3x >.故选:D3.(2022·安徽省蚌埠第三中学高二开学考试)已知可导函数()f x 的导函数为()f x ',若对任意的x ∈R ,都有()()1f x f x '-<,且()02021f =,则不等式()12022e xf x +>的解集为()A .(),0∞-B .()0,∞+C .1,e ⎛⎫-∞ ⎪⎝⎭D .(),1-∞【答案】A 【解析】【分析】构造函数()()1e x f x F x +=,通过导函数研究其单调性,利用单调性解不等式.【详解】构造函数()()1e xf x F x +=,则()()()()()2e 1e1e ex xx xf x f x f x f x F x '⋅-+⋅⎡⎤'--⎣⎦'==,因为()()1f x f x '-<,所以()0F x '<恒成立,故()()1e x f x F x +=单调递减,()12022e xf x +>变形为()12022exf x +>,又()02021f =,所以()()00102022ef F +==,所以()()0F x F >,解得:0x <,故答案为:(),0∞-.故选:A4.若()f x 在R 上可导且()00f =,其导函数()f x '满足()()0f x f x '+<,则()0f x <的解集是_________________【答案】()0,∞+【解析】【分析】由题意构造函数()()e xg x f x =,利用导数判断出()g x 单调递减,利用单调性解不等式.【详解】设()()e xg x f x =,则()()()()()()e e e x x x g x f x f x f x f x '''=+=+,因为()()0f x f x '+<,所以()0g x '<在R 上恒成立,所以()g x 单调递减,又()00f =得()00g =,由()0f x <等价于()0g x <,所以0x >,即()0f x <的解集是()0,∞+.故答案为:()0,∞+5.若定义在R 上的函数()f x 满足()()1f x f x '+>,()04f =,则不等式()31xf x e >+(e 为自然对数的底数)的解集为()A .(0,)+∞B .(,0)(3,)-∞⋃+∞C .(,0)(0,)-∞+∞D .(3,)+∞【答案】A 【解析】【分析】把不等式()31x f x e>+化为()3x x e f x e >+,构造函数令()()3x xF x e f x e =--,利用导数求得函数()F x 的单调性,结合单调性,即可求解.【详解】由题意,不等式()31x f x e>+,即()3x x e f x e >+,令()()3x x F x e f x e =--,可得()()()()()[1]x x x xF x e f x e f x e e f x f x '''=+-=+-,因为()()1f x f x '+>且0x e >,可知()0F x '>,所以()F x 在R 上单调递增,又因为()()()00003040F e f e f =--=-=,所以()0F x >的解集为(0,)+∞.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及导数的四则运算的逆用,其中解答中结合题意构造新函数,利用导数求得新函数的单调性是解答的关键,着重考查构造思想,以及推理与运算能力.题型四:构造对数函数型解不等式【例1】(2022·江西·赣州市赣县第三中学高二阶段练习(文))定义在(0,+∞)的函数f (x )满足()10xf x '-<,()10f =,则不等式()e 0x f x -<的解集为()A .(-∞,0)B .(-∞,1)C .(0,+∞)D .(1,+∞)【答案】C【解析】【分析】根据题干条件构造函数()()ln F x f x x =-,0x >,得到其单调递减,从而求解不等式.【详解】设()()ln F x f x x =-,0x >则()()()110xf x F x f x x x-=-=''<',所以()()ln F x f x x =-在()0,∞+上单调递减,因为()10f =,所以()()11ln10F f =-=,且()()ee xxF f x =-,所以由()e 0x f x -<得:()()e 1xF F <结合单调性可得:e 1x >,解得:0x >,故选:C【例2】已知函数()f x 的定义域为R ,图象关于原点对称,其导函数为()f x ',若当0x >时()()ln 0x x f x f x +⋅'<,则不等式()()44x f x f x ⋅>的解集为______.【答案】()(),10,1-∞-⋃【解析】【分析】依据函数单调性和奇偶性把抽象不等式转化为整式不等式去求解即可.【详解】当0x >时,()()()()()ln 0ln 0ln 0f x f x x x f x x f x x f x x'''+⋅<⇔+⋅<⇔⋅<⎡⎤⎣⎦,故函数()()ln g x x f x =⋅在()0,∞+上单调递减,易知()10g =,故当()0,1x ∈时,()0g x >,()0f x <,当()1,x ∈+∞时,()0g x <,()0f x <;而()()()44440x xf x f x f x ⎡⎤⋅>⇔⋅->⎣⎦,而()()44xh x f x ⎡⎤=⋅-⎣⎦为奇函数,则当0x >时,当()440xf x ⎡⎤⋅->⎣⎦的解为01x <<,故当x ∈R 时,()440xf x ⎡⎤⋅->⎣⎦的解为1x <-或01x <<,故不等式()()44xf x f x ⋅>的解集为()(),10,1-∞-⋃.故答案为:()(),10,1-∞-⋃【例3】已知()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,()'f x 是()f x 的导函数,(1)0,f ≠且满足:()()ln 0,f x f x x x⋅+<'则不等式(1)()0x f x -⋅<的解集为()A .(1,)+∞B .(,1)(0,1)-∞- C .(),1-∞D .()(,01),-∞⋃+∞【答案】D 【解析】【分析】根据给定含导数的不等式构造函数()()ln g x f x x =,由此探求出()f x 在(0,)+∞上恒负,在(,0)-∞上恒正,再解给定不等式即可.【详解】令()()ln g x f x x =,0x >,则()()()ln 0f x g x f x x x''=+<,()g x 在(0,)+∞上单调递减,而(1)0g =,因此,由()0>g x 得01x <<,而ln 0x <,则()0f x <,由()0g x <得1x >,而ln 0x >,则()0f x <,又(1)0f <,于是得在(0,)+∞上,()0f x <,而()f x 是(,0)(0,)-∞+∞ 上的奇函数,则在(,0)-∞上,()0f x >,由(1)()0x f x -⋅<得:10()0x f x ->⎧⎨<⎩或10()0x f x -<⎧⎨>⎩,即10x x >⎧⎨>⎩或10x x <⎧⎨<⎩,解得0x <或1x >,所以不等式(1)()0x f x -⋅<的解集为(,0)(1,)-∞⋃+∞.故选:D 【题型专练】1.(2022·陕西汉中·高二期末(文))定义在(0,)+∞上的函数()f x 满足()()110,2ln 2f x f x '+>=,则不等式()e 0xf x +>的解集为___________.【答案】(ln 2,)+∞【解析】【分析】令()()ln (0)g x f x x x =+>,根据题意得到函数()g x 在(0,)+∞上为单调递增,把不等式()e 0xf x +>,可得()()e 2x g g >,结合函数()g x 的单调性,即可求解.【详解】由题意,函数()f x 满足()()110,2ln 2f x f x '+>=,令()()ln (0)g x f x x x =+>,可得()()10g x f x x''=+>所以函数()g x 在(0,)+∞上为单调递增,且()()22ln 20g f =+=,又由不等式()e 0x f x +>,可得()()e 2xg g >,所以e 2x >,解得ln 2x >,即不等式()e 0xf x +>的解集为(ln 2,)+∞.故答案为:(ln 2,)+∞.2.(2022·河北·石家庄二中高二期末)已知定义域为R 的函数()f x 满足()()114f x f x ++-=,且当1x >时()0f x '≥,则不等式()()2ln 10f x x ⎡⎤-->⎣⎦的解集为()A .()2,+∞B .()1,+∞C .()1,2D .()22,e【答案】A 【解析】【分析】由条件得出()f x 关于()1,2成中心对称,进一步得出函数的单调性,然后再根据题意可得()()ln 102x f x ⎧->⎪⎨>⎪⎩,或()()ln 102x f x ⎧-<⎪⎨<⎪⎩,从而可得出答案.【详解】由()()114f x f x ++-=得()f x 关于()1,2成中心对称.令0x =,可得()12f =当1x >时()0f x '≥,则()f x 在[)1,∞+上单调递增.由()f x 关于()1,2成中心对称且()12f =,故()f x 在R 上单调递增由()()2ln 10f x x ⎡⎤-->⎣⎦,则()()ln 102x f x ⎧->⎪⎨>⎪⎩,或()()ln 102x f x ⎧-<⎪⎨<⎪⎩解得21x x >⎧⎨>⎩,或121x x <<⎧⎨<⎩,故2x >故选:A3.(多选)已知函数()f x 的定义域是()0,∞+,其导函数是()f x ',且满足()()1ln 0x f x f x x'⋅+⋅>,则下列说法正确的是()A .10e f ⎛⎫> ⎪⎝⎭B .10e f ⎛⎫< ⎪⎝⎭C .()e 0f >D .()e 0f <【答案】AC 【解析】【分析】根据题意,构造()()ln g x f x x =⋅,由题意,得到()g x 单调递增,进而利用()g x 的单调性,得到1(1)()eg g >,再整理即可求解【详解】设()()ln g x f x x =⋅,可得()()1'()ln 0g x x f x f x x'=⋅+⋅>,()g x 单调递增,又因为(e)(e)ln e (e)g f f =⋅=,1111(()ln ()e e e e g f f =⋅=-,(1)(1)ln10g f =⋅=,且 1e 1e >>,1(e)(1)()e g g g ∴>>,得(e)0f >,110()()e eg f >=-,整理得1(0e f >,AC 正确;故选:AC题型五:构造三角函数型解不等式【例1】已知偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数为()'f x ,当02x π<<时,有()cos ()sin 0f x x f x x '+<成立,则关于x 的不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为()A .,42ππ⎛⎫ ⎪⎝⎭B .,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】由题意,设()()cosf xg xx=,利用导数求得()g x在0,2π⎛⎫⎪⎝⎭上单调递减,且为偶函数,再把不等式()cos4f x f xπ⎛⎫< ⎪⎝⎭,转化为()(4g x gπ<,结合单调性,即可求解.【详解】由题意,设()()cosf xg xx=,则2()cos()sin()cosf x x f x xg xx'+'=,当02xπ<<时,因为()cos()sin0f x x f x x'+<,则有()0g x'<,所以()g x在0,2π⎛⎫⎪⎝⎭上单调递减,又因为()f x在,22ππ⎛⎫- ⎪⎝⎭上是偶函数,可得()()()()cos()cosf x f xg x g xx x--===-,所以()g x是偶函数,由()cos4f x f xπ⎛⎫< ⎪⎝⎭,可得()()cos4f xxπ<,即()()4cos cos4ππ<ff xx,即()(4g x gπ<又由()g x为偶函数,且在0,2π⎛⎫⎪⎝⎭上为减函数,且定义域为,22ππ⎛⎫- ⎪⎝⎭,则有||4xπ>,解得24xππ-<<-或42xππ<<,即不等式的解集为,,2442ππππ⎛⎫⎛⎫--⋃⎪ ⎪⎝⎭⎝⎭,故选:B.【点睛】本题主要考查了导数在函数中的综合应用,其中解答中构造新函数,求得函数的奇偶性和利用题设条件和导数求得新函数的单调性,结合函数的单调性求解是解答的关键,着重考查构造思想,以及推理与运算能力,属于中档试题.【例2】已知函数()f x的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数是()'f x.有()cos()sin0f x x f x x'+<,则关于x的不()2cos6x f xπ⎛⎫< ⎪⎝⎭的解集为()A.,32ππ⎛⎫⎪⎝⎭B.,62ππ⎛⎫⎪⎝⎭C.,63ππ⎛⎫--⎪⎝⎭D.,26ππ⎛⎫--⎪⎝⎭【答案】B【分析】令()()cos f x F x x =,根据题设条件,求得()F'0x <,得到函数()()cos f x F x x =在,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,再把不等式化为()6cos cos 6f f x x ππ⎛⎫⎪⎝⎭<,结合单调性和定义域,即可求解.【详解】由题意,函数()f x 满足()()'cos sin 0f x x f x x +<,令()()cos f x F x x =,则()()()2'cos sin '0cos f x x f x xF x x +=<函数()()cos f x F x x=是定义域,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,由于cos 0x >,关于x()2cos 6x f x π⎛⎫< ⎪⎝⎭可化为()6cos cos 6f f x x ππ⎛⎫⎪⎝⎭<,即()6F x F π⎛⎫< ⎪⎝⎭,所以22x ππ-<<且6x π>,解得26x ππ>>,()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为,62ππ⎛⎫ ⎪⎝⎭.故选:B 【点睛】方法点睛:构造法求解()f x 与()f x '共存问题的求解策略:对于不给出具体函数的解析式,只给出函数()f x 和()f x '满足的条件,需要根据题设条件构造抽象函数,再根据条件得出构造函数的单调性,应用单调性解决问题,常见类型:(1)()()()()f x g x f x g x ''±型;(2)()()xf x nf x '+型;(3)()()(f x f x λλ±为常数)型.【题型专练】1.已知可导函数()f x 是定义在ππ,22⎛⎫- ⎪⎝⎭上的奇函数.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()()tan 0f x f x x '+>,则不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭的解集为()A .ππ,26⎛⎫-- ⎪⎝⎭B .π,06⎛⎫- ⎪⎝⎭C .ππ,24⎛⎫-- ⎪⎝⎭D .π,04⎛⎫- ⎪⎝⎭【答案】D 【解析】【分析】构造函数()sin xf x ,并依据函数()sin xf x 的单调性去求解不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭的解集.【详解】当π0,2x ⎛⎫∈ ⎪⎝⎭时,()()tan 0f x f x x '+>,则()()cos sin 0xf x f x x '+>则函数()sin xf x 在π0,2⎛⎫ ⎪⎝⎭上单调递增,又可导函数()f x 是定义在ππ,22⎛⎫- ⎪⎝⎭上的奇函数则()sin xf x 是ππ,22⎛⎫- ⎪⎝⎭上的偶函数,且在π,02⎛⎫- ⎪⎝⎭单调递减,由πππ222ππ22x x ⎧-<+<⎪⎪⎨⎪-<-<⎪⎩,可得π,02x ⎛⎫∈- ⎪⎝⎭,则ππ0,22x ⎛⎫+∈ ⎪⎝⎭,π0,2x ⎛⎫-∈ ⎪⎝⎭则π,02x ⎛⎫∈- ⎪⎝⎭时,不等式()πcos sin 02x f x x f x ⎛⎫⋅++⋅-> ⎪⎝⎭可化为()()ππsin sin 22x f x x f x ⎛⎫⎛⎫+⋅+>-⋅- ⎪ ⎪⎝⎭⎝⎭又由函数()sin xf x 在π0,2⎛⎫⎪⎝⎭上单调递增,且π0,2x ⎛⎫-∈ ⎪⎝⎭,ππ0,22x ⎛⎫+∈ ⎪⎝⎭,则有ππ022x x >+>->,解之得π04x -<<故选:D2.已知函数()f x 是定义在,22ππ⎛⎫- ⎪⎝⎭上的奇函数.当0,2x π⎡⎫∈⎪⎢⎣⎭时,()'()tan 0f x f x x +>,则不等式cos sin ()02x f x x f x π⎛⎫⋅++⋅-> ⎪⎝⎭的解集为()A .,42ππ⎛⎫⎪⎝⎭B .,42ππ⎛⎫- ⎪⎝⎭C .,04π⎛⎫- ⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭【答案】C 【解析】【分析】构造函数()()sin g x f x x =,则经变形后得[]'()()'()tan cos g x f x f x x x =+⋅,进而得到()g x 在0,2x π⎡⎫∈⎪⎢⎣⎭时单增,结合()f x 单调性证出()g x 是定义在,22ππ⎛⎫- ⎪⎝⎭上的偶函数,再去“f ”,即可求解【详解】令()()sin g x f x x =,[]'()()cos '()sin ()'()tan cos g x f x x f x x f x f x x x =+=+⋅,当0,2x π⎡⎫∈⎪⎢⎣⎭时,()'()tan 0f x f x x +>,'()0g x ∴>,即函数()g x 单调递增.又(0)0g =,0,2x π⎡⎫∈⎪⎢⎣⎭∴时,()()sin 0g x f x x =>,()f x 是定义在,22ππ⎛⎫-⎪⎝⎭上的奇函数,()g x ∴是定义在,22ππ⎛⎫- ⎪⎝⎭上的偶函数.不等式cos sin ()02x f x x f x π⎛⎫⋅++⋅-> ⎪⎝⎭,即sin sin ()22x f x xf x ππ⎛⎫⎛⎫++> ⎪⎪⎝⎭⎝⎭,即()2g x g x π⎛⎫+> ⎪⎝⎭,||2x x π∴+>,4x π∴>-①,又222x πππ-<+<,故0x π-<<②,由①②得不等式的解集是,04π⎛⎫- ⎪⎝⎭.故选:C 【点睛】本题考查利用构造函数法解不等式,导数研究函数的增减性的应用,一般形如()()()()0f a g a f b g b ±>的式子,先构造函数()()()h x f x g x =⋅,再设法证明()h x 的奇偶性与增减性,进而去“f ”解不等式3.奇函数()f x 定义域为()(),00,ππ-U ,其导函数是()f x ',当0πx <<时,有()()sin cos 0f x x f x x '->,则关于x 的不等式()2()sin 6f x f x π<的解集为A .(,0)(,)66πππ-B .(,0)(0,)66ππ-⋃C .(,)(,)66ππππ--⋃D .(,)(0,)66πππ--⋃【答案】D 【解析】【详解】根据题意,可构造函数()f x g x sinx=(),其导数()()2f x sinx f x cosxg x sin x'-'=()当0x π∈(,)时,有’0f x sinx f x x -()()>,其导数0g x g x '()>,()在0π(,)上为增函数,又由f x ()为奇函数,即f x f x -=-()(),则()()()()f x f xg x g x sin x sin x --===-()(),即函数g x ()为偶函数,当0x π∈(,)时,0sinx >,不等式()12()6626f x f x f sinx fg x g sinx πππ⇒⇒()<()<()<(),又由函数g x ()为偶函数且在0π(,)上激增,则66g x g x ππ⇒()<()<,解得 66x ππ-<<此时x 的取值范围为06(,)π;当0x π∈-(,)时,0sinx <,不等式()()62162f f x f x f sinx sinx ππ⇒()<(>6g x g π⇒()>(),同理解得此时x 的取值范围为6ππ--(,);综合可得:不等式的解集为,0,66πππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭故选D .【点睛】本题考查函数的导数与函数单调性的关系,解题的关键是根据题意构造新函数()f x g x sinx=(),,并利用导数分析g x ()的单调性.题型六:构造()kx x f +型函数解不等式【例1】设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()24f x x f x =--,当(),0x ∈-∞时,()142f x x '+<.若()()3132f m f m m +≤-++,则实数m 的取值范围是A .1,2⎡⎫-+∞⎪⎢⎣⎭B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)1,-+∞D .[)2,-+∞【答案】A 【解析】【详解】构造函数法令2()()2F x f x x =-,则1()()402F x f x x ''=-<-<,函数()F x 在(,0)-∞上为减函数,因为2()()()()40F x F x f x f x x -+=-+-=,即()()F x F x -=-,故()F x 为奇函数,于是()F x 在(,)-∞+∞上为减函数,而不等式3(1)()32f m f m m +≤-++可化为(1)()F m F m +≤-,则1m m +≥-,即12m ≥-.选A.【例2】设函数()f x 在R 上存在导数()f x ',对任意的R x ∈,有()()2cos f x f x x +-=,且在[)0,+∞上有()sin f x x '>-,则不等式()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭的解集是()A .,4π⎛⎤-∞ ⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭【答案】B 【解析】构造函数,由已知得出所构造的函数的单调性,再利用其单调性解抽象不等式,可得选项.【详解】设()()cos F x f x x =-,∵()()2cos f x f x x +-=,即()()cos cos f x x x f x -=--,即()()F x F x =--,故()F x 是奇函数,由于函数()f x 在R 上存在导函数()f x ',所以,函数()f x 在R 上连续,则函数()F x 在R 上连续.∵在[)0,+∞上有()sin f x x '>-,∴()()sin 0F x f x x ''=+>,故()F x 在[)0,+∞单调递增,又∵()F x 是奇函数,且()F x 在R 上连续,∴()F x 在R 上单调递增,∵()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭,∴()cos sin cos 222f x x f x x f x x πππ⎛⎫⎛⎫⎛⎫-≥--=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()2F x F x π⎛⎫≥- ⎪⎝⎭,∴2x x π≥-,故4x π≥,故选:B .【点睛】本题考查运用导函数分析函数的单调性,从而求解抽象不等式的问题,构造合适的函数是解决问题的关键,属于较难题.【例3】(2022·重庆八中高二期末)已知函数()f x 满足:R x ∀∈,()()2cos f x f x x +-=,且()sin 0f x x '+<.若角α满足不等式()()0f f παα++,则α的取值范围是()A .,2π⎡-+∞⎫⎪⎢⎣⎭B .,2π⎛⎤-∞- ⎥⎝⎦C .,22ππ⎡⎤-⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦【答案】A。
2021年新高考数学总复习第三章《导数及其应用》导数中的函数构造问题一、利用f (x )进行抽象函数构造(一)利用f (x )与x 构造1.常用构造形式有xf (x ),f (x )x,这类形式是对u ·v ,u v 型函数导数计算的推广及应用.我们对u ·v ,u v 的导函数观察可得知,u ·v 型导函数中体现的是“+”法,u v 型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u ·v 型,当导函数形式出现的是“-”法形式时,优先考虑构造u v .例1 设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.思路点拨 出现“+”形式,优先构造F (x )=xf (x ),然后利用函数的单调性、奇偶性和数形结合求解即可.答案 (-∞,-4)∪(0,4)解析 构造F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x ),当x <0时,f (x )+xf ′(x )<0,可以推出当x <0时,F ′(x )<0,∴F (x )在(-∞,0)上单调递减.∵f (x )为偶函数,x 为奇函数,所以F (x )为奇函数,∴F (x )在(0,+∞)上也单调递减.根据f (-4)=0可得F (-4)=0,根据函数的单调性、奇偶性可得函数图象,根据图象可知xf (x )>0的解集为(-∞,-4)∪(0,4).例2 设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的解集为________.思路点拨 出现“-”形式,优先构造F (x )=f (x )x,然后利用函数的单调性、奇偶性和数形结合求解即可.答案 (-∞,-1)∪(1,+∞)解析 构造F (x )=f (x )x ,则F ′(x )=f ′(x )·x -f (x )x 2,当x <0时,xf ′(x )-f (x )>0,可以推出当x <0时,F ′(x )>0,F (x )在(-∞,0)上单调递增.∵f (x )为偶函数,x 为奇函数,所以F (x )为奇函数,∴F (x )在(0,+∞)上也单调递增.根据f (1)=0可得F (1)=0,根据函数的单调性、奇偶性可得函数图象,根据图象可知f (x )>0的解集为(-∞,-1)∪(1,+∞).2.xf (x ),f (x )x是比较简单常见的f (x )与x 之间的函数关系式,如果碰见复杂的,不易想的我们该如何处理,由此我们可以思考形如此类函数的一般形式.F (x )=x n f (x ),F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];F (x )=f (x )x n , F ′(x )=f ′(x )·x n -nx n -1f (x )x 2n =xf ′(x )-nf (x )x n +1; 结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )x n . 我们根据得出的结论去解决例3.例3 已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.思路点拨 满足“xf ′(x )-nf (x )”形式,优先构造F (x )=f (x )x n ,然后利用函数的单调性、奇偶性和数形结合求解即可.答案 (-1,0)∪(0,1)解析 构造F (x )=f (x )x 2,则F ′(x )=f ′(x )·x -2f (x )x 3,当x >0时,xf ′(x )-2f (x )<0,可以推出当x >0时,F ′(x )<0,F (x )在(0,+∞)上单调递减.∵f (x )为偶函数,x 2为偶函数,所以F (x )为偶函数,∴F (x )在(-∞,0)上单调递增.根据f (-1)=0可得F (-1)=0,根据函数的单调性、奇偶性可得函数图象,根据图象可知f (x )>0的解集为(-1,0)∪(0,1).(二)利用f (x )与e x 构造1.f (x )与e x 构造,一方面是对u ·v ,u v 函数形式的考察,另外一方面是对(e x )′=e x 的考察.所以对于f (x )±f ′(x )类型,我们可以等同xf (x ),f (x )x的类型处理,“+”法优先考虑构造F (x )=f (x )·e x ,“-”法优先考虑构造F (x )=f (x )e x . 例4 已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 019)>e 2 019f (0)B .f (2)<e 2f (0),f (2 019)>e 2 019f (0)C .f (2)>e 2f (0),f (2 019)<e 2 019f (0)D .f (2)<e 2f (0),f (2 019)<e 2 019f (0)思路点拨 满足“f ′(x )-f (x )<0”形式,优先构造F (x )=f (x )e x ,然后利用函数的单调性和数。
导数中的函数构造问题[解题技法]函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现.一、利用f (x )进行抽象函数构造(一)利用f (x )与x 构造1.常用构造形式有xf (x ),f (x )x,这类形式是对u ·v ,u v 型函数导数计算的推广及应用.我们对u ·v ,u v 的导函数观察可得知,u ·v 型导函数中体现的是“+”法,u v 型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u ·v 型,当导函数形式出现的是“-”法形式时,优先考虑构造u v .例1 设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.思路点拨 出现“+”法形式,优先构造F (x )=xf (x ),然后利用函数的单调性、奇偶性和数形结合求解即可. 答案 (-∞,-4)∪(0,4)解析 构造F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x ),当x <0时,f (x )+xf ′(x )<0,可以推出当x <0时,F ′(x )<0,∴F (x )在(-∞,0)上单调递减.∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递减.根据f (-4)=0可得F (-4)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知xf (x )>0的解集为(-∞,-4)∪(0,4).例2 设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的解集为________.思路点拨 出现“-”法形式,优先构造F (x )=f (x )x,然后利用函数的单调性、奇偶性和数形结合求解即可. 答案 (-∞,-1)∪(1,+∞)解析 构造F (x )=f (x )x ,则F ′(x )=f ′(x )·x -f (x )x 2,当x <0时,xf ′(x )-f (x )>0,可以推出当x <0时,F ′(x )>0,F (x )在(-∞,0)上单调递增.∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递增.根据f (1)=0可得F (1)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知f (x )>0的解集为(-∞,-1)∪(1,+∞).2.xf (x ),f (x )x是比较简单常见的f (x )与x 之间的函数关系式,如果碰见复杂的,不易想的我们该如何处理,由此我们可以思考形如此类函数的一般形式.F (x )=x n f (x ),F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];F (x )=f (x )x n ,F ′(x )=f ′(x )·x n -nx n -1f (x )x 2n =xf ′(x )-nf (x )x n +1; 结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )x n . 我们根据得出的结论去解决例3.例3 已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.思路点拨 满足“xf ′(x )-nf (x )”形式,优先构造F (x )=f (x )x n ,然后利用函数的单调性、奇偶性和数形结合求解即可.解析 构造F (x )=f (x )x 2,则F ′(x )=f ′(x )·x -2f (x )x 3,当x >0时,xf ′(x )-2f (x )<0,可以推出当x >0时,F ′(x )<0,F (x )在(0,+∞)上单调递减.∵f (x )为偶函数,x 2为偶函数,∴F (x )为偶函数,∴F (x )在(-∞,0)上单调递增.根据f (-1)=0可得F (-1)=0,根据函数的单调性、奇偶性可得函数图象(图略),根据图象可知f (x )>0的解集为(-1,0)∪(0,1).(二)利用f (x )与e x 构造1.f (x )与e x 构造,一方面是对u ·v ,u v 函数形式的考察,另外一方面是对(e x )′=e x 的考察.所以对于f (x )±f ′(x )类型,我们可以等同xf (x ),f (x )x的类型处理,“+”法优先考虑构造F (x )=f (x )·e x ,“-”法优先考虑构造F (x )=f (x )e x . 例4 已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 019)>e 2 019f (0)B .f (2)<e 2f (0),f (2 019)>e 2 019f (0)C .f (2)>e 2f (0),f (2 019)<e 2 019f (0)D f (2)<e 2f (0),f (2 019)<e 2 019f (0)思路点拨 满足“f ′(x )-f (x )<0”形式,优先构造 F (x )=f (x )e x,然后利用函数的单调性和数形结合求解即可.注意选项的转化.2.同样e x f (x ),f (x )e x 是比较简单常见的f (x )与e x 之间的函数关系式,如果碰见复杂的,我们是否也能找出此类函数的一般形式呢?F (x )=e nx f (x ),F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )];F (x )=f (x )e nx ,F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx; 结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )e nx . 我们根据得出的结论去解决例5,例6.例5 若定义在R 上的函数f (x )满足f ′(x )-2f (x )>0,f (0)=1,则不等式f (x )>e 2x 的解集为________.思路点拨 满足“f ′(x )-2f (x )>0”形式,优先构造F (x )=f (x )e2x ,然后利用函数的单调性和数形结合求解即可.注意选项的转化.答案 {x |x >0}解析 构造F (x )=f (x )e 2x 形式,则F ′(x )=e 2x f ′(x )-2e 2x f (x )e 4x =f ′(x )-2f (x )e 2x, 函数f (x )满足f ′(x )-2f (x )>0,则F ′(x )>0,F (x )在R 上单调递增.又∵f (0)=1,则F (0)=1,f (x )>e 2x ⇔f (x )e2x >1⇔F (x )>F (0),根据单调性得x >0. 例6 已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( )A .f (1)<f (0)B .f (2)>e 2f (0)C f (3)>e 3f (0)D .f (4)<e 4f (0)思路点拨 满足“f ′(x )-f (x )”形式,优先构造F (x )=f (x )e x ,然后利用函数的单调性和数形结合求解即可.注意选项的转化.解析 构造F (x )=f (x )e x 形式,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足(x -1)[f ′(x )-f (x )]>0,则x ≥1时F ′(x )≥0,F (x )在[1,+∞)上单调递增.当x <1时F ′(x )<0,F (x )在(-∞,1]上单调递减.又由f (2-x )=f (x )e 2-2x ⇔F (2-x )=F (x )⇒F (x )关于x =1对称,根据单调性和图象,可知选C.(三)利用f (x )与sin x ,cos x 构造sin x ,cos x 因为导函数存在一定的特殊性,所以也是重点考察的范畴,我们一起看看常考的几种形式.F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x +f (x )cos x ;F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x -f (x )sin x ; F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x +f (x )sin x cos 2x. 根据得出的关系式,我们来看一下例7.例7 已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式不成立的是( ) A 2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4 B.2f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫-π4 C .f (0)<2f ⎝⎛⎭⎫π4 D .f (0)<2f ⎝⎛⎭⎫π3 思路点拨 满足“f ′(x )cos x +f (x )sin x >0”形式,优先构造F (x )=f (x )cos x,然后利用函数的单调性和数形结合求解即可.注意选项的转化.解析 构造F (x )=f (x )cos x 形式,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x,导函数f ′(x )满足f ′(x )cos x +f (x )sin x >0,则F ′(x )>0,F (x )在⎝⎛⎭⎫-π2,π2上单调递增.把选项转化后可知选A. 二、具体函数关系式构造这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.例8 已知α,β∈⎣⎡⎦⎤-π2,π2,且αsin α-βsin β>0,则下列结论正确的是( ) A .α>β B α2>β2 C .α<β D .α+β>0思路点拨 构造函数f (x )=x sin x ,然后利用函数的单调性和数形结合求解即可.解析 构造 f (x )=x sin x 形式,则f ′(x )=sin x +x cos x ,x ∈⎣⎡⎦⎤0,π2时导函数f ′(x )≥0,f (x )单调递增;x ∈⎣⎡⎭⎫-π2,0时导函数f ′(x )<0,f (x )单调递减.又∵f (x )为偶函数,根据单调性和图象可知选B. 例9 已知实数a ,b ,c 满足a -2e a b =1-c d -1=1,其中e 是自然对数的底数,那么(a -c )2+(b -d )2的最小值为( ) A .8 B .10 C .12 D .18思路点拨 把(a -c )2+(b -d )2看成两点距离的平方,然后利用数形结合以及点到直线的距离即可.解析 由a -2e a b =1⇒b =a -2e a 进而⇒f (x )=x -2e x ;又由1-c d -1=1⇒d =2-c ⇒g (x )=2-x ;由f ′(x )=1-2e x =-1,得x =0,所以切点坐标为(0,-2),所以(a -c )2+(b -d )2的最小值为⎝ ⎛⎭⎪⎫|0-2-2|1+12=8.。
专题13 导数运算法则在抽象函数中的应用导数与不等式都是高考中的重点与难点,与抽象函数有关的导数问题更是一个难点,求解此类问题的关键是根据导数的运算法则构造合适的函数,再利用导数的运算法则确定所构造函数的性质,最后再利用函数性质求解.(一) 抽象函数的奇偶性及应用若()()f x f x -=两边求导得()()f x f x ¢¢--=,即()()f x f x ¢¢-=-,即若可导函数()f x 是偶函数,则()f x ¢是奇函数,同理可得:若可导函数()f x 是奇函数,则()f x ¢是偶函数.【例1】(2024届上海市奉贤区高三二模)已知定义域为R 的函数()y f x =,其图象是连续的曲线,且存在定义域也为R 的导函数()y f x =¢.(1)求函数()e e x xf x -=+在点()()0,0f 的切线方程;(2)已知()cos sin f x a x b x =+,当a 与b 满足什么条件时,存在非零实数k ,对任意的实数x 使得()()f x kf x -=-¢恒成立?(3)若函数()y f x =是奇函数,且满足()()23f x f x +-=.试判断()()22f x f x +=¢-¢对任意的实数x 是否恒成立,请说明理由.【解析】(1)由题可知,()e e x x f x -¢=-,所以切线的斜率为(0)0f ¢=,且(0)2f =,所以函数在点()()0,0f 的切线方程为()200y x -=-,即2y =;(2)由题可知()sin cos f x a x b x ¢=-+,又因为定义域上对任意的实数x 满足()()f x kf x ¢-=-,所以cos sin sin cos a x b x ak x bk x -=-,即b aka bk -=ìí=-î,当R k Î且0k ¹时,0a b ==,当1k =时,0a b +=,当1k =-时,0a b -=;(3)因为函数()y f x =在定义域R 上是奇函数,所以()()f x f x -=-, 所以()()()f x x f x ¢¢¢-×-=-,所以()()f x f x ¢¢-=,所以()y f x ¢=是偶函数,因为()()23f x f x +-=,所以()()()()223f x f x x ¢¢¢¢+-×-=,即()()20f x f x ¢¢--=,即()()2f x f x ¢¢=-,因为()()f x f x ¢¢-=,所以()()2f x f x ¢¢-=-,即()()2f x f x ¢¢=+,所以()y f x ¢=是周期为2的函数,所以()()()22f x f x f x ¢¢¢=+=-,所以()()()()22f x f x f x f x ¢¢¢¢-=-==+. (二)和差型抽象函数的应用解答此类问题时一般要根据题意构造辅助函数求解,构造时要结合所求的结论进行分析、选择,然后根据所构造的函数的单调性求解.如给出式子()f x k ¢-,可构造函数()()y f x kx b =-+,给出式子()f x kx ¢-,可构造函数()212y f x x b =-+ ,一般地,若给出()()f x g x ¢¢±通常构造函数()()y f x g x c =±+.【例2】已知()()y f x x =ÎR 的导函数()f x ¢满足()3f x ¢>且(1)3f =,求不等式()3f x x >的解集.【解析】令()()3F x f x x =-,则()()30F x f x ¢¢=->,∴()F x 在R 上为单调递增.又∵(1)3f =,∴(1)(1)30F f =-=,则()3f x x >可转化为()0(1)F x F >=,根据()F x 单调性可知不等式()3f x x >的解集为(1,)+∞.(三)积型抽象函数的应用若给出形如()()()()f x g x f x g x ¢¢+的式子通常构造函数()()y f x g x c =+ ,如给出()()xf x nf x ¢+可构造函数()ny x f x =,如给出()()f x nf x ¢+,可构造函数()e nx y f x =,如给出()()tan f x f x x ¢+,可构造函数()sin y f x x =.【例3】(2024年全国高考名校名师联席命制数学押题卷)若函数()f x 在[],a b 上满足()()()0g x f x f x ¢=³且不恒为0,则称函数()f x 为区间[],a b 上的绝对增函数,()g x 称为函数()f x 的特征函数,称任意的实数(),c a b Î为绝对增点(()f x ¢为函数()f x 的导函数).(1)若1为函数()()e xf x a x =-的绝对增点,求a 的取值范围;(2)绝对增函数()f x 的特征函数()g x 的唯一零点为0x .(ⅰ)证明:0x 是()f x ¢的极值点;(ⅱ)证明:()g x 不是绝对增函数.【解析】(1)因为函数()()e x f x a x =-,所以()()1e xf x a x =--¢,则()()()()21e xf x f x x a x a =--+¢.由()()0f x f x ¢³得()()10x a x a --+³,解得1x a £-或x a ³,所以()f x 为区间(],1a -∞-及区间[),a +∞上的绝对增函数.又1为函数()f x 的绝对增点,所以11a <-或1a >,解得2a >或1a <,所以a 的取值范围为()(),12,-∞+∞U .(2)(ⅰ)设()f x 为区间[],a b 上的绝对增函数,由题意知()00g x =,当0x x ¹时,()()00,,g x x a b >Î.①若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上单调递增,则在区间()00Δ,x x x -上,()()0,0f x f x >¢<,则()0g x <,与()0g x >矛盾.若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上单调递减,则在区间()00Δ,x x x -上,()()0,0f x f x ¢<>,则()0g x <,与()0g x >矛盾.若()00f x =,存在Δ0x >,且()f x 在区间()00Δ,x x x -上不单调,则存在()'000Δ,x x x x Î-,且()00f x ¢¢=,此时()00g x ¢=与()g x 有唯一零点0x 矛盾.所以()00f x ¹.②若()00f x ¹,不妨设()00f x >,则()00f x ¢=,且存在1Δ0x >,使得当()0101Δ,Δx x x x x Î-+时,()0f x >,且当()()010001Δ,,Δx x x x x x x Î-+U 时,()0f x ¢>,即1Δ0x $>,使()f x ¢在()010Δ,x x x -上单调递减,在()001,Δx x x +上单调递增.所以0x 为()f x ¢的极值点.同理,当()00f x <时也成立.(ⅱ)若()g x 为绝对增函数,则()()0g x g x ×¢³在[],a b 上恒成立,又()0g x ³恒成立,所以()0g x ¢³恒成立.令()()e x x g x j =×,所以()0x j ³,且()()()()e 0xx g x g x j ¢¢=×+³,所以()x j 在(),a b 上单调递增.又()00x j =,所以当()0,x a x Î时,()0x j <,则()0g x <,与()0g x ³矛盾,所以假设不成立,所以()g x 不是绝对增函数.【例4】定义在π(0,2上的函数()f x ,其导函数是()f x ¢,且恒有()()tan f x f x x <¢×成立,比较π6æöç÷èø与π3f æöç÷èø的大小.【解析】因为π(0,)2x Î,所以sin 0x >,cos 0x >.由()()tan f x f x x <¢,得()cos ()sin f x x f x x <¢.即()sin ()cos 0f x x f x x ¢->.令()()sin f x g x x =,π(0,2x Î,则2()sin ()cos ()0f x x f x xg x sin x ¢-¢=>.所以函数()()sin f x g x x =在π(0,2xÎ上为增函数,则π()(6g g <π3,即ππ()()63ππsin sin63f f <,所以π()612f <ππ(()63f <.(四)商型抽象函数的应用若给出形如()()()()f x g x f x g x ¢¢-的式子通常构造函数()()f x y cg x =+ ,如给出()()xf x nf x ¢-可构造函数()n f x y x =,给出()()f x nf x ¢-,可构造函数()nx f x y e =,给出()()tan f x f x x ¢-,可构造函数()sin f xy x=.【例5】(2024届湖北省襄阳市第五中学高三第二次适应性测试)柯西中值定理是数学的基本定理之一,在高等数学中有着广泛的应用.定理内容为:设函数f (x ),g (x )满足:①图象在[],a b 上是一条连续不断的曲线;②在(),a b 内可导;③对(),x a b "Î,()0g x ¢¹,则(),a b x $Î,使得()()()()()()f b f a fg b g a g x x --¢¢=.特别的,取()g x x =,则有:(),a b x $Î,使得()()()f b f a f b ax -¢=-,此情形称之为拉格朗日中值定理.(1)设函数()f x 满足()00f =,其导函数()f x ¢在()0,+∞上单调递增,证明:函数()f x y x=在()0,∞+上为增函数.(2)若(),0,e a b "Î且a b >,不等式ln ln 0a b b a m b a a b æö-+-£ç÷èø恒成立,求实数m 的取值范围.【解析】(1)由题()()()00f x f x f xx -=-,由柯西中值定理知:对0x ">,()0,x x $Î,使得()()()()001f x f f f x x x -==¢¢-,()()f x f xx =¢,又()f x ¢在()0,∞+上单调递增,则()()f x f x ¢>¢,则()()f x f x x¢>,即()()0xf x f x ->¢,故()f x y x=在()0,∞+上为增函数;(2)22ln ln ln ln 0a b b a a a b b m m b a a b a b -æö-+-£Û£ç÷-èø,取()ln f x x x =,()2g x x =,因为a b >,所以由柯西中值定理,(),b a x $Î,使得()()()()()()22ln ln 1ln 2f a f b f a a b b g a g b a b g x xx x--+===-¢-¢,由题则有:1ln 2m xx+£,设()()1ln 0e 2x G x x x+=<<,()2ln 2xG x x -¢=,当01x <<时,()0G x ¢>,当1e x <<时,()0G x ¢<,所以()G x 在()0,1上单调递增,在()1,e 上单调递减,所以()()max 112G x G ==,故12m ³,所以实数m 的取值范围是1,2éö+∞÷êëø.【例6】已知函数()f x 在()0,1恒有()()2xf x f x ¢>,其中()f x ¢为函数()f x 的导数,若a ,b 为锐角三角形两个内角,比较22cos (sin ),sin (cos )f f b a a b 的大小.【解析】设()()2()01f x g x x x =<<,则()()()()()243220x f x x f x x f x f x g x x x ¢¢×-××-×¢==>所以函数()g x 在()0,1上单调递增.a ,b 为锐角三角形两个内角,则π2a b +>所以ππ022b a <-<<,由正弦函数sin y x =在π0,2æöç÷èø上单调递增.则π0cos sin sin 12b b a æö<=-<<ç÷èø所以()()cos sin g g b a <,即()()22cos sin cos sin f f b a b a<所以()()22sin cos cos sin f f a b b a ×<×.(五)根据()()()f x f x g x ±-=构造函数若给出形如()()()f x f x g x ¢±=的式子通常构造偶函数或奇函数.【例7】设函数()f x 在R 上存在导函数'()f x ,x R "Î,有3()()f x f x x --=,在(0,)+∞上有22'()30f x x ->,若2(2)()364f m f m m m --³-+-,求实数m 的取值范围.【解析】因为()()3f x f x x --=,所以33()()()22x x f x f x --=-- 令3()()()()2x g x f x g x g x =-\=- 即函数()g x 为偶函数,因为()0,∞+上有()22'30f x x ->,所以23()()02x g x f x ¢¢=-> 即函数()g x 在(0,)+∞单调递增;又因为()()22364f m f m m m --³-+-所以33(2)(2)()(2)()22m m g m g m f m f m ---=---+2(2)()3640f m f m m m =--+-+³即(2)()g m g m -³,所以2m m -³,解得1m £ ,故选B.(六)信息迁移题中的抽象函数求解此类问题关键是如何利用题中的信息.【例8】已知定义在R 上的函数()f x 的导函数为()f x ¢,若()1f x ¢£对任意x ÎR 恒成立,则称函数()f x 为“线性控制函数”.(1)判断函数()sin f x x =和()e xg x =是否为“线性控制函数”,并说明理由;(2)若函数()f x 为“线性控制函数”,且()f x 在R 上严格增,设A B 、为函数()f x 图像上互异的两点,设直线AB 的斜率为k ,判断命题“01k <£”的真假,并说明理由;(3)若函数()f x 为“线性控制函数”,且()f x 是以(0)T T >为周期的周期函数,证明:对任意12,x x 都有()()12f x f x T -£.【解析】(1)()cos 1f x x =£¢,故()sin f x x =是“线性控制函数”;()1e 1g ¢=>,故()e x g x =不是“线性控制函数”.(2)命题为真,理由如下:设()()()()1122,,,A x f x B x f x ,其中12x x <由于()f x 在R 上严格增,故()()12f x f x <,因此()()1212f x f x k x x -=>-由于()f x 为“线性控制函数”,故()1f x ¢£,即()10f x ¢-£令()()F x f x x =-,故()()10F x f x ¢¢=-£,因此()F x 在R 上为减函数()()()()()()()()112212121212121101f x x f x x f x f x F x F x k k x x x x x x ------=-==£Þ£---,综上所述,01k <£,即命题“01k <£”为真命题.(3)根据(2)中证明知,对任意a b <都有()()1f a f b k a b-=£-由于()f x 为“线性控制函数”,故()1f x ¢³-,即()10f x ¢+³令()()G x f x x =+,故()()10G x f x ¢=+³¢,因此()F x 在R 上为增函数()()()()()()()()()()101f a a f b b f a f b G a G b f a f b a b a b a b a b+-+---+==³Þ³-----因此对任意a b <都有()()[]1,1f a f b a b-Î--,即()()1f a f b a b -£-当12x x =时,则()()120f x f x T -=£恒成立当12x x ¹时,若21x x T -£,则()()()()1212121f x f x f x f x x x T--³³-,故()()12f x f x T-£若21x x T ->时,则存在[)311,x x x T Î+使得()()32f x f x =故1()()()()131313f x f x f x f x x x T--³>-,因此()()()()1213f x f x f x f x T-=-<综上所述,对任意12,x x 都有()()12f x f x T -£.(事实上,对任意12,x x 都有()()122Tf x f x -£,此处不再赘述)【例9】定义:若曲线C 1和曲线C 2有公共点P ,且在P 处的切线相同,则称C 1与C 2在点P 处相切.(1)设()()221,8f x x g x x x m =-=-+.若曲线()y f x =与曲线()y g x =在点P 处相切,求m 的值;(2)设()3h x x =,若圆M :()()2220x y b r r +-=>与曲线()y h x =在点Q (Q 在第一象限)处相切,求b 的最小值;(3)若函数()y f x =是定义在R 上的连续可导函数,导函数为()y f x ¢=,且满足()()f x f x ¢³和()f x <都恒成立.是否存在点P ,使得曲线()sin y f x x =和曲线y =1在点P 处相切?证明你的结论.【解析】(1)设点11(,)P x y ,由22()1,()8f x xg x x x m =-=-+,求导得()2,()28f x x g x x ¢¢=-=-,于是11228x x -=-,解得12x =,由11()()f x g x =,得2212282m -=-´+,解得9m =,所以m 的值为9.(2)设切点3222(,),0Q x x x >,由()3h x x =求导得2()3h x x ¢=,则切线的斜率为222()3h x x ¢=,又圆M :222()x y b r +-=的圆心(0,)M b ,直线MQ 的斜率为322x bx -,则由3222213x x x b -×=-,得32213b x x =+,令31(),03x x x x j =+>,求导得221()33x x xj ¢=-,当0x <<()0x j ¢<,当x >()0x j ¢>,即函数()j x 在上递减,在)+∞上递增,因此当x =()x j ,所以当2x min b =(3)假设存在0(,1)P x 满足题意,则有00()sin 1f x x =,对函数()sin y f x x =求导得:()sin ()cos y f x x f x x ¢¢=+,于是0000()sin ()cos 0f x x f x x ¢+=,即0000()sin ()cos f x x f x x ¢=-,平方得222222000000[()]sin [()]cos [()](1sin )f x x f x x f x x ¢==-,即有2222200000[()]sin [()]sin [()]f x x f x x f x ¢+=,因此2200201[()]1[()][()]fx f x f x ¢×+=,整理得224000[()][()][()]f x f x f x ¢+=,而恒有()()f x f x ¢³成立,则有2200[()][()]f x f x ¢³,从而4200[()]2[()]f x f x ³,显然0()0f x ¹,于是20[()]2f x ³,即0|()|f x ³与()f x <所以假设不成立,即不存在点P 满足条件.【例1】(2024年全国统一考试数学押题卷)函数与函数之间存在位置关系.已知函数()f x 与()g x 的图象在它们的公共定义域D 内有且仅有一个交点()()00,x f x ,对于1x D "Î且()10,x x Î-∞,2x D Î且()20,x x Î+∞,若都有()()()()11220f x g x f x g x éùéù-×-<ëûëû,则称()f x 与()g x 关于点()()00,x f x 互穿;若都有()()()()11220f x g x f x g x éùéù-×->ëûëû,则称()f x 与()g x 关于点()()00,x f x 互回.已知函数()f x 与()g x 的定义域均为R ,导函数分别为()f x ¢与()g x ¢,()f x 与()g x 的图象在R 上有且仅有一个交点()(),m f m ,()f x ¢与()g x ¢的图象在R 上有且仅有一个交点()(),m f m ¢.(1)若()e xf x =,()1g x x =+,试判断函数()f x 与()g x 的位置关系.(2)若()f x ¢与()g x ¢关于点()(),m f m ¢互回,证明:()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.(3)研究表明:若()f x ¢与()g x ¢关于点()(),m f m ¢互穿,则()f x 与()g x 关于点()(),m f m 互回且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.根据以上信息,证明:23e 126!ixx x x x i ³++++×××+(i为奇数).【解析】(1)设()()()()e 1e 1x xH x f x g x x x =-=-+=--,则()e 1xH x ¢=-,当0x <时,()0H x ¢<,当0x >时,()0H x ¢>,()H x \在(),0∞-上单调递减,在()0,∞+上单调递增,所以()()00e 10H x H ³=-=,即()()f x g x ³,当且仅当0x =时取等号.又()f x 与()g x 的图象在R 上有且仅有一个交点()0,1,\函数()f x 与()g x 关于点()0,1互回.(2)设1x m <,2x m >,则()()()()11220f x g x f x g x ¢¢¢¢éùéù-×->ëûëû,(互回的定义的应用)设()()()h x f x g x =-,则()()()h x f x g x ¢¢¢=-,故()()120h x h x ¢¢>.①若()()12,h x h x ¢¢均大于零,因为()()()0h m f m g m ¢¢¢=-=,(提示:()f x ¢与()g x ¢的图象交于点()(),m f m ¢.所以()0h x ¢³,所以()h x 单调递增,又()()()0h m f m g m =-=,(提示:()f x 与()g x 的图象交于点()(),m f m )所以()10h x <,()20h x >,所以()()()()()()1211220h x h x f x g x f x g x ×=-×-<éùéùëûëû,()()120h x h x ¢×>,所以()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.②若()()12,h x h x ¢¢均小于零,因为()()()0h m f m g m ¢¢¢=-=,所以()0h x ¢£,所以()h x 单调递减,又()()()0h m f m g m =-=,所以()10h x >,()20h x <,所以()()()()()()1211220h x h x f x g x f x g x ×=-×-<éùéùëûëû,()()120h x h x ¢×>,所以()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.综上,()f x 与()g x 关于点()(),m f m 互穿且()()()()0f x g x f x g x ¢¢-×->éùéùëûëû在(),m +∞上恒成立.(3)设()e xi f x =,()23126!ii x x x g x x i =+++++L (N *i Î)则()()'1e xi i f x f x -==(2i ³),()()()231'11261!i i i x x x g x x g x i --=+++++=-L (2i ³)(关键:寻找()'i f x 与()1i f x -,()'i g x 与()1i g x -,2i ³之间的关系)易知()1e xf x =,()11g x x =+,由(1)可知()1f x 与()1g x 关于点()0,1互回.因为()()00e 10i i f g ===,所以*N i "Î,()i f x 与()i g x 的图象交于点()0,1.由(2)得()2f x 与()2g x 关于点()0,1互穿,(提示:()()21f x f x ¢=,()()21g x g x ¢=)由(3)得()3f x 与()3g x 关于点()0,1互回,易得当i 为奇数时,()i f x 与()i g x 关于点()0,1互回,所以()1,0x "Î-∞,()20,x Î+∞,有()()()()11220i i i i f x g x f x g x éùéù-×->ëûëû(i 为奇数).(提示:互回的定义的应用)由题意得()()()()2212120i i i i f x g x f x g x --éùéù-×->ëûëû对任意正整数i 恒成立,(提示:由本问信息可得)所以()()()()121222220i i i i f x g x f x g x ----éùéù-×->ëûëû()()()()222232320i i i i f x g x f x g x ----éùéù-×->ëûëû,L ,()()()()222212120f xg x f x g x éùéù-×->ëûëû累乘得()()()()()()222121212120i i i i f x g x f x g x f x g x --éùéùéù-×-->ëûëûëûL 所以()()()()2212120i i f x g x f x g x éùéù-×->ëûëû易知()()12120f x g x ->,(点拨:()()11f x g x ³,当且仅当0x =时等号成立,又()20,x Î+∞,所以()()1212f x g x >.所以()()220i i f x g x ->.因为()()()()11220i i i i f x g x f x g x éùéù-×->ëûëû,(i 为奇数),所以()()110i i f x g x ->(i 为奇数),因为()()00i i f g =,所以()()i i f x g x ³(i 为奇数),即23e 126!ixx x x x i ³++++¼+(i 为奇数),得证.【例2】(2024届上海市普陀区桃浦中学高三上学期期末)对于一个在区间I 上连续的可导函数()y f x =,在I 上任取两点()11(,)x f x ,()22(,)x f x ,如果对于任意的1x 与2x 的算术平均值的函数值大于等于对于任意的1x 与2x 的函数值的算术平均值,则称该函数在I 上具有“M 性质”.如果对于任意的1x 与2x 的几何平均值的函数值大于等于对于任意的1x 与2x 的函数值的几何平均值,则称()y f x =在I 上具有“L 性质”.(1)如果函数log a y x =在定义域内具有“M 性质”,求a 的取值范围.(2)对于函数ln y ax x =-,若该函数的一个驻点是1=x e ,求a ,并且证明该函数在2,x e éùÎ+∞ëû上具有“L 性质”.(3)设存在,m n I Î,使得()()f m f n =.①证明:取(,)m n x Î,则有()()()()f m f n f m n x ¢-=-②若[,]I a b =,设命题p :函数()y f x =具有“M 性质”,命題:()q f x ¢为严格减函数,试证明p 是q 的必要条件.(可用结论:若函数()f x 在区间I 上可导,且在区间I 上连续,若有(,)a b I Í,且()()f a f b =,则()f x 在区间I 上存在驻点)【解析】(1)由函数()log a f x x =在(0,)+∞上具有“M 性质”,可得对任意()1212121,(0,),log log log log 22aa a a x x x x x x +Î+∞³+=又12x x +³1a >;(2)令1()ln ,()g x ax x g x a x ¢=-=-由10e g æö¢=ç÷èø,得ea =则()e ln g x x x =-,在10,e æöç÷èø上严格减:在1,e æö+∞ç÷èø上严格增.要证()g x 在)2e ,é+∞ë上具有“L 性质”.需证g³即证()()212gg x g x éù³×ëû,而(222212 e ln gx x éù==-ëû()()()()()2121122121221e ln e ln e e ln l n ln ln g x g x x x x x x x x x x x x x ×=--=-++×则()()2212121lnln 4x x x x =-()121221ln ln n e l ln x x x x x x +-³,需证()()()212121221121ln ln e ln ln ln ln 4x x x x x x x x x x +-++³,由()212121ln ln ln ln 4x x x x+³,()()122112e ln ln x x x xx x +-12ln ln x x éù=××ëû2e==故只需证0³,下面给出证明:设ln ()x h x x =,则21ln ()x h x x -¢=,即在(e,)+∞上()0,()h x h x<¢递减,所以0hh éù-£ëû,即0³.综上,()()()212121221121ln ln e ln ln ln ln 4x x x x x x x x p x x +-++成立,故g³,得证.(3)①令()(()())()()g x f m f n x f x m n =---,()()()()()g x f m f n f x m n ¢¢=---,由可用结论,令x x =为该函数的驻点,则0()()()()()g f m f n f m n x x ¢¢==---,即取(,)m n x Î,则有()()()()f m f n f m n x ¢-=-,得证.②取12,(,)x x a b Î,设12,(0,1),{1,2}k x x u k <ÎÎ,记01220012,x x x h x x x x =+=-=-,则1020,x x h x x h =-=+,由①中的结论,则有:()()()0001f x h f x hf x u h ¢+-=+(1)()()()0002f x h f x hf x u h ¢--=-(2)由(1)-(2),得()()()()()00001022f x h f x h f x h f x u h f x u h ¢¢éù-++-=+--ëû对()f x ¢在区间[]0201,x u h x u h -+使用①中的结论,则:()()()2120102()f u u h h f x u h f x u h x ¢¢¢¢éù+=+--ëû,其中,()0201,x u h x u h x Î-+.由于()f x ¢是严格减函数,则()0f x ¢¢£,即()()()0002f x h f x h f x ++-³,即()()121222f x f x x x f ++æö³ç÷èø.所以p 是q 的必要条件.【例3】已知函数()f x 的定义域为[)0,∞+,导函数为()f x ¢,若()()1f x f x x <¢+恒成立,求证:()()3210f f -<.【解析】设函数()()()01f xg x x x =³+,因为()()1f x f x x <¢+,0x ³,所以()()()10x f x f x ¢+-<,则()'g x ()()()()2101x f x f x x -=+¢+<,所以()g x 在[)0,∞+上单调递减,从而()()13g g >,即()()1324f f >,所以()()3210f f -<.【例4】已知函数()f x 满足()()1'xf x f x e +=,且()01f =,判断函数()()()2132g x f x f x =-éùëû零点的个数.【解析】()()()()1''1x x x f x f x e f x e f x e +=Û+=()'1x e f x éùÛ=ëû,∴()xe f x x c =+,()xx c f x e +=,∵()01f =代入,得1c =,∴()1xx f x e +=.()()()()213002g x f x f x f x =-=Þ=éùëû或()16f x =,()1001xx f x x e +=Þ=Þ=-;()()1116166x x x f x e x e +=Þ=Þ=+,如图所示,函数x y e =与函数()61y x =+的图像交点个数为2个,所以()16f x =的解得个数为2个;综上,零点个数为3个.【例5】已知定义在R 上的函数()f x 的导数为()f x ¢,且满足()()2sin f x f x x +-=,当0x ³时()sin cos f x x x x ¢>-- ,求不等式()π22f x f x æö--ç÷èøsin 2cos x x <+的解集.【解析】设()()sin g x f x x =-,则()()sin g x f x x -=-+,所以()()g x g x --=()()f x f x --2sin 0x -=,所以()g x 是偶函数,设()()sin 0h x x x x =-³,则()1cos 0h x x ¢=-³,所以()()0h x h ¢³,即sin 0x x -³,所以0x ³时()sin cos cos f x x x x x ¢>--³- , 所以0x ³时()()cos 0g x f x x ¢¢=+>,()g x 在[)0,+∞上是增函数,所以()π22f x f x æö--ç÷èøsin 2cos x x<+()2sin 2f x xÛ-ππsin 22f x x æöæö<---ç÷ç÷èøèø()π22g x g x æöÛ<-ç÷èø()π22g x g x æöÛ<-ç÷èøπ22x x Û<-Û()22π22x x æö<-ç÷èøππ3022x x æöæöÛ+-<ç÷ç÷èøèøππ26x Û-<<,故选C.【例6】已知定义域为R 的函数()y f x =,其导函数为()y f x ¢¢=,满足对任意的x ÎR 都有()1f x ¢<.(1)若()sin 4xf x ax =+,求实数a 的取值范围;(2)若存在0M >,对任意x ÎR ,成立()f x M £,试判断函数()y f x x =-的零点个数,并说明理由;(3)若存在a 、()b a b <,使得()()f a f b =,证明:对任意的实数1x 、[]2,x a b Î,都有()()122b af x f x --<.【解析】(1)若()sin 4x f x ax =+,则cos ()4xf x a ¢=+,由题意,对任意的x ÎR 都有()1f x ¢<,则1cos 4x a +<,即1cos 14xa <+<-,所以cos cos 1441x xa <---<,由于1cos 4x -的最小值为34,cos 14x --的最大值为34-,所以3344a -<<,即实数a 的取值范围为33,44æö-ç÷èø;(2)依题意,()10y f x ¢¢=-<,所以,()y f x x =-在R 上为减函数,所以至多一个零点;()f x M £Þ()M f x M -<<,,当1x M =--时,()()110y f x x f M M =-=--++>,当1x M =+时,()()110y f x x f M M =-=+--<,所以()y f x x =-存在零点,综上存在1个零点;(3)因为()1f x ¢<,由导数的定义得()()12121f x f x x x -<-,即()()1212f x f x x x -<-,不妨设12a x x b £££若122b ax x --£,则()()12122b a f x f x x x --<-£若122b a x x -->,则()()()()()()1212f x f x f x f b f a f x -=-+-()()()()12f x f b f a f x <-+-12b x x a<-+-()22b a b ab a --<--=.1.若定义域为D 的函数()y f x =使得()y f x ¢=是定义域为D 的严格增函数,则称()f x 是一个“T 函数”.(1)分别判断()13=x f x ,()32f x x =是否为T 函数,并说明理由;(2)已知常数0a >,若定义在()0,∞+上的函数()y g x =是T 函数,证明:()()()()132g a g a g a g a +-<+-+;(3)已知T 函数()y F x =的定义域为R ,不等式()0F x <的解集为(),0∞-.证明:()F x 在R 上严格增.2.对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”;(2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ¢,且函数 ()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ÎR ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.3.(2024届江苏省盐城市滨海县高三下学期高考适应性考试)根据多元微分求条件极值理论,要求二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点,首先构造出一个拉格朗日辅助函数(,,)(,)(,)L x y f x y g x y l l =+,其中l 为拉格朗日系数.分别对(,,)L x y l 中的,,x y λ部分求导,并使之为0,得到三个方程组,如下:(,,)(,)(,)0(,,)(,)(,)0(,,)(,)0x x x y y y L x y f x y g x y L x y f x y g x y L x y g x y ll l l l l =+=ìï=+=íï==î,解此方程组,得出解(,)x y ,就是二元函数(,)z f x y =在约束条件(,)g x y 的可能极值点.,x y 的值代入到(,)f x y 中即为极值.补充说明:【例】求函数22(,)f x y x xy y =++关于变量x 的导数.即:将变量y 当做常数,即:(,)2x f x y x y =+,下标加上x ,代表对自变量x 进行求导.即拉格朗日乘数法方程组之中的,,x y L L L l 表示分别对,,x y λ进行求导.(1)求函数222(,)2f x y x y xy xy =++关于变量y 的导数并求当1x =处的导数值.(2)利用拉格朗日乘数法求:设实数,x y 满足22(,)410g x y x y xy =++-=,求(,)2f x y x y =+的最大值.(3)①若,,x y z 为实数,且1x y z ++=,证明:22213x y z ++³.②设0a b c >>>,求221121025()a ac c ab a a b ++-+-的最小值.4.(2024届浙江省宁波市宁波九校高三上学期期末)我们把底数和指数同时含有自变量的函数称为幂指函数,其一般形式为()()()()()01v x y u x u x u x =>¹,,幂指函数在求导时可以将函数“指数化"再求导.例如,对于幂指函数x y x =,()()()()ln ln ln e e e ln 1x x x x x x x y x x ¢¢¢¢éù====+êúëû.(1)已知()10x xf x xx -=>,,求曲线()y f x =在1x =处的切线方程;(2)若0m >且1m ¹,0x >.研究()112xxm g x æö+=ç÷èø的单调性;(3)已知a b s t ,,,均大于0,且a b ¹,讨论2t s s a b æö+ç÷èø和2st t a b æö+ç÷èø大小关系.5.(湖北省八市高三下学期3月联考)英国数学家泰勒发现的泰勒公式有如下特殊形式:当()f x 在0x =处的()*n n ÎN 阶导数都存在时,()()()()()()()()323000002!3!!n n f f f f x f f x x x x n =++++¢¢×××+¢+×××.注:()f x ¢¢表示()f x 的2阶导数,即为()f x ¢的导数,()()()3n f x n ³表示()f x 的n 阶导数,该公式也称麦克劳林公式.(1)根据该公式估算1sin 2的值,精确到小数点后两位;(2)由该公式可得:246cos 12!4!6!x x x x =-+-+×××.当0x ³时,试比较cos x 与212x-的大小,并给出证明(不使用泰勒公式);(3)设*n ÎN ,证明:()111142tannk n n n k n k=>-+++å.6. 函数()f x 满足22()(e )(2)ex f x f x -+=(e 为自然数的底数),且当1x £时,都有()()0f x f x ¢+>(()f x ¢为()f x 的导数),比较20202022(2022)(2020),e ef f 的大小 .7.设函数()f x 在R 上可导,其导函数为()f x ¢,且2()()0f x xf x ¢+>.求证: ()0f x ³.8.已知函数()f x 及其导函数()f x ¢的定义域均为R ,()23f x +是偶函数,记()()g x f x ¢=,()2g x +也是偶函数,求()2023f ¢的值.9. 定义在()0,∞+上的函数()y f x =有不等式()()()23f x xf x f x ¢<<恒成立,其中()y f x ¢=为函数()y f x =的导函数,求证:()()2481f f <<.10.已知()f x ¢为定义域R 上函数()f x 的导函数,且()()20f x f x ¢¢+-=,1x ³, ()()()120x f x f x -+>¢且()31f =,求不等式()()241f x x >-的解集11.定义在区间(0,)+∞上函数()f x 使不等式2()'()3()f x xf x f x <<恒成立,('()f x 为()f x 的导数),求(2)(1)f f 的取值范围.12.设()y f x =是定义在R 上的奇函数.若()(0)f x y x x=>是严格减函数,则称()y f x =为“D 函数”.(1)分别判断y x x =-和sin y x =是否为D 函数,并说明理由;(2)若1112xy a =-+是D 函数,求正数a 的取值范围;(3)已知奇函数()y F x =及其导函数()y F x ¢=定义域均为R .判断“()y F x ¢=在()0,∞+上严格减”是“()y F x =为D 函数”的什么条件,并说明理由.13.设M 是定义在R 上且满足下列条件的函数()f x 构成的集合:①方程()0f x x -=有实数解;②函数()f x 的导数()f x ¢满足0()1f x ¢<<.(1)试判断函数sin ()24x x f x =+是否集合M 的元素,并说明理由;(2)若集合M 中的元素()f x 具有下面的性质:对于任意的区间[],m n ,都存在0[,]x m n Î,使得等式()0()()()f n f m n m f x ¢-=-成立,证明:方程()0f x x -=有唯一实数解.(3)设1x 是方程()0f x x -=的实数解,求证:对于函数()f x 任意的23,x x R Î,当211x x -<,311x x -<时,有()()322f x f x -<.14.设定义在R 上的函数()f x 的导函数为()f x ¢,若()()2f x f x ¢+>,()02024f =,求不等式2022()2e xf x >+(其中e 为自然对数的底数)的解集。
近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结: 和与积联系:()()f x xf x '+,构造()xf x ; 22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=; ()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e x f x F x =,……………… ()()f x nf x '-,构造()()e nxf x F x =, 奇偶性结论:奇乘除奇为偶;奇乘偶为奇。
(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。
给出导函数,构造原函数,本质上离不开积分知识。
【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是导数中的构造函数( ) A .1x y <<B .1y x <<C .1x y <<D .1y x <<【来源】广东省佛山市2021届高三下学期二模数学试题 【答案】B【解析】由已知()2244log log x y y x -=-,因为2log 4x =log 2x ,所以原式可变形222log 4g 2lo x x y y =++令()222log f x x x =+,()24log g x x x =+,函数()f x 与()g x 均为()0,∞+上的增函数,且()()f x g y =,且()()11f g =, 当1x >时,由()1f x >,则()1g y >,可得1y >, 当1x <时,由()1f x <,则()1g y <,可得1y <,要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222224log 2log 2log g x g y g x f x x x x x x x x -=-=+--=-+设()()222log 0h x x x x x =-+>,则()212ln 2h x x x '=-+()2220ln 2h x x ''=--<,故()h x '在()0+∞,上单调递减, 又()2110ln 2h '=-+>,()1230ln 2h '=-+<, 则存在()01,2x ∈使得()0h x '=,所以当()00,x x ∈时,()0h x '>,当()0,x x ∈+∞时,()0h x '<, 又因为()()()()010,10,412480h h x h h =>==-+=-<, 所以当1x <时,()0h x <,当1x >时,()h x 正负不确定,故当1,1x y <<时,()0h x <,所以()()()1g x g y g <<,故1x y <<, 当1,1x y >>时,()h x 正负不定,所以()g x 与()g y 的正负不定,所以,,111x y x y y x ><<>>>均有可能,即选项A ,C ,D 均有可能,选项B 不可能. 故选:B .【点睛】本题考查了不等关系的判断,主要考查了对数的运算性质以及对数函数性质的运用,解答本题的关键是要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222log g x g y g x f x x x x -=-=-+,设()()222log 0h x x x x x =-+>,求导得出其单调性,从而得出,x y 的大小可能性. 【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=( )A .2B C .2D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题 【答案】C 【解析】()ln 1g x x x =--,1()1g x x'=-, ()0g x '>(1,)x ⇒∈+∞,()0g x '<⇒(0,1)x ∈, ∴()g x 在(0,1)x ∈单调递减,在(1,)x ∈+∞单调递增,∴()(1)1ln110g x g =--=,∴1ln 0x x x -≥>,恒成立,1x =时取等号,2211a b +-2221a b -21a b =-, 221ln ln(2)ln a a a bb b-=-, ()221ln 2ln 1a b a b-+-≥,∴2211ln(2)ln a a b b+-=-,又21ab =(不等式取等条件),解得:a b ==,2a b ∴+=, 故选:C.2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为( )A .11[,]22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞- D .1[,)2+∞【答案】D【解析】由()()1f m f m -- ()33113m m ⎡⎤≥--⎣⎦得:3311(1)(1)()33f m m f m m ---≥-,构造函数31()()3g x f x x =-,2()()0g x f x x '=-<'故g (x )在()0,+∞单调递减,由函数()f x 为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减,故112m m m -≤⇒≥选D点睛:本题解题关键为函数的构造,由()2'f x x <要想到此条件给我们的作用,通常情况下是提示我们需要构造函数得到新函数的单调性,从而得不等式求解;3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为( )A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞【答案】D 【解析】【分析】构造函数()()1F x f x x=+,利用已知条件求得()'0F x >,即函数()F x 为增函数,而()23F =,由此求得e 2x <,进而求得不等式的解集.【详解】构造函数()()1F x f x x =+,依题意可知()()()222110x f x F x f x x x-=-=''>',即函数在()0,∞+上单调递增.所求不等式可化为()()1e e 3e x x x F f =+<,而()()12232F f =+=,所以e 2x <,解得ln 2x <,故不等式的解集为(),ln 2-∞.【点睛】本小题主要考查利用导数解不等式,考查构造函数法,考查导数的运算以及指数不等式的解法,属于中档题.题目的关键突破口在于条件()21x f x '>的应用.通过观察分析所求不等式,转化为()1e 3e x x f +<,可发现对于()()1F x f x x=+,它的导数恰好可以应用上已知条件()21x f x '>.从而可以得到解题的思路.4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】令11()()22g x f x x =--,则1()'()0'2g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到2cos 1x >,又3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________. 【答案】()112,【解析】()()ln F x f x x =-,则()11()()xf x F x f x xx-=-=''',而()10xf x '-<,且0x >,∴()0F x '<,即()F x 在()0+,∞上单调递减,不等式()()21ln 211f x x ->-+可化为()()21ln 2111ln1f x x --->=-,即()()211F x F ->,故210211x x ->-<⎧⎨⎩,解得:112x <<,故解集为:()112,. 类型二 巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是fx ,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为( )A .(1,1)-B .(),1-∞-C .1,D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟) 【答案】A【解析】当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,即有()()()10f x x f x '++>.令()()()1F x x f x =+,则当1x <-时,()()()()10F x f x x f x ''=++>,故()F x 在(),1-∞-上单调递增.∵()()()()()()22121F x x f x x f x F x --=--+--=---=⎡⎤⎣⎦, ∴()F x 关于直线1x =-对称,故()F x 在()1,-+∞上单调递减,由()()10xf x f ->等价于()()()102F x F F ->=-,则210x -<-<,得11x -<<. ∴()()10xf x f ->的解集为(1,1)-. 故选:A. 【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<【答案】D .【解析】令()()F x xf x =,则()F x 为奇函数,且当0x <时,()()()0F x f x xf x '+'=<恒成立,即函数()F x 在()0-,∞,()0+,∞上单调递减,又(2)0f =,则(2)(2)0F F -==,则()0xf x >可化为()(2)F x F >-或()(2)F x F >,则2x <-或02x <<.故选D .2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是( )A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤【答案】A【解析】令()()xg x e f x = ,则()(()())0xg x e f x f x '+'=<, 所以(2)(3),g g > 即()()2323e f e f >,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x <'构造()()xf xg x e=,()()0f x f x '+<构造()()xg x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等 3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是( ) A .(0)02(1)f f << B .0(0)2(1)f f << C .02(1)(0)f f << D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>,所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<.故选B . 4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当 成立(是函数的导数),若,则的大小关系是( )A .B .C .D .【答案】A 【解析】令,则当,因为函数的图象关于直线对称,所以函数的图象关于直线对称,即为偶函数,为奇函数,因此当,即为上单调递减函数,因为,而,所以,选A.5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+,,∞∞ B .()()2002-,,C .()()202-+,,∞D .()()202--,,∞ 【答案】C .【解析】构造函数()2()1()g x x f x =+,则()2()1()g x x f x ''=+.又()f x 是定义在R 上的奇函数,所以()2()1()g x x f x =+为奇函数,且当0x >时,()2()1()2()0g x x f x xf x ''=++<,()g x 在()0+,∞上函数单减, ()0()0f x g x <⇒<.又(2)0g =,所以有()0f x <的解集()()202-+,,∞.故选C . 点睛:本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<-,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001-,,B .()()11--+,,∞∞C .()()101-+,,∞D .()()101--,,∞ 【答案】D.【解析】设()ln ()g x x f x =,当0x >时,1()()ln ()0g x f x xf x x'=+<',()g x 在()0+,∞上为减函数,且(1)0g =,当()01x ∈,时,()0g x >,ln 0x <∵,()0f x <∴,2(1)()0x f x ->; 当()1x ∈+,∞时,()0g x <,ln 0x >∵,()0f x <∴,()21()0x f x -<, ∵()f x 为奇函数,∴当()10x ∈-,时,()0f x >,()21()0x f x -<;当()1x ∈--,∞时,()0f x >,()21()0x f x ->. 综上所述:使得()21()0x f x -<成立的x 的取值范围是()()101--,,∞ 【点睛】构造函数,借助导数研究函数单调性,利用函数图像解不等式问题,是近年高考热点,怎样构造函数,主要看题目所提供的导数关系,常见的有x 与()f x 的积或商,2x 与()f x 的积或商,e x 与()f x 的积或商,ln x 与()f x 的积或商等,主要看题目给的已知条件,借助导数关系说明导数的正负,进而判断函数的单调性,再借助函数的奇偶性和特殊点,模拟函数图象,解不等式.7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则( ) A .()0f x > B .()0f x < C .()f x 为减函数 D .()f x 为增函数【答案】A【解析】令()e [()]x g x xf x =,则由题意,得()e [(1)()()]0xg x x f x xf x '+'=+>,所以函数()g x 在(,)-∞+∞上单调递增,又因为(0)0g =,所以当0x >时,()0>g x ,则()0f x >,当0x <时,()0<g x ,则()0f x >,而()()()1'0x f x xf x ++>恒成立,则(0)0f >;所以()0f x >;故选A.点睛:本题的难点在于如何利用()()()1'0x f x xf x ++>构造函数()e [()]xg x xf x =。
专题06 构造函数法解决导数不等式问题(一)以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f (x )g (x )”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题小题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个f ′(x ),则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是f (x )本身的单调性,而是包含f (x )的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是f ′(x )的形式,则我们要构造的则是一个包含f (x )的新函数,因为只有这个新函数求导之后才会出现f ′(x ),因此解决导数抽象函数不等式的重中之重是构造函数.构造函数是数学的一种重要思想方法,它体现了数学的发现、类比、化归、猜想、实验和归纳等思想.分析近些年的高考,发现构造函数的思想越来越重要,而且很多都用在压轴题(无论是主观题还是客观题)的解答上.构造函数的主要步骤:(1)分析:分析已知条件,联想函数模型;(2)构造:构造辅助函数,转化问题本质;(3)回归:解析所构函数,回归所求问题.考点一 构造F (x )=x n f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=x n f (x ),则F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];(2)若F (x )=f (x )x n ,则F ′(x )=f ′(x )x n -nx n -1f (x )x 2n =xf ′(x )-nf (x )x n +1. 由此得到结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )xn . 【例题选讲】[例1](1)已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)答案 D 解析 因为f (x )<-xf ′(x ),所以f (x )+xf ′(x )<0,即(xf (x ))′<0,所以函数y =xf (x )在(0,+∞)上单调递减.由不等式f (x +1)>(x -1)f (x 2-1),可得(x +1)f (x +1)>(x 2-1)f (x 2-1),所以⎩⎪⎨⎪⎧ x +1>0,x 2-1>0,x 2-1>x +1,解得x >2.选D . (2)已知函数f (x )是定义在区间(0,+∞)上的可导函数,其导函数为f ′(x ),且满足xf ′(x )+2f (x )>0,则不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021的解集为( ) A .{x |x >-2 016} B .{x |x <-2 016} C .{x |-2 016<x <0} D .{x |-2 021<x <-2 016} 答案 D 解析 构造函数g (x )=x 2f (x ),则g ′(x )=x [2f (x )+xf ′(x )].当x >0时,∵2f (x )+xf ′(x )>0,∴g ′(x )>0,∴g (x )在(0,+∞)上单调递增.∵不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021,∴当x +2 021>0,即x >-2 021时,(x +2 021)2f (x +2 021)<52f (5),即g (x +2 021)<g (5),∴0<x +2 021<5,∴-2 021<x <-2 016.(3)(2015·全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)答案 A 解析 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A .(4)设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.答案 (-∞,-4)∪(0,4) 解析 构造F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x ),当x <0时,f (x )+xf ′(x )<0,可以推出当x <0时,F ′(x )<0,∴F (x )在(-∞,0)上单调递减.∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递减.根据f (-4)=0可得F (-4)=0,根据函数的单调性、奇偶性可得函数图象如图所示,根据图象可知xf (x )>0的解集为(-∞,-4)∪(0,4).(5)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A .4f (1)<f (2)B .4f (1)>f (2)C .f (1)<4f (2)D .f (1)>4f ′(2)答案 B 解析 令g (x )=f (x )x 2(x >0),则g ′(x )=xf ′(x )-2f (x )x 3,由不等式xf ′(x )<2f (x )恒成立知g ′(x )<0,即g (x )在(0,+∞)是减函数,∴g (1)>g (2),即f (1)1>f (2)4,即4f (1)>f (2),故选B . (6)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <c <a C .a <c <b D .c <a <b答案 D 解析 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,则g ′(x )=xf ′(x )-f (x )x 2<0,即函数g (x )在x ∈(0,+∞)时为减函数.由函数y =f (x )为奇函数知f (-3)=-f (3),则c =f (-3)-3=f (3)3.∵a =f (e )e =g (e),b =f (ln 2)ln 2=g (ln 2),c =f (3)3=g (3)且3>e >ln 2,∴g (3)<g (e)<g (ln 2),即c <a <b ,故选D . 【对点训练】1.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则不等式(x +2 021)2f (x+2 021)-4f (-2)>0的解集为( )A .(-∞,-2 021)B .(-∞,-2 023)C .(-2 023,0)D .(-2 021,0)1.答案 B 解析 由2f (x )+xf ′(x )>x 2,结合x ∈(-∞,0)得2xf (x )+x 2f ′(x )<x 3<0,故[x 2f (x )]′<0,设g (x )=x 2f (x ),则g (x )在(-∞,0)上单调递减,(x +2 021)2f (x +2 021)-4f (-2)>0可化为(x +2 021)2f (x +2 021)>(-2)2f (-2),所以⎩⎪⎨⎪⎧ x +2 021<-2,x +2 021<0,解得x <-2 023.故选B .2.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x的取值范围是________.2.答案 (-2,0)∪(2,+∞) 解析 令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2>0,x ∈(0,+∞).所以函数g (x ) 在(0,+∞)上单调递增.又g (-x )=f (-x )-x =-f (x )-x=f (x )x =g (x ),则g (x )是偶函数,g (-2)=0=g (2).则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧ x >0,g (x )>0或⎩⎪⎨⎪⎧x <0,g (x )<0.解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞). 3.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.3.答案 (-1,0)∪(0,1) 解析 构造F (x )=f (x )x 2,则F ′(x )=f ′(x )·x -2f (x )x 3,当x >0时,xf ′(x )-2f (x )<0, 可以推出当x >0时,F ′(x )<0,F (x )在(0,+∞)上单调递减.∵f (x )为偶函数,x 2为偶函数,∴F (x )为偶函数,∴F (x )在(-∞,0)上单调递增.根据f (-1)=0可得F (-1)=0,根据函数的单调性、奇偶性可得函数图象如图所示,根据图象可知f (x )>0的解集为(-1,0)∪(0,1).4.设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的 解集为________.4.答案 (-∞,-1)∪(1,+∞) 解析 构造F (x )=f (x )x ,则F ′(x )=f ′(x )·x -f (x )x 2,当x <0时,xf ′(x )-f (x ) >0,可以推出当x <0时,F ′(x )>0,F (x )在(-∞,0)上单调递增.∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递增.根据f (1)=0可得F (1)=0,根据函数的单调性、奇偶性可得函数图象,根据图象可知f (x )>0的解集为(-∞,-1)∪(1,+∞).5.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集 是________________.5.答案 (-∞,-2)∪(0,2) 解析 ∵当x >0时,⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,∴φ(x )=f (x )x在(0,+∞)上为 减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数,由数形结合知x ∈(-∞,-2)时f (x )>0.故x 2f (x )>0的解集为(-∞,-2)∪(0,2).6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,xf ′(x )-f (x )x 2<0恒成立,则不等式f (x )x>0的解集 为( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(0,2)D .(-∞,-2)∪(2,+∞)6.答案 B 解析 设g (x )=f (x )x ,则g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2,当x >0时,g ′(x )<0,所以函数g (x )=f (x )x 在(0,+∞)上单调递减.因为f (x )是奇函数,所以g (x )=f (x )x是偶函数.因为f (2)=0,所以f (-2)=0.所以不等式f (x )x>0的解集为(-2,0)∪(0,2).故选B . 7.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )<0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )<bf (a )B .bf (a )<af (b )C .af (a )<bf (b )D .bf (b )<af (a )7.答案 A 解析 设函数F (x )=f (x )x (x >0),则F ′(x )=[f (x )x ]′=xf ′(x )-f (x )x 2.因为x >0,xf ′(x )-f (x )<0,所 以F ′(x )<0,故函数F (x )在(0,+∞)上为减函数.又0<a <b ,所以F (a )>F (b ),即f (a )a >f (b )b,则bf (a )>af (b ).8.设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A .3f (2)>2f (3)B .3f (2)=2f (3)C .3f (2)<2f (3)D .3f (2)与2f (3)大小不确定8.答案 A 解析 令F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,所以F (x )为减函数,则f (2)2>f (3)3.所以3f (2)>2f (3). 9.定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( )A .8<f (2)f (1)<16B .4<f (2)f (1)<8C .3<f (2)f (1)<4D .2<f (2)f (1)<3 9.答案 B 解析 ∵xf ′(x )-2f (x )>0,x >0,∴⎣⎡⎦⎤f (x )x 2′=f ′(x )·x 2-2xf (x )x 4=xf ′(x )-2f (x )x 3>0,∴y =f (x )x 2在(0,+ ∞)上单调递增,∴f (2)22>f (1)12,即f (2)f (1)>4.∵xf ′(x )-3f (x )<0,x >0,∴⎣⎡⎦⎤f (x )x 3′=f ′(x )·x 3-3x 2f (x )x 6=xf ′(x )-3f (x )x 4<0,∴y =f (x )x 3在(0,+∞)上单调递减,∴f (2)23<f (1)13,即f (2)f (1)<8,综上,4<f (2)f (1)<8. 考点二 构造F (x )=e nx f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=e nx f (x ),则F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )];(2)若F (x )=f (x )e nx ,则F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx. 由此得到结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )enx . 【例题选讲】[例1](1)若定义在R 上的函数f (x )满足f ′(x )+2f (x )>0,且f (0)=1,则不等式f (x )>1e 2x 的解集为 . 答案 (0,+∞) 解析 构造F (x )=f (x )·e 2x ,∴F ′(x )=f ′(x )·e 2x +f (x )·2e 2x =e 2x [f ′(x )+2f (x )]>0,∴F (x )在R 上单调递增,且F (0)=f (0)·e 0=1,不等式f (x )>1e 2x 可化为f (x )e 2x >1,即F (x )>F (0),∴x >0,∴原不等式的解集为(0,+∞).(2)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex <1的解集为________.答案 {x |x >0} 解析 令g (x )=f (x )e x ,则g ′(x )=e x f ′(x )-(e x )′f (x )(e x )2=f ′(x )-f (x )e x.由题意得g ′(x )<0恒成立,所以函数g (x )=f (x )e x 在R 上单调递减.又g (0)=f (0)e 0=1,所以f (x )ex <1,即g (x )<g (0),所以x >0,所以不等式的解集为{x |x >0}.(3)若定义在R 上的函数f (x )满足f ′(x )-2f (x )>0,f (0)=1,则不等式f (x )>e 2x 的解集为________.答案 (0,+∞) 解析 构造F (x )=f (x )e 2x ,则F ′(x )=e 2x f ′(x )-2e 2x f (x )e 4x =f ′(x )-2f (x )e 2x,函数f (x )满足f ′(x )-2f (x )>0,则F ′(x )>0,F (x )在R 上单调递增.又∵f (0)=1,则F (0)=1,f (x )>e 2x ⇔f (x )e 2x >1⇔F (x )>F (0),根据单调性得x >0.(4)设定义域为R 的函数f (x )满足f ′(x )>f (x ),则不等式e x -1f (x )<f (2x -1)的解集为________.答案 (1,+∞) 解析 令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )ex >0,故g (x )在R 上单调递增,不等式e x -1f (x )<f (2x -1),即f (x )e x <f (2x -1)e2x -1,故g (x )<g (2x -1),故x <2x -1,解得x >1,所以原不等式的解集为(1,+∞). (5)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)答案 A 解析 设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x )-e x .由已知f (x )>1-f ′(x ),可得g ′(x )>0在R 上恒成立,即g (x )是R 上的增函数.因为f (0)=0,所以g (0)=-1,则不等式e x f (x )>e x -1可化为g (x )>g (0),所以原不等式的解集为(0,+∞).(6)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 021为奇函数,则不等式f (x )+2 021e x <0的解集是( )A .(-∞,0)B .(0,+∞)C .⎝⎛⎭⎫-∞,1eD .⎝⎛⎭⎫1e ,+∞ 答案 B 解析 设h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,所以h (x )是定义在R 上的减函数.因为f (x )+2 021为奇函数,所以f (0)=-2 021,h (0)=-2 021.因为f (x )+2 021e x <0,所以f (x )ex <-2 021,即h (x )<h (0),结合函数h (x )的单调性可知x >0,所以不等式f (x )+2 021e x <0的解集是(0,+∞).故选B .(7)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎫x -12+f (x +1)=0,e 3f (2 021)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1ex 的解集为( ) A .(-∞,3) B .(3,+∞) C .(-∞,0) D .(0,+∞)答案 B 解析 ∵f (x )是偶函数,∴f (x )=f (-x ),f ′(x )=[]f (-x )′=-f ′(-x ),∴f ′(-x )=-f ′(x ),f (x )>f ′( -x )=-f ′(x ),即f (x )+f ′(x )>0,设g (x )=e x f (x ),则[]e x f (x )′=e x []f (x )+f ′(x )>0,∴g (x )在(-∞,+∞)上单调递增,由f ⎝⎛⎭⎫x -12+f (x +1)=0,得f (x )+f ⎝⎛⎭⎫x +32=0,f ⎝⎛⎭⎫x +32+f ()x +3=0,相减可得f (x )=f ()x +3,f (x )的周期为3,∴e 3f ()2 021=e 3f (2)=1,g (2)=e 2f (2)=1e ,f (x +2)>1e x ,结合f (x )的周期为3可化为e x -1f (x -1)>1e=e 2f (2),g (x -1)>g (2),x -1>2,x >3,∴不等式的解集为()3,+∞,故选B .(8)已知函数f (x )是定义在R 上的可导函数,f ′(x )为其导函数,若对于任意实数x ,有f (x )-f ′(x )>0,则( )A .e f (2 021)>f (2 022)B .e f (2 021)<f (2 022)C .e f (2 021)=f (2 022)D .e f (2 021)与f (2 022)大小不能确定答案 A 解析 令g (x )=f (x )e x ,则g ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,因为f (x )-f ′(x )>0,所以g ′(x )<0,所以函数g (x )在R 上单调递减,所以g (2 021)>g (2 022),即f (2 021)e 2 021>f (2 022)e2 022,所以e f (2 021)>f (2 022),故选A .(9)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 021)>e 2 021f (0)B .f (2)<e 2f (0),f (2 021)>e 2 021f (0)C .f (2)>e 2f (0),f (2 021)<e 2 021f (0)D .f (2)<e 2f (0),f (2 021)<e 2 021f (0)答案 D 解析 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足f ′(x )<f (x ),则F ′(x )<0,F (x )在R 上单调递减,根据单调性可知选D .(10)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( )A .f (1)<f (0)B .f (2)>e 2f (0)C .f (3)>e 3f (0)D .f (4)<e 4f (0)答案 C 解析 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足(x -1)[f ′(x )-f (x )]>0,则x >1时F ′(x )>0,F (x )在[1,+∞)上单调递增.当x <1时F ′(x )<0,F (x )在(-∞,1]上单调递减.又由f (2-x )=f (x )e 2-2x ⇔F (2-x )=F (x )⇒F (x )关于x =1对称,从而F (3)>F (0)即f (3)e 3>f (0)e0,∴f (3)>e 3f (0),故选C .【对点训练】1.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的 解集为( )A .⎝⎛⎭⎫-∞,12B .(0,+∞)C .⎝⎛⎭⎫12,+∞ D .(-∞,0) 1.答案 B 解析 构造函数g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x,因为f ′(x )<f (x ),所以g ′(x )<0,故函数g (x ) 在R 上为减函数,又f (0)=12,所以g (0)=f (0)e 0=12,则不等式f (x )-12e x <0可化为f (x )e x <12,即g (x )<12=g (0),所以x >0,即所求不等式的解集为(0,+∞).2.已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数x ,都有f (x )-f ′(x )>0,则不等式f (x )<e x -2的 解集为( )A .(-∞,e)B .(1,+∞)C .(1,e)D .(e ,+∞)2.答案 B 解析 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x.∵对任意实数x ,都有f (x )-f ′(x )> 0,∴g ′(x )<0,即g (x )为R 上的减函数.g (1)=f (1)e =1e 2,由不等式f (x )<e x -2,得f(x )e x <e -2=1e2,即g (x )<g (1).∵g (x )为R 上的减函数,∴x >1,∴不等式f (x )<e x -2的解集为(1,+∞).故选B .3.已知f ′(x )是定义在R 上的连续函数f (x )的导函数,若f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞)3.答案 A 解析 设g (x )=f (x )e 2x ,则g ′(x )=f ′(x )-2f (x )e 2x<0在R 上恒成立,所以g (x )在R 上单调递减.因 为f (x )>0,所以g (x )>0,又g (-1)=0,所以x <-1.4.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )>f (x ),且f (x +3)为偶函数,f (6)=1,则不等式f (x )>e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)4.答案 B 解析 因为f (x +3)为偶函数,所以f (3-x )=f (x +3),因此f (0)=f (6)=1.设h (x )=f (x )ex , 则原不等式即h (x )>h (0).又h ′(x )=f ′(x )·e x -f (x )·e x (e x )2=f ′(x )-f (x )e x,依题意f ′(x )>f (x ),故h ′(x )>0,因此函数h (x )在R 上是增函数,所以由h (x )>h (0),得x >0.故选B .5.已知函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是( )A .{x |x >0}B .{x |x <0}C .|x |x <-1,或x >1|D .{x |x <-1,或0<x <1}5.答案 A 解析 构造函数g (x )=e x ·f (x )-e x -1,求导,得g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1].由已知f (x )+f ′(x )>1,可得到g ′(x )>0,所以g (x )为R 上的增函数.又g (0)=e 0·f (0)-e 0-1=0,所以e x ·f (x )>e x +1,即g (x )>0的解集为{x |x >0}.6.已知函数f (x )的定义域为R ,且f (x )+1<f ′(x ),f (0)=2,则不等式f (x )+1>3e x 的解集为( )A .(1,+∞)B .(-∞,1)C .(0,+∞)D .(-∞,0)6.答案 C 解析 构造函数g (x )=f (x )+1e x ,则g ′(x )=f ′(x )-f (x )-1e x>0,故g (x )在R 上为增函数.又g (0) =f (0)+1e 0=3,由f (x )+1>3e x ,得f (x )+1e x>3,即g (x )>g (0),解得x >0.故选C . 7.定义在R 上的可导函数f (x )满足f (x )+f ′(x )<0,则下列各式一定成立的是( )A .e 2f (2021)<f (2019)B .e 2f (2021)>f (2019)C .f (2021)<f (2019)D .f (2021)>f (2019)7.答案 A 解析 根据题意,设g (x )=e x f (x ),其导函数g ′(x )=e x f (x )+e x f ′(x )=e x [f (x )+f ′(x )],又由函数f (x )与其导函数f ′(x )满足f (x )+f ′(x )<0,则有g ′(x )<0,则函数g (x )在R 上为减函数,则有g (2021)<g (2019),即e 2021f (2021)<e 2019f (2019),即e 2f (2021)<f (2019).8.定义在R 上的函数f (x )满足f ′(x )>f (x )恒成立,若x 1<x 2,则1e x f (x 2)与2e x f (x 1)的大小关系为( )A .1e x f (x 2)>2e x f (x 1)B .1e x f (x 2)<2e x f (x 1)C .1e x f (x 2)=2e x f (x 1)D .1e x f (x 2)与2e x f (x 1)的大小关系不确定8.答案 A 解析 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x.由题意得g ′(x )>0,所以g (x )在R 上单调递增,当x 1<x 2时,g (x 1)<g (x 2),即()11e x f x <()22e x f x ,所以1e x f (x 2)>2e xf (x 1). 9.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( )A .3f (ln2)<2f (ln3)B .3f (ln2)=2f (ln3)C .3f (ln2)>2f (ln3)D .3f (ln2)与2f (ln3)的大小不确定9.答案 C 解析 令F (x )=f (x )e x ,则F ′(x )=f ′(x )-f (x )e x,因为对∀x ∈R 都有f (x )>f ′(x ),所以F ′(x )<0, 即F (x )在R 上单调递减.又ln2<ln3,所以F (ln2)>F (ln3),即f (ln 2)e ln 2>f (ln 3)e ln 3,所以f (ln 2)2>f (ln 3)3,即3f (ln2)>2f (ln3),故选C .10.已知函数f (x )是定义在R 上的可导函数,且对于∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2022f (-2022)<f (0),f (2022)>e 2022f (0)B .e 2022f (-2022)<f (0),f (2022)<e 2022f (0)C .e 2022f (-2022)>f (0),f (2022)>e 2022f (0)D .e 2022f (-2022)>f (0),f (2022)<e 2022f (0)10.答案 D 解析 构造函数g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -(e x )′f (x )(e x )2=f ′(x )-f (x )e x,因为∀x ∈R ,均有f (x )> f ′(x ),并e x >0,所以g ′(x )<0,故函数g (x )=f (x )ex 在R 上单调递减,所以g (-2022)>g (0),g (2022)<g (0), 即f (-2022)e -2022>f (0),f (2022)e 2022<f (0),也就是e 2022f (-2022)>f (0),f (2022)<e 2022f (0). 考点三 构造F (x )=f (x )sin x ,F (x )=f (x )sin x ,F (x )=f (x ) cos x ,F (x )=f (x )cos x类型的辅助函数 【方法总结】(1)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x +f (x )cos x ;(2)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; (3)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x -f (x )sin x ;(4)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x.由此得到结论:(1)出现f ′(x )sin x +f (x )cos x 形式,构造函数F (x )=f (x )sin x ;(2)出现f ′(x )sin x -f (x )cos x sin 2x 形式,构造函数F (x )=f (x )sin x; (3)出现f ′(x )cos x -f (x )sin x 形式,构造函数F (x )=f (x )cos x ;(4)出现f ′(x )cos x +f (x )sin x cos 2x 形式,构造函数F (x )=f (x )cos x. 【例题选讲】[例1](1)已知函数f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数.当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,则不等式cos xf (x +π2)+sin xf (-x )>0的解集为( ) A .⎝⎛⎭⎫π4,π2 B .⎝⎛⎭⎫-π4,π2 C .⎝⎛⎭⎫-π4,0 D .⎝⎛⎭⎫-π2,-π4 答案 C 解析 令g (x )=f (x )sin x ,则g ′(x )=f (x )cos x +f ′(x )sin x =[f (x )+f ′(x )tan x ]cos x ,当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,cos x >0,∴g ′(x )>0,即函数g (x )单调递增.又g (0)=0,∴x ∈[0,π2)时,g (x )=f (x )sin x ≥0.∵f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数,∴g (x )是定义在⎝⎛⎭⎫-π2,π2上的偶函数.不等式cos xf (x +π2)+sin xf (-x )>0,即sin ⎝⎛⎭⎫x +π2·f ⎝⎛⎭⎫x +π2>sin x ·f (x ),即g ⎝⎛⎭⎫x +π2>g (x ),∴|x +π2|>|x |,∴x >-π4 ①,又-π2<x +π2<π2,故-π<x <0 ②,由①②得不等式的解集是⎝⎛⎭⎫-π4,0.故选C . (2)对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,则下列不等式错误的是( ) A .f ⎝⎛⎭⎫π3>2f ⎝⎛⎭⎫π4 B .f ⎝⎛⎭⎫π3>2f (1)cos 1 C .2f (1)cos1>2f ⎝⎛⎭⎫π4 D .2f ⎝⎛⎭⎫π4<3f ⎝⎛⎭⎫π6 答案 D 解析 因为x ∈⎝⎛⎭⎫0,π2,所以sin x >0,cos x >0,构造函数F (x )=f (x )cos x ,则F ′(x )=-f (x )sin x +f ′(x )cos x ,因为对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,所以f (x )sin x <f ′(x )cos x 恒成立,即f ′(x )cos x -f (x )sin x >0恒成立,所以F ′(x )>0恒成立,所以函数F (x )在x ∈⎝⎛⎭⎫0,π2上单调递增,所以F ⎝⎛⎭⎫π6<F ⎝⎛⎭⎫π4<F (1)<F ⎝⎛⎭⎫π3,所以f ⎝⎛⎭⎫π6cos π6<f ⎝⎛⎭⎫π4cos π4<f (1)cos1<f ⎝⎛⎭⎫π3cos π3,所以32f ⎝⎛⎭⎫π6<22f ⎝⎛⎭⎫π4<f (1)cos1<12f ⎝⎛⎭⎫π3,所以3f ⎝⎛⎭⎫π6<2f ⎝⎛⎭⎫π4<2f (1)cos1<f ⎝⎛⎭⎫π3,结合选项知D 错误,故选D . (3)定义在⎝⎛⎭⎫0,π2上的函数f (x ),函数f ′(x )是它的导函数,且恒有f (x )<f ′(x )tan x 成立,则( ) A .3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f (1)<2f ⎝⎛⎭⎫π2sin 1 C .2f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π4 D .3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3答案 D 解析 f (x )<f ′(x )tan x ⇔f ′(x )sin x -f (x )cos x >0,令F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x>0,即函数F (x )在⎝⎛⎭⎫0,π2上是增函数,∴F ⎝⎛⎭⎫π6<F ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫π6sin π6<f ⎝⎛⎭⎫π3sin π3,∴3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3,故选D . (4)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式不成立的是( )A .2 f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2 f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫-π4C .f (0)<2 f ⎝⎛⎭⎫π4D .f (0)<2f ⎝⎛⎭⎫π3 答案 A 解析 构造F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x,导函数f ′(x )满足f ′(x )cos x +f (x )sin x >0,则F ′(x )>0,F (x )在⎝⎛⎭⎫-π2,π2上单调递增.把选项转化后可知选A . (5)已知定义在⎝⎛⎭⎫0,π2上的函数f (x ),f ′(x )是f (x )的导函数,且恒有cos xf ′(x )+sin xf (x )<0成立,则( ) A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B .3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4 答案 CD 解析 设g (x )=f (x )cos x ,则g ′(x )=f ′(x )·cos x +f (x )·sin x cos 2x,因为当x ∈⎝⎛⎭⎫0,π2时,cos xf ′(x )+sin xf (x )<0,所以当x ∈⎝⎛⎭⎫0,π2时,g ′(x )=f ′(x )·cos x +f (x )·sin x cos 2x<0,因此g (x )在⎝⎛⎭⎫0,π2上单调递减,所以g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π3,g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π4,即f ⎝⎛⎭⎫π632>f ⎝⎛⎭⎫π312⇒f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3,f ⎝⎛⎭⎫π632>f ⎝⎛⎭⎫π422⇒2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4.故选CD . (6)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫0,π2满足f ′(x )·cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A .2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4C .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4D .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6 答案 B 解析 设g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x +f (x )sin x cos 2x =1+ln x cos 2x ,x ∈⎝⎛⎭⎫0,π2.令g ′(x )=0得x =1e,当x ∈⎝⎛⎭⎫0,1e 时g ′(x )<0,函数g (x )单调递减,当x ∈⎝⎛⎭⎫1e ,π2时,g ′(x )>0,函数g (x )单调递增.∵1e <π6<π4<π3<π2,∴g ⎝⎛⎭⎫π6<g ⎝⎛⎭⎫π4<g ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫π312>f ⎝⎛⎭⎫π422>f ⎝⎛⎭⎫π632,化简得2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4,3f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6,3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π6,故选B .。
微专题6-含导数的抽象函数的构造一、构造和差函数对于()()0f x a a '≥≠,可构造()()F x f x ax =-,则()F x 单调递增.例1、已知()()y f x x =∈R 的导函数()f x '满足()3f x '>且(1)3f =,则不等式()3f x x >的解集是.【答案】(1,)+∞【解析】令()()3F x f x x =-,则()()30F x f x ''=->,∴()F x 在R 上为单调递增.又∵(1)3f =,∴(1)(1)30Ff =-=,则()3f x x >可转化为()0(1)F x F >=,根据()F x 单调性可知不等式()3f x x >的解集为(1,)+∞.二、构造积函数对于()()()()0f x g x g x f x ''+≥,可构造()()()F x f x g x =,则()F x 单调递增.(特例:对于'()()0f x f x +≥,可构造()()x F x e f x =,则()F x 单调递增.)例2、设函数()f x 是定义在(,0)-∞上的可导函数,其导函数为()f x ',且有22()()f x xf x x '+>,则不等式2(2019)(2019)4(2)0x f x f ++-->的解集为()A.(2020,0)-B.(2021,0)-C.(,2020)-∞D.(,2021)-∞-【答案】D【解析】令2()()g x x f x =,2()()2()(()2())g x x f x xf x x xf x f x '''=+=+,∵当0x <时,22()()0f x xf x x '+>>,∴[()2()]0x xf x f x '+<,∴2()()g x x f x =在(,0)-∞上是减函数,∴2(2019)(2019)4(2)0x f x f ++-->可化为22(2019)(2019)4(2)(2)(2)x f x f f ++>-=--,∴201920x +<-<,故2021x <-.故选D.三、构造商函数对于'()()()'()0f x g x f x g x -≥,可构造()()()f x F xg x =,则()F x 单调递增.(特例:对于'()()0f x f x -≥,可构造()()x f x F x e=,则()F x 单调递增.)例3、设定义域为R 的函数()f x 满足()()f x f x '>,则不等式1()(21)x e f x f x -<-的解集为.【答案】(1,)+∞【解析】设()()xf x F x e =,则()()()x f x f x f x e '-'=,∵()()f x f x '>,∴()0F x '>,即函数()F x 在定义域上单调递增.∵1()(21)x ef x f x -<-,∴21()(21)x x f x f x e e--<,即()(21)F x F x <-,∴21x x <-,即1x >.∴不等式1()(21)x ef x f x -<-的解集为(1,)+∞.课堂自主练习1、已知定义在R 上的函数()f x 的导函数为()f x ',()()0f x f x '+<,(0)1f =,则不等式()1x e f x <的解集为.【答案】(0,)+∞【解析】令()()x g x e f x =,因为()()0f x f x '+<,所以()()()0x x e f x e f x ''+<,故()(())0x g x e f x ''=<,故()g x 在R 上单调递减,又(0)1f =,∴0(0)(0)1g e f ==.∴不等式()1xef x <可转化为()(0)g x g <,根据()g x 单调性可得x >,即()1x e f x <的解集为(0,)+∞.2、已知定义在[1,4]的函数()f x 的导函数为()f x ',满足()2()0xf x f x '+>,且3223f ⎛⎫= ⎪⎝⎭,则不等式232()0f x x ->的解集为.【答案】3,42⎛⎤⎥⎝⎦【解析】构造函数2()()F x x f x =,∴当[1,4]x ∈时,2'()2()()[2()()]0F x xf x x f x x f x xf x ''=+=+>,故函数()F x 在区间[1,4]上递增,且23333(()()2222F f =⋅=,∴原不等式232()0f x x ->可变为23()2x f x >,即3()(2F x F >,根据单调性有342x <≤,故原不等式的解集为3,42⎛⎤ ⎥⎝⎦.3、已知()()y f x x =∈R 的导函数为()f x ',若3()()2f x f x x --=且当0x ≥时2()3f x x '>,则不等式2()(1)331f x f x x x -->-+的解集是.【答案】1,2⎛⎫+∞ ⎪⎝⎭【解析】令3()()F x f x x =-,则由3()()2f x f x x --=,可得()()F x F x -=,故()F x 为偶函数,又当0x ≥时,2()3f x x '>即'()0F x >,所以()F x 在[0,)+∞上为增函数.不等式2()(1)331f x f x x x -->-+可转化为()(1)F x F x >-,∴根据()F x 单调性和奇偶性可得1x x >-,解得12x >.4、已知f′(x)是定义在R 上的连续函数f(x)的导函数,满足f′(x)-2f(x)<0,且f(-1)=0,则f(x)>0的解集为()A.(-∞,-1)B.(-1,1)C.(-∞,0)D.(-1,+∞)解:令g(x)=f(x)e2x ,则g′(x)=f′(x)-2f(x)e2x<0在R 上恒成立,所以g(x)在R 上单调递减,又因为g(-1)=0,f(x)>0⇔g(x)>0,所以x<-1.故选A.。
1.对于()()'0f x a a >≠,可构造()()h x f x ax =-例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为( ) A .()1,1- B .()1-+∞,C .()1-∞-,D .()-∞+∞,【答案】B【解析】构造函数()()24G x f x x =--,所以()()2G x f x ''=-,由于对任意R x ∈,()2f x '>, 所以()()20G x f x ''->=恒成立,所以()()24G x f x x =--是R 上的增函数, 又由于()()()112140G f -=----⨯=,所以()()240G x f x x -->=, 即()24f x x >+的解集为()1-+∞,.故选B .2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x=例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .b a c >>【答案】D【解析】因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.因为()()()xf x f x xf x ''=+⎡⎤⎣⎦,所以当(),0x ∈-∞时,()()()0xf x f x xf x ''=+<⎡⎤⎣⎦,函数()y xf x =单调递减,当()0,x ∈+∞时,函数()y xf x =单调递减.因为0.2122<<,0log 31π<<,3log 92=,所以0.230log 32log 9π<<<,所以b a c >>.故选D .3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造高考数学复习专题 含导函数的抽象函数的构造()()ex f x h x =例3:已知()f x 为R 上的可导函数,且R x ∀∈,均有()()f x f x '>,则有( ) A .2016e (2016)(0)f f -<,2016(2016)e (0)f f >B .2016e (2016)(0)f f -<,2016(2016)e (0)f f <C .2016e (2016)(0)f f ->,2016(2016)e (0)f f >D .2016e (2016)(0)f f ->,2016(2016)e (0)f f < 【答案】D【解析】构造函数()()e xf xg x =,则()()()()()()()2e e ee x x xx f x f x f x f x g x ''-'-'==,因为R x ∀∈均有()()f x f x '>并且e 0x >,所以()0g x '<,故函数()()e xf xg x =在R 上单调递减,所以(2016)(0)g g ->,(2016)(0)g g <,即2016(2016)(0)ef f -->,2016(2016)(0)e f f <, 也就是2016e (2016)(0)f f ->,2016(2016)e (0)f f <.4.()f x 与sin x ,cos x 构造例4:已知函数()y f x =对任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>,则( )A .()04f π⎛⎫> ⎪⎝⎭B .()03f f π⎛⎫<2- ⎪⎝⎭C34f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】提示:构造函数()()cos f x g x x=.一、选择题1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <, 则必有( )A .()()af b bf a <B .()()bf a af b <C .()()af a bf b <D .()()bf b af a <【答案】C【解析】由已知()()0xf x f x '+>∴构造函数()()F x xf x =, 则()()()0F x xf x f x ''=+>,从而()F x 在R 上为增函数。
∵a b <,∴()()F a F b <,即()()af a bf b <,故选C . 2.已知函数()()R f x x ∈满足()11f =,且()12f x '<,则()122x f x <+的解集为( ) A .}{11x x |-<< B .}{1x x |<- C .}{11x x x |<->或 D .}{1x x |>【答案】D【解析】构造新函数1()()22x F x f x ⎛⎫=-+ ⎪⎝⎭,则11(1)(1)11022F f ⎛⎫=-+=-= ⎪⎝⎭,1'()'()2F x f x =-,对任意R x ∈,有1'()'()02F x f x =-<,即函数()F x 在R 上单调递减, 所以()0F x <的解集为(1,)+∞,即()122x f x <+的解集为(1,)+∞,故选D . 3.已知函数()f x 的定义域为R ,()f x '为()f x 的导函数,且()()()10f x x f x '+->,则( ) A .()10f = B .()0f x < C .()0f x > D .()()10x f x -<【答案】C【解析】由题得()()'[1]0x f x ->,设()()()1g x x f x =-,所以函数()g x 在R 上单调递增,因为()10g =,所以当1x <时,()0g x <;当1x >时,()0g x >. 当1x <时,()0g x <,()()10x f x -<,所以()0f x >.对点增分集训当1x >时,()0g x >,()()10x f x ->,所以()0f x >. 当1x =时,()()()11110f f +-'>,所以()10f >. 综上所述,故答案为C .4.设函数()f x '是函数()()R f x x ∈的导函数,已知()()f x f x '<,且()()4f x f x ''=-,()40f =,()21f =则使得()2e 0x f x -<成立的x 的取值范围是( )A .()2-+∞,B .()0+∞,C .()1+∞,D .()4+∞,【答案】B 【解析】设()()e xf x F x =,则()()()''e 0xf x f x F x -=<,即函数()F x 在R 上单调递减,因为()()''4f x f x =-,即导函数()'y f x =关于直线2x =对称,所以函数()y f x =是中心对称图形,且对称中心2,1(), 由于()40f =,即函数()y f x =过点4,0(), 其关于点2,1()的对称点0,2()也在函数()y f x =上,所以有02f =(),所以()()002e 0f F ==,而不等式()2e 0f x x -<,即()e2xf x <,即()()0F x F <,所以0x >,故使得不等式()2e 0f x x -<成立的x 的取值范围是0+∞(,).故选B .5.已知函数()1y f x =-的图象关于点()1,0对称,函数()y f x =对于任意的()0,πx ∈满足()()sin cos f x x f x x >'(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .ππ36f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭B 3ππ42f⎛⎫⎛⎫<-- ⎪ ⎪⎝⎭⎝⎭C ππ223f⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D 5π3π64f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】C【解析】由已知,()f x 为奇函数,函数()y f x =对于任意的()0,x ∈π满足()()sin cos f x x f x x >',得()()sin cos 0f x x f x x '->,即()0sin f x x '⎛⎫> ⎪⎝⎭,所以()sin f x y x=在()0,π上单调递增;又因为()sin f x y x=为偶函数,所以()sin f x y x =在(),0-π上单调递减.所以32sin sin 32f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<ππππ223f⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝π⎭π. 故选C .6.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x >',且()2018f x +为奇函数,则不等式()2018e 0x f x +<的解集为( )A .(),0-∞B .()0,+∞C .1e ,⎛⎫-∞ ⎪⎝⎭D .1e ,⎛⎫+∞ ⎪⎝⎭【答案】B【解析】构造函数()()e xf xg x =,则()()()0e xf x f xg x -''=<,所以()g x 在R 上单独递减,因为()2018f x +为奇函数,所以()020180f +=,∴()02018f =-,()02018g =-. 因此不等式()2018e 0x f x +<等价于()()0g x g <,即0x >,故选B .7.已知函数()2f x +是偶函数,且当2x >时满足()()()2xf x f x f x ''>+,则( ) A .()()214f f <B .()3232f f ⎛⎫> ⎪⎝⎭C .()5042f f ⎛⎫< ⎪⎝⎭D .()()13f f <【答案】A【解析】()2f x +是偶函数,则()f x 的对称轴为2x =, 构造函数()()2f xg x x =-,则()g x 关于()2,0对称,当2x >时,由()()()2xf x f x f x ''>+,得()()()()()22''02x f x f x g x x --=>-, 则()g x 在()2,+∞上单调递增,()g x 在(),2-∞上也单调递增, 故()()()134123242f f f =->----,∴()()214f f <.本题选择A 选项.8.已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时,()()0f x f x x+'>,若1133a f ⎛⎫=⎪⎝⎭,()33b f =--,11lnln 33c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .b c a << C .a c b << D .c a b <<【答案】C【解析】定义域为R 的奇函数()y f x =,设()()F x xf x =,∴()F x 为R 上的偶函数,∴()()()F x f x xf x '=+', ∵当0x ≠时,()()0f x f x x'+>,∴当0x >时,()()0x f x f x ⋅'+>.当0x <时,()()0x f x f x ⋅'+<,即()F x 在0,+∞()单调递增,在(),0∞-单调递减.(111333F a f F ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()()()3333F b f F -==--=,()111ln ln ln ln 3333F c f F ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∵ln33<,∴(()()ln 33F F F <<.即a c b <<,故选C .9.已知定义在R 上的函数()f x 的导函数为()f x ',()()222e x f x f x --=(e 为自然对数的底数),且当1x ≠时,()()()10x f x f x -->⎡⎤⎣⎦',则( ) A .()()10f f < B .()()2e 0f f >C .()()33e 0f f >D .()()44e 0f f <【答案】C【解析】令()()e x F x f x -=,∴()()()'e 'x F x f x f x -=-⎡⎤⎣⎦,∵()()()1'0x f x f x -->⎡⎤⎣⎦,∴1x <时,10x -<,则()()'0f x f x -<, ∴()0F x '<,()F x 在(),1-∞上单调递减,∴()()()210F F F ->->, 即()()()22e 1e 0f f f ->->,∵()()222e x f x f x --=,∴()()642e f f =-,()()431e f f =- ∴()()440e f f >,()()330e f f >,故选C .10.定义在R 上的函数()f x 的导函数为()'f x ,()00f =若对任意R x ∈,都有()()'1f x f x >+,则使得()e 1f x x +<成立的x 的取值范围为( )A .(),1∞-B .(),0∞-C .()1,+∞-D .0,+∞()【答案】D【解析】构造函数:()()1e xf xg x -=,()()001e 01f g -==-,∵对任意R x ∈,都有()()'1f x f x >+,∴()()()()()()2e 1e 10e e x x x x f x f x f x f x g x '--⎡⎤'+-⎣⎦'==<, ∴函数()g x 在R 单调递减,由()e 1x f x +<化为:()()()110e xf xg x g -=<-=,∴0x >.∴使得()e 1x f x +<成立的x 的取值范围为0,+∞().故选D .11.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( ) A .()()()1f a a f b >+ B .()()()1f b a f a >- C .()()af a bf b >D .()()af b bf a >【答案】C【解析】构造函数()()()e 0x F x f x x =>,,()()()e 0x F x f x f x ''=+<⎡⎤⎣⎦,所以()F x 是()0,+∞上的减函数.令01x <<,则1x x <,由已知()1F x F x ⎛⎫> ⎪⎝⎭,可得()11e x x f x fx -⎛⎫> ⎪⎝⎭,下面证明12e 1x x x ->,即证明12ln 0x x x-+>, 令()12ln g x x x x=-+,则()()2210x g x x -'=-<,即()g x 在()0,1上递减,()()1g x g >,即12e1x xx ->, 所以()11xf x f x x ⎛⎫>⎪⎝⎭,若01a b <<<,1ab =,则()()af a bf b >.故选C . 12.定义在R 上的奇函数()y f x =满足()30f =,且当0x >时,不等式()()'f x xf x >-恒成立,则函数()()lg 1g x xf x x =++的零点的个数为( ) A .1 B .2 C .3 D .4【答案】C【解析】定义在R 上的奇函数()f x 满足: ()()()0033f f f ===-,且()()f x f x -=-,又0x >时,()()'f x xf x >-,即()()'0f x xf x +>, ∴()0xf x '>,函数()()h x xf x =在0x >时是增函数, 又()()()h x xf x xf x -=--=,∴()()h x xf x =是偶函数;∴0x <时,()h x 是减函数,结合函数的定义域为R ,且()()()0330f f f ==-=, 可得函数()1y xf x =与2lg 1y x =-+的大致图象如图所示,∴由图象知,函数()()lg 1g x xf x x =++的零点的个数为3个.故选C .二、填空题13.设()f x 是R 上的可导函数,且'()()f x f x ≥-,(0)1f =,21(2)e f =.则(1)f 的值为________.【答案】1e【解析】由'()()f x f x ≥-得'()()0f x f x +≥,所以e '()e ()0x x f x f x +≥,即[e ()]'0x f x ≥, 设函数()e ()x F x f x =,则此时有1(2)(0)1F F =≥=,故()e ()1x F x f x ==,1(1)ef =. 14.已知,22x ⎛⎫∈- ⎪⎝π⎭π,()1y f x =-为奇函数,()()'tan 0f x f x x +>,则不等式()cos f x x>的解集为_________. 【答案】0,2⎛⎫⎪⎝⎭π【解析】∵()1y f x =-为奇函数,∴()010f -=,即()01f =, 令()()cos f x g x x =,,22x ⎛⎫∈- ⎪⎝π⎭π,则()()()2'cos sin 0cos f x x f x x g x x +'=>,故()g x 在,22x ⎛⎫∈- ⎪⎝π⎭π递增,()cos f x x >,得()()()10cos f x g x g x =>=, 故0x >,故不等式的解集是0,2π⎛⎫ ⎪⎝⎭,故答案为0,2π⎛⎫⎪⎝⎭.15.已知定义在实数集R 的函数()f x 满足()27f =,且()f x 导函数()3f x '<,则不等式()ln 3ln 1f x x >+的解集为__________.【答案】()20,e【解析】设ln t x =,则不等式()ln 3ln 1f x x >+等价为()31f t t >+, 设()()31g x f x x =--,则()()''3g x f x =-,∵()f x 的导函数()'3f x <,∴()()''30g x f x =-<,函数()()31g x f x x =--单调递减, ∵()27f =,∴()()223210g f =-⨯-=,则此时()()()3102g t f t t g =-->=,解得2t <, 即()31f t t >+的解为2t <,所以ln 2x <,解得20e x <<, 即不等式()ln 3ln 1f x x >+的解集为()20,e ,故答案为()20,e .16.已知函数()f x 是定义在()(),00,-∞+∞上的奇函数,且()10f =.若0x <时,()()'0xf x f x ->,则不等式()0f x >的解集为__________. 【答案】()(),10,1-∞-【解析】设()()f x g x x=,则()()()2''xf x f x g x x -=,当0x <时,由已知得()'0g x >,()g x 为增函数,由()f x 为奇函数得()()110f f -=-=,即()10g -=, ∴当1x <-时()()0f x g x x=<,()0f x >,当10x -<<时,()()0f x g x x=>,()0f x <,又()f x 是奇函数,∴当01x <<时,()0f x >,1x >时,()0f x <. ∴不等式()0f x >的解集为()(),10,1-∞-.故答案为()(),10,1-∞-.。