超声电机
- 格式:doc
- 大小:851.50 KB
- 文档页数:4
微特电机课程论文超声波电动机学院:专业班级:学号:姓名:指导教师:日期:摘要超声波电机是一个机电耦合系统,涉及到振动学、摩擦学、材料学、电力电子技术、自动控制技术和实验技术等。
超声波电动机利用压电材料的逆压电特性,激发电机定子的机械振动,通过定转子之间的摩擦力,将电能转换为机械能输出,驱动转子的定向运动。
与传统电机相比,它具有体积小、低速大转矩、反应速度快、不受磁场影响、保持力矩大等优点,是一项跨学科的高新技术。
近几年来超声波电动机已成为国内外在微型电机方面的研究热点。
关键字:超声波电机、逆压电效应、机械振动、高新技术。
一、超声波电动机简介超声波电动机(Ultrasonic Motor缩写USM)是以超声频域的机械振动为驱动源的驱动器。
由于激振元件为压电陶瓷,所以也称为压电马达。
80年代中期发展起来的超声波电机(Ultrasonic motor,USM)是基于功能陶瓷的超声波频率的振动实现驱动的新型驱动器。
超声电机是一个典型的机电一体化产品,由电机本体和控制驱动电路两部分组成。
产品涉及到振动学、波动学、材料学、摩擦学、电子科学、计算技术和实验技术等多个领域。
超声波电动机打破了由电磁效应获得转速和转矩的传统电机的概念,它利用压电材料的逆压电效应,使振动体在超声频段内产生振动,通过定子与动子间的摩擦输出能量。
二、超声波电动机的分类1. 环状或盘式行波型超声波电动机由底部粘接着压电陶瓷元件的环状定子和环状转子构成。
对极化后的压电陶瓷元件施加—定的高频交变电压,在定子弹性体中形成沿圆周方向的弯曲行波。
对定、转子施加一定的预压力,转子受到与行波传播方向相反的摩擦力作用而连续转动,定子上的齿槽用于改善电机的工作性能。
2. 直线式行波型超声波电动机(1)双Langevin振子型:利用两个Langevin压电换能器,分别作为激振器和吸振器,当吸振器能很好地吸收激振器端传来的振动波时,有限长直梁似乎变成了—根半无限长梁,这时,在直梁中形成单向行波,驱动滑块作直线运动。
医用超声电机简介医用超声电机是一种应用于医疗行业的关键设备,它利用超声波技术来进行医学成像和治疗。
本文将对医用超声电机进行详细介绍,包括其原理、功能、应用领域以及发展前景。
一、原理医用超声电机基于超声波原理工作,其核心是超声发生器和超声探头。
超声发生器将电能转化为高频电能,然后通过超声探头将电能转化为机械振动能量。
探头上的压电晶体通过振动产生超声波,并将超声波传输到人体组织内。
当超声波遇到不同组织界面反射回来时,探头可以接收到这些回波,并将其转化为可视化的图像。
二、功能医用超声电机具有多种功能,主要包括以下几个方面:1. 医学成像:医用超声电机通过超声波成像技术,能够对人体内部的器官、血管、肌肉等进行非侵入性的成像。
医生可以通过观察这些成像结果,准确地判断病变部位和病情,从而辅助诊断和治疗。
2. 治疗:医用超声电机在医疗领域还具有治疗功能。
它可以通过超声波的热效应、机械效应和生物效应对病变组织进行治疗。
例如,在肿瘤治疗中,可以利用超声波的热效应将肿瘤局部加热,破坏癌细胞。
此外,超声波还可以用于局部消融、组织修复等治疗过程。
3. 导航定位:医用超声电机可以通过超声波成像技术提供实时的导航定位功能。
医生在手术过程中可以根据超声波成像图像,准确定位和操作内部结构,提高手术的精确性和安全性。
三、应用领域医用超声电机广泛应用于医疗领域,包括但不限于以下几个方面:1. 影像学科:超声波成像在影像学科中是一种常见的检查方法,医用超声电机在超声检查设备中起到关键作用。
它可以用于妇科、泌尿科、肿瘤科等多个医学影像学科。
2. 心血管领域:医用超声电机在心血管领域具有重要的应用价值。
通过心脏超声波成像,可以检查心脏结构、功能以及评估心血管疾病,如心肌梗死、心肌病等。
3. 产科:医用超声电机在产科领域也应用广泛。
通过超声波检查,可以观察和评估胎儿发育情况、胎盘位置以及宫内情况等。
4. 普外科:医用超声电机在普外科领域也有重要的应用。
超声波电机在医疗领域的应用摘要:本文主要介绍了一种利用逆压电效应获得驱动力的的新型电机——超声波电机。
通过说明超声波电机的特定优点及工作原理,分析并展望了超声波电机在医疗领域等方面的应用。
关键词:超声波电机;医疗领域;注射器;内窥镜探头;多自由度关节1 引言超声波电动机是一种借助摩擦传递弹性超声波振动来获得驱动力的新型电机,和传统的电磁式电机的工作机理不同,超声波电机内部没有线圈和磁体,不需要通过电磁作用产生驱动力,这使其它具有低速大转矩、体积小、重量轻、无电磁干扰、响应速度快、运行时无噪声、断电自锁等特定优点。
上个世纪八十年代,日本的指田年生首次提出并制造出了一种可应用的驻波型超声波电机。
继而,国内外开始投入了很多力量对超声波电机进行应用研究。
在过去的几十年里,医疗领域是微电机技术应用最具代表性的领域之一,超声波电机在医疗领域的应用研究也一直都是焦点。
人们利用微型超声波电机攻克了一些医疗领域的技术难题。
2 超声波电机的原理2.1压电效应一般在电场作用下,某些电介质在沿一定方向上受到外力作用而变形,带电粒子发生极化,某些介质也可以在纯机械应力作用下发生极化,并同时在两端表面内出现正负相反的电荷,这种现象称为正压电效应;反之,将电介质置于外电场中,在电场的作用下,这些介质会发生位移,随之电介质发生形变,当电场去掉后变形也消失,这种现象称为逆压电效应,也叫电致伸缩效应。
正压电效应和逆压电效应统称为压电效应。
2.2超声波电机的工作原理超声波电机是基于压电材料的逆压电效应或电致伸缩效应使其电机定子产生微观机械振动,从而使用定子表面质点形成椭圆运动,然后通过定子和转子之间的摩檫力,将电能转换为机械能输出,从而驱动转子的运动。
超声波电机内部结构一般由振动体(定子)和移动体(转子)组成,振动体由压电陶瓷和金属弹性材料组成,移动体有弹性体和摩擦材料等组成。
3 医疗领域的发展随着我国经济的发展和人民生活的改善,医疗服务的需求逐步增加,我国的医疗领域技术也面临着新的挑战。
超声波电机工作原理
超声波电机是一种利用超声波振动产生机械运动的电机,其工作原理基于超声波的压电效应和谐振效应。
以下是超声波电机的基本工作原理:
1. 压电效应:超声波电机的关键部件是由压电陶瓷构成的振动片。
压电陶瓷具有压电效应,即当施加电场时,陶瓷发生机械变形,而当施加机械应力时,陶瓷产生电场。
2. 超声波振动产生:通过在压电陶瓷上施加高频交变电压,可以使陶瓷片振动,产生超声波。
这种超声波通常在20 kHz以上,远远超出人耳可听范围。
3. 谐振效应:超声波电机采用谐振效应,即在特定的频率下,振动片的振动幅度达到最大值。
通过调整施加在压电陶瓷上的电压频率,使其与振动片的谐振频率匹配,可以提高振动效率。
4. 工作部件:超声波电机中通常包含振动片、导向块和负载。
振动片振动时,通过导向块将振动传递到负载上,从而实现机械运动。
5. 无刷结构:由于超声波电机是通过振动产生机械运动,通常不需要传统电机中的刷子和换向器。
因此,超声波电机具有无刷结构,减少了摩擦和磨损。
超声波电机的优点包括高效率、精密控制、低噪音、无电磁干扰等特点。
它在一些需要高精度、低噪音、快速响应的应用领域得到广泛应用,如光学设备、精密仪器、医疗器械等。
超声波电机介绍及其应用一、超声波电机的工作原理超声学科结合的新技术。
超声电机不像传统的电机那样,利用电磁的交叉力来获得其运动和力矩。
超声电机则是利用压电陶瓷的逆压电效应和超声振动来获得其运动和力矩的,将材料的微观变形通过机械共振放大和摩擦耦合转换成转子的宏观运动。
二、超声波电机的产生20 世纪90 年代日本佳能公司研制出一种压电电动机,这种电动机的工作原理是利用逆压电效应把电能转换成机械能。
常见的压电电机也是由定子和转子组成,但定子是由压电材料和金属材料组合制成,转子是由金属材料制成;压电材料把电能转换成机械振动能,激励定子金属体振动;转子与定子相接触,通过摩擦力,定子的振动驱动转子运动。
由于定子的振动频率一般在大于20kHz 的超声频段,因此人们也将压电电机称为超声电机。
三、超声波电机的特点(1)超声电机可以得到较低转速,因此输出力矩较大,可以省去减速机构直接带动负载。
(2)因为超声电机不使用电磁场作为驱动力,因此电磁辐射小。
许多情况下,不希望有电机产生强电磁干扰,或者在强磁场环境中,电磁电机的正常工作会受到影响,而超声电机不需要做太多的电磁屏蔽处理就可以在这些条件下工作。
(3)超声电机依靠定、转子之间的接触摩擦作为驱动方式,关闭电源后转子就会马上停止,并在摩擦力的作用下固定不动(4)超声电机的响应时间较短,一般在十几毫秒以内。
(5)超声电机没有电磁线圈,可以不用铜材,节省原料造价。
(6)超声电机的转速可以通过改变驱动频率进行调节,比较灵活。
(7)超声电机在很小尺寸上都可以有效工作。
四、超声电机的分类(1)环形行波超声波电机。
在弹性体内产生单向的行波,利用行波表面质点的振动来传递能量,属连续驱动方式,其基础理论和应用技术均较成熟。
(2)小型柱体摇摆型超声波电机目前行波型超声波电机已有较成熟的设计方法,但该型电机在小直径(小于20mm)条件下,输出性能逐渐失去低速大扭矩的特点,而且由于其结构的限制,效率也很难提高。
圆筒型行波型超声电机一、简介1942年williams和Brown提出超声电机的概念,1981年日本新生工业(Shinsei)公司的总裁指田年生(Toslliiku sashida)制作了世界上第一台具有实用价值的振动片型超声波马达,自那时以来各种新型式的超声电机不断涌现,例如按驱动形式可分为行波型超声电机旧、复合型超声电机M1及多自由度超声电机.为增大定转子之间接触区形状和面积,提高马达的转矩,提出了一种柱面驱动行波超声电机,它的接触区域不同于以往的圆板和圆环超声电机,它是以圆柱面母线为中心的矩形区域,沿轴向接触具有一致性,提高定转子之间的预紧力和接触面积,从而提高了电机的力矩输出。
二、行波型超声电机的结构行波型超声电机(TRUM)是从上个世纪八十年代发展起来的一种新型微特电机,是最具代表性和当前应用最多的一类超声电机。
本文所述的这种筒状行波超声电机,定子为筒状,结构如图1所示。
图1 圆筒型行波超声电机传统的圆板型定子被新型圆筒定子代替。
压电陶瓷元件粘贴在圆通定子外壁上的合适位置,而在传统电机中,是贴在圆板型定子的底端面。
值得一提的是用于前者上的压电陶瓷比后者更易于加工,成本更低。
图2所示为粘贴有压电陶瓷的圆筒型定子和圆筒式定子主体,长条形的是PZT。
图2 粘有PZT的圆筒定子因为定子的特殊结构及有两个端面,如果两个端面都是自由的,就都会产生行波,而且这两个行波的运动方向相同。
如果用两个同轴转子与定子配合,随着摩擦力的增加,电机的输出力矩也将会增加。
虽然这样会给电机带来新的问题,但值得一试。
三、工作原理超声电机的机理是基于压电陶瓷的换能器,利用压电陶瓷的逆压电效应.把电能转换成机械能。
本文所提的电机采用的是薄片状压电陶瓷,沿厚度方向极化,压电振子的振动模式是垂直于极化方向的伸缩振动。
在两组压电陶瓷元件上分别施加相位差为π/2的同频率(超声频段内)、等幅麦变电压,通过压电陶瓷元件的逆压电效,可以在定于的模态频率上激发出幅值相等、在时间和空间上均相差π/2的模态响应。
超声电机原理超声电机是一种利用超声波振动产生的驱动力来驱动转子旋转的电机。
它具有体积小、转速高、响应速度快等特点,在现代工业生产中得到了广泛的应用。
超声电机的工作原理主要包括超声波振动产生、超声波传递和转子驱动三个方面。
首先,超声电机的工作原理是利用压电效应产生超声波振动。
压电效应是指某些晶体在受到外力作用时会发生形变,产生电荷分布不均,从而产生电场的现象。
当外加电压作用于压电晶体时,晶体会发生机械振动,产生超声波。
这种超声波的频率通常在20kHz以上,能够提供足够的驱动力来驱动转子旋转。
其次,超声波通过传感器传递到转子上。
传感器通常由压电陶瓷和金属片组成,当超声波传递到传感器上时,压电陶瓷会产生振动,从而使金属片发生弯曲变形。
这种弯曲变形会产生一个周期性的力,作用在转子上,从而驱动转子旋转。
由于超声波的频率很高,转子可以以非常快的速度旋转,因此超声电机具有响应速度快的特点。
最后,转子受到超声波的驱动而旋转。
超声波通过传感器传递到转子上后,产生的周期性力会使转子发生旋转。
由于超声波的频率高,转子旋转的速度也会非常快,可以达到几千转/分钟甚至更高的转速。
这种高速旋转的特点使得超声电机在一些需要高速驱动的场合具有很大的优势。
总的来说,超声电机是一种利用超声波振动产生的驱动力来驱动转子旋转的电机。
它的工作原理主要包括超声波振动产生、超声波传递和转子驱动三个方面。
超声电机具有体积小、转速高、响应速度快等特点,在现代工业生产中得到了广泛的应用。
希望通过本文的介绍,读者对超声电机的工作原理有了更深入的了解。
超声波电机的发展及应用1.超声波电动机原理超声波电动机(Ultrasonic Motor缩写USM)是以超声频域的机械振动为驱动源的驱动器。
是国外近20年发展起来的一种新型电机。
与传统的电机不同,超声波电机无绕组和磁极,无需通过电磁作用产生运动力。
一般由振动体(相当于传统电机中的定子,由压电陶瓷和金属弹性材料制成)和移动体(相当于传统电机中的转子,由弹性体和摩擦材料及塑料等制成)组成。
在振动体的压电陶瓷振子上加高频交流电压时,利用逆压电效应或电致伸缩效应使定子在超声频段(频率为20KHZ以上)产生微观机械振动。
并将这种振动通过共振放大和摩擦耦合变换成旋转或直线型运动。
逆压电效应能够在振动体内激发出几十千赫的超声波振动 ,使振动体表面起驱动作用的质点形成一定运动轨迹的超声波频率的微观振动(振幅一般为数微米) ,如椭圆、李萨如轨迹等 ,该微观振动通过振动体和移动体之间的摩擦作用使移动体沿某一方向做连续宏观运动。
因此 ,超声波电机是将弹性材料的微观形变通过共振放大和摩擦耦合转换成转子或滑块的宏观运动。
近几年发展出了多种超声波电机,如环形行波USM、步进USM、多自由度USM等,且行波型USM 已有较成熟的设计。
下面来说明一下行波型USM的原理。
行波型USM要旋转,需要具备两个条件:与转子相接触的定子表面质点须做椭圆运动 ,定子、转子之间的接触面须有摩擦力。
图 1 中的弹性体为定子 ,其上部为转子 ,定子、转子间夹一层摩擦材料。
摩擦材料一般粘接在转子表面上。
利用电能激励压电陶瓷复合振子 ,使之产生超声振动 ,并在弹性体内产生行波。
当电信号频率调整到与定子(弹性体) 的机械共振频率一致时 , 定子的振动幅度最大 , 并形成行波。
在行波的弯曲传播过程中 ,定子表面的质点就会形成椭圆振动轨迹。
当无数个这样的粒子都以同相位振动时 ,就会在定子表面形成力矩 ,力矩方向与行波传播方向相反。
该力矩依靠定子、转子间的摩擦力驱动转子运动。
五种新型电机简介姓名:赵涛学号:1、超声波电机简介:原理:超声波电机就是利用超声波频率范围内的机械振动来获得动力源的装置,借助摩擦传递弹性超声波振动以获得动力。
超声波电机获得能量的超声波振动源又与压电陶瓷有着密切联系,当对压电陶瓷施加交变电压时,压电陶瓷本身或压电陶瓷和金属的混合体就会产生周期性地伸缩,即逆压电效应,通过这种伸缩,电机产生了动力。
人耳所能听到的的声音频率约为20Hz-20KHZ,而当频率超过20KHz以上,人耳便无法辨识,成为超声波。
对超声波电机的压电材料输入电压所产生的是晶体的形变,因此利用压电材料来带动转子,其前进的距离相当小,约是微米等级,因此若要此电机做长距离运动,就必须输入超声波的高频电压,使定子产生极高的振动频率才能得到合适的转速,这也正是超声波电机的由来。
特点: 1、超声波电机弹性振动体的振动速度和依靠摩擦传递能量的方式决定了它是一种低速电机,同时其能量密度是电磁电机的5到10倍左右,使得它不需要减速机构就能低速时获得大转矩,可直接带动执行机构。
2、超声波电机的构成不需要线圈与磁铁,本身不产生电磁波,所以外部磁场对其影响较小。
3、超声波电机断电时,定子与转子之间的静摩擦力使电机具有较大的静态保持力矩,从而实现自锁,省去了制动闸,简化了定位控制,其动态响应时间也较短。
4、超声波电机依靠定子的超声振动来驱动转子运动,超声振动的振幅一般在微米数量级,在直接反馈系统中,位置分辨率高,容易实现较高的定位控制精度。
应用:1、超声波电机可用于照相机的自动聚焦系统的驱动器;航空航天领域的自动驾驶仪伺服驱动器;机器人或微型器械自动控制系统的驱动器;高级轿车门窗和座椅靠头调节的驱动装置;窗帘或百叶窗自动启闭装置;2、医学领域的人造心脏驱动器、人工关节驱动器;强磁场环境下设备的驱动装置,如磁悬浮列车的控制系统;不希望驱动装置产生磁场的场合,如磁通门的自动测试转台等。
2、无刷直流电动机:原理:无刷永磁电动机伺服系统主要由4个部分组成:永磁同步电动机MS、转子位置检测器BQ、逆变器和控制器。
超声电机
请注意:所有项目介绍内容必须进行非密化处理。
一、项目简介(包括项目背景、现状与前景)
(项目背景)
超声电机(Ultrasonic Motor,或简写为USM)是利用压电材料的逆压电效应,使弹性体(定子),在超声频段产生微米级的机械振动,通过定子和转子(或动子)之间的摩擦作用,将定子的微米级振动转换成转子(或动子)的宏观的单方向转动(或直线运动)。
它打破了由电磁效应获得转速和转矩的传统电机的概念。
它与传统的电磁电机相比,有一些独特的性能。
因此,超声电机技术在20世纪末期得到迅速的发展,并在航空航天、机器人、汽车、精密定位仪、微型机械等领域里得到成功的应用,成为当今国内外微特电机领域研究的热点之一。
(项目现状,包括成熟程度)
南京航空航天大学超声电机研究中心暨江苏省超声电机工程研究中心在国家自然科学基金、学校学科建设的支持下,全面开展了超声电机技术研究。
在超声电机的运动机理、机电耦合动力学模型、结构参数优化设计、驱动与控制等方面提出了系统的理论和方法,取得了突破性进展,获得国际同行的赞许。
广泛开展了超声电机试验技术、制造技术和工程化研究。
先后研发出16种具有自主知识产权的新型超声电机和驱动器,其中TRUM圆板式和BTRUM圆杆式二个系列旋转行波型超声电机技术成熟,正进行产业化开发,并向国内外推广应用。
(项目前景)
21世纪将是超声电机大放光芒的时代,为了发展我国人造卫星、导弹、火箭、飞机、机器人、微型机械、汽车、磁浮列车以及其他精密仪器,我国也将需要大量的高性能超声电机。
随着超声电机的进一步微型化,微型机械则可进入人体更多的部位,如作为人造心脏的驱动器,推动人造器官的发展。
未来的汽车需要的电机可多达80个,汽车门锁、玻璃升降、前视镜和雨刮器等,均可由超声电机来驱动。
掌上计算机、可视电话电视、手提式仪器都可用超声电机,这样可以大大减小其体积和面积。
二、项目合作基础(包括①已承担各类基础、应用项目;②已获专利、奖项及论文发表情况;③研究团队介绍)
南京航空航天大学超声电机研究中心于1997年由赵淳生院士创建。
它是国内第
一个专门从事超声电机的研究中心。
其目标是:发展我国拥有自主知识产权的超声电机技术,研制各种新型超声电机;培养超声电机领域高级技术人才。
✧先后获得15项政府资助,包括7项国家自然科学基金项目(其中1项重点项目
和1项重大项目子课题)、1项某部重点基金、1项国家“863”高技术、6项省部级基金。
✧先后研发出16种具有自主知识产权的新型超声电机和驱动器,其中包括TRUM
圆板式(直径为100-30mm,含TRUM-N无磁型和TRUM-E带编码器型)和BTRUM 圆杆式旋转型行波超声电机(直径为20-2mm)等二个系列产品。
✧授权和申请超声电机国家发明专利27项,发表论文200多篇,已培养博士后11
名,博士生12名,硕士生27名。
✧“超声电机的研究”项目,2003年获国防科学技术一等奖,“新型超声电机技
术”项目,2004年获国家技术发明二等奖,“超声电机技术”项目,2004年获中国(国际)发明博览会金奖。
✧本所现有教授4人,副高级职称6人,中级职称4人,博士后3人,博士生14
人,硕士生20人。
三、技术性能指标(技术优势或创新点)
TRUM系列旋转型行波超声电机性能性能指标
技术优势:
超声电机具有许多电磁电机所没有的特性:1.结构简单、紧凑、转矩/重量比大(5-10倍);2. 低速大转矩,可实现直接驱动(不需齿轮箱);3. 响应快(毫秒级),控制性能好;4. 断电自锁(能获得较大的自锁力矩);5. 不产生磁场,亦不受外界磁场干扰;6. 低噪声运行(<45dB );7. 可以在真空环境下工作(真空度可达10-6 Pa );8. 形状可以多样化:圆形、方形、空心状的等等。
主要创新点:
1、提出新型超声电机结构参数设计方法,大大提高了产品性能,据此研发了trum 旋
转型超声电机。
2、提出超声电机频率自动跟踪控制技术,大大提高了超声电机转速的稳定性,并研
发了相应的驱动器。
3、提出了杆式超声电机定子表面质点运动椭圆轨迹方程,提出定子与转子最佳接触
角和有效椭圆轨迹概念,并据此研发杆式行波形超声电机
4、提出超声电机自校正技术,使得超声电机具有更强的自校正功能。
5、提出压电陶瓷极化分区新方案,简化极化工艺,改善压电系数均匀性,提高机电
转换效率。
……
四、关键图、表与曲线
五、应用领域与举例
六、市场前景预测及经济与社会效益分析
以汽车为例,2005年我国汽车年产量已达320万辆,其中小轿车达110万辆。
假如每辆使用10个超声电机,那么小轿车上的超声电机年需求量超过1100万台。
如果其他如医疗器械、机器人、精密仪器、微机电系统、及其其它量大面广的低端产品等需求量在400万台以上,那么总数会超过2000万台。
以每台100元计算,那么年总产值可达20亿元。
按10%利润计算,每年的总利润可达2亿元。
预计销售趋势分析图 预计销售利润分析图
从销售趋势图可见,第二年以后销售量及销售收入增长较快,第三至第五年销售利润率渐趋稳定,基本保持在25%~30%之间。
小规模生产(不搞生产流水线):投资500万元;大规模生产(搞流水线):投资1亿元。
七、合作前景
1、产学研合作共同申报成果转化专项资金/科技支撑计划项目等计划类项目。
2、产学研合作共同成立校企联合研发中心等研发平台。
3、产学研合作共同申报国家、省市工程中心/国家、省市重点实验室等公共平台。
4、技术转让,合作开发。
八、项目联系人联系方式。