基于雷诺应力模型的轿车外流场建模与仿真
- 格式:pdf
- 大小:260.66 KB
- 文档页数:4
基于ADINA的轿车外部流场计算袁小慧;归文强【摘要】对汽车外部流场进行计算流体力学(CFD)分析已成为现今车身设计的必要环节.计算轿车的外部流场,将计算流体力学软件ADINA与CATIA相结合,利用CATIA软件获得轿车三维模型,将其导入ADINA软件中,采用RNG K-ε模型,对两种不同车速40m/s和20m/s情形进行计算机仿真和后期处理,获得轿车外部流场的压力分布、流速分布云图、空气阻力和空气升力,进而得到该轿车模型的空气阻力系数为0.59,20m/s和40m/s速度载荷下的空气升力系数分别为0.013和0.133,依此为汽车车身设计提供依据.【期刊名称】《西安航空技术高等专科学校学报》【年(卷),期】2017(035)005【总页数】5页(P77-80,96)【关键词】空气动力学;外部流场;轿车【作者】袁小慧;归文强【作者单位】西安航空学院车辆工程学院,西安710077;西安航空学院车辆工程学院,西安710077【正文语种】中文【中图分类】U461.1汽车(特别是轿车)的空气动力学特征直接影响其动力性、燃油经济性、操纵稳定性、舒适性和安全性等重要特性[1]。
因此,研究轿车的外部流场对于轿车的研发与评价至关重要并将逐步完善。
目前,主要采用数值模拟与风洞试验相结合的方法进行研究。
相对后者,前者方便改善性能,节约研究资金,提高研究效率,省时省工[2]。
计算流体力学在汽车中的应用始于20世纪80年代的欧美地区,现已发展到包括倒车镜、扰流板、复杂底板、移动地面、发动机舱、横风过度特性等多样化计算模拟。
国内起步较晚,目前出现的由我国自主开发的应用于三维流场汽车的计算软件,是胡善龙等提出的数字样车(DMU)技术中前期设计的一个重要组成部分[3]。
多物理场耦合方面的几大软件,诸如ANSYS、ADINA、ABAQUS、MSC都可以做到结构、流体和热的耦合分析。
ADINA可以直接流固耦合,但其它三个软件必须与其他软件联合使用,进行迭代分析。
汽车外流场数值仿真k-ε模型适用性研究宋亚豪;谷正气;刘水长;石佳琦【摘要】由于目前的湍流模型并非针对汽车空气动力学进行数值仿真,因而造成潜在的计算误差.因此,为探寻适合的数值计算模型,以MIRA阶梯背汽车1/3比例模型为研究对象,对常用的Standard k-ε、RNGk-ε和Realizable k-ε 3种k-ε涡黏湍流模型进行数值仿真,以计算所得的气动力系数、尾部流场及表面压力系数为适用性评价指标,并与HD-2风洞试验数据对标.研究结果表明:3种模型中,Standard k-ε模型收敛速度和效率最优,但气动阻力的计算精准度最差;RNG k-ε模型的表现一般,而Realizable k-ε模型能获得最高的气动阻力计算精度,与风洞试验结果对比,误差在5%以内,但收敛速度和效率相对较差;同时,3种湍流模型对气动升力的计算结果与风洞试验对比存在较大误差.【期刊名称】《湖南工业大学学报》【年(卷),期】2019(033)001【总页数】7页(P66-72)【关键词】MIRA阶梯背汽车模型;k-ε涡黏湍流模型;外流场;风洞试验【作者】宋亚豪;谷正气;刘水长;石佳琦【作者单位】湖南工业大学机械工程学院,生物质纤维功能材料湖南省重点实验室,湖南株洲412007;湖南工业大学机械工程学院,生物质纤维功能材料湖南省重点实验室,湖南株洲412007;湖南文理学院,湖南常德415000;湖南工业大学机械工程学院,生物质纤维功能材料湖南省重点实验室,湖南株洲412007;湖南工业大学机械工程学院,生物质纤维功能材料湖南省重点实验室,湖南株洲412007【正文语种】中文【中图分类】U461.10 引言近年来,汽车行业蓬勃发展,为缩短汽车车身的研发周期,CFD数值仿真(计算流体力学)因具有成本低廉、计算速度快,并能获得丰富的汽车车身周围流场信息等优势而被广泛应用。
然而CFD仿真计算所用的湍流模型,会直接影响汽车外部流场计算的准确性和时效性[1-2]。
摘要随着汽车技术的发展以及道路交通的完善,汽车实用车速大大提高,汽车空气动力学成为汽车行业的重点研究方向之一。
本文采用CFD方法对某轿车进行三维外流场的数值建模。
本课题运用UG绘制出实车的1:1三维模型。
在建立仿真模型过程中,考虑到仿真时间与计算机硬件问题,对实车部分细节做出相应的简化。
然后利用ICEM软件建立有限元模型。
本文采用四面体+三棱柱网格混合方案划分网格,并采用密度体包围整个轿车,以对其周围计算区域进行网格加密处理,并对轿车表面面网格做局部细化。
选用Realizablek- 湍流模型,并在其近壁面采用标准壁面函数以提高车身表面流动的模拟精度。
最后利用FLUENT进行模型分析,得出车身表面压力分布图和速度矢量图,通过分析整车表面速度和压力特性,了解气流运动规律和情形。
并通过仿真所得结果计算出该轿车的气动阻力系数与升力系数。
根据本文仿真结果并结合轿车造型可以看出,对于轿车,由于流线型造型特点,其气阻力系数相对较小,但是气动升力系数不稳定。
而对于轿车这种高速行驶的汽车,出于安全与稳定性考虑,降低其气动升力比减小气动阻力有着更实际的意义。
关键字:计算流体力学数值模拟气动阻力气动升力AbstractAs the development of automobile technology and improved transport facilities, The vehicle`s Practical Velocity has greatly been improved, vehicle aerodynamics has already been one of the key research directions in the automotive industry. this paper builds a three-dimensional flow field numerical simulation model for a coupe with the existing method of CFD.The project builds the three-dimensional model of real car (l:l) with the use of UG. During the modeling process, there are some simplifications for some of the details of real car, thinking about the simulation time and computer hardware problems. Then this essay builds the finite element model with the ICEM software. In this paper, tetrahedral + Prism hybrid mesh program was used, and the whole couple surrounded by density Body to define the grid surface area. Realizable k- turbulence model used, and Standard wall function near the wall to enhance the body surface flow simulation accuracy. Finally, after the analysis of the model with the use of FLUENT,we obtains the body surface pressure distribution and the velocity vector. through the analysis of vehicle’s surface speed and pressure characteristics, we can understand the laws and situations for air movement. It’s shows that the simulation results obtained meets the flow field characteristics and laws. Then the coupe’s aerodynamic resistance coefficient and lift coefficient can be calculated from the result of the aerodynamic simulation.According to the simulation results and the coupe modeling we can seen that, for the coupe, due to its aerodynamic modeling features, the aerodynamic drag coefficient is relatively small, while the aerodynamic lift coefficient instable. For such a high-speed coupe car, out of considerations of security and s tability, it has more and more Practical significance to reduce the aerodynamic lift than aerodynamic drag.Key words: Computational fluid dynamics: Numerical simulation: Aerodynamic Resistance coefficient; Aerodynamic lift coefficient;目录1 绪论 (1)1.1 研究背景与意义 (1)1.2 汽车空气动力学的研究方法 (1)1.2.1 实验研究 (2)1.2.2 理论分析 (2)1.2.3 数值计算 (2)1.3 国内外研究现状 (3)1.3.1 国外空气动力学发展现状 (3)1.3.2 国内空气动力学发展现状 (4)1.4 本文研究内容 (5)1.4.1 研究目标 (5)1.4.2 研究内容 (5)1.4.3 技术关键和难点 (6)2 汽车空气动力学气动特性研究 (7)2.1 空气动力学基本理论 (7)2.1.1 空气的基本物理属性 (7)2.1.2 气流运动的基本方程 (9)2.1.3 粘性流基础 (10)2.2 汽车的气动力与气动力矩 (12)2.3 气动力对汽车性能的影响 (15)2.3.1 气动力对汽车动力性的影响 (15)2.3.2 气动力对燃油经济性的影响 (16)2.3.3 气动力对汽车操纵稳定性的影响 (17)2.4 汽车流场的组成 (17)3 汽车外流场数值模拟理论基础 (19)3.1 汽车外流场的基本假设 (19)3.2 基本控制方程 (19)3.2.1 质量守恒方程(连续性方程) (19)3.2.2 动量守恒方程 (20)3.2.3 能量守恒方程 (20)3.3 数值离散化方法 (21)3.3,1 常用数值离散化方法 (21)3.4 湍流模型 (25)3.4.1 湍流模型的分类 (25)3.4.2 常用湍流模型 (25)4 汽车外流场的数值模拟 (28)4.1 几何模型的建立 (28)4.2 计算区域的确定 (28)4.3 网格的划分 (29)4.4 边界条件的确定 (30)4.5 求解器的选择 (30)4.6 收敛性判断 (30)4.7 汽车数值结果模拟与分析 (31)4.7.1 车身外流场分析 (31)4.7.2气动主力计算及性能分析 (39)总结 (40)致谢 (41)参考文献 (42)附录A英文原文 (43)附录 B汉语翻译 (50)1 绪论1.1 研究背景与意义汽车空气动力学是研究空气流经汽车时的流动规律及其与汽车相互作用的一门科学。
基于CFD软件某跑车外流场数值模拟分析作者:王瑞丽魏丽青来源:《科学与财富》2020年第28期摘要:根据对国内某跑车进行相应的研究,通过catia三维软件设计出其三维模型,之后再用CFD软件实现对跑车划分网格,之后再对得出的数值进行相应的模拟计算,并采取一定的加工处理,同时关注跑车内部的空气动力性问题。
在一系列的模拟计算后,我们可以得知,进行局部的优化处理是可以有效地得出最佳画的跑车外部参数,同时实现跑车周身速度压力场的改善处理。
关键词:跑车车身;局部优化;风阻系数前言通常所说的汽车空气动力一般指在汽车的前行过程中和空气产生相应的作用力,由于产生的力对汽车消耗汽油的经济性能和舒适性能等产生的影响。
目前我国的科学技术不断向前发展,随之而来的是信息技术的发展包括计算流体力学,这对于研究汽车的空气动力学有了很重要的推动作用。
流体力学方法有很多的优点,例如所用时间少、消耗成本较低等,所以我们可以在汽车设计开发和相应的改进完善方面,都使用此技术。
1.跑车外流场的控制方程和湍流模型在汽车以较高速度向前行驶的时候,可以得出此时的流体雷偌数是比临界雷诺数大的,所以它的流动可以视作湍流。
根据雷诺平均方程:在这个公式里,si是源项,代表催化器载体阻力; 是应力张量。
根据标准的K - £模型计算雷诺应力来封闭上述流动控制方程,即有在这个公式里的是指湍流粘性系数,可以根据以下得出:式中:K、£分别为湍动能和湍能耗散率。
2.计算模型的建立及网格劃分2.1 车身模型计算模型是在CATIA软件中以现实大小比例相等建立的(见图1)。
要同时实现提高网格的质量以及达到计算的速度,就要简化车身模型。
所以,忽略了跑车的一些部件,并对车身底部作平整化加工。
2.2 网格划分从以往的研究可以得出,要进行汽车行驶的模拟,可以采用的计算域是长方形:根据汽车的大小长×宽×高(L×W×H),我们将计算域设定成10L×4W×5H,计算域入口和车头相距3L,出口处和车尾的距离为6L,车子的左右两侧宽度大小都是2W,高度是5W,完整的计算域都是通过结构网格来进行划分的。
基于CFD的某跑车外流场数值模拟本文以国内某跑车为研究对象,首先使用CATIA三维软件建立跑车的三维模型,然后用GAMBIT软件完成体网格的划分,最后用FLUENT软件完成数值模拟和后处理,并对跑车的空气动力性进行研究。
结果表明,采用局部优化的方法改变跑车的外形参数,可以优化跑车周围的速度场和压力场,降低跑车的风阻系数Cd值和升力系数Cl值。
标签:跑车车身;Fluent;外流场分析;风阻系数;局部优化0 引言汽车空气动力特性是指在运动过程中与空气的作用力对汽车燃油经济性、操纵稳定性、舒适性等性能有重要影响[1]。
随着计算机技术的发展,计算流体力学(CFD)在汽车空气动力学研究方面的应用也越来越重要,CFD方法具有周期短、成本低,不需实车模型等特点,用此方法分析指导设计,无论在汽车开发还是改进方面,都起到提高产品质量、增强自主开发能力的作用[2]。
在计算精度方面,计算结果已经可以把Cx的误差控制在5%以内。
由于ANSYS,STAR.CD,FLUENT以及CFX等商业软件的大量使用,现在汽车空气动力学解析系统的研究取得了巨大进步[3]。
跑车在高速行驶时为了减少空气阻力和保证整车的稳定性,通常车身成流线型、底盘低矮。
那么,研究跑车的空气动力特性就具有重要的意义。
本文将采用Fluent软件对国内某款跑车进行三维外流场的数值模拟,结合模拟的结果和空气动力学理论对跑车的外形结构进行局部的优化。
1 跑车外流场的控制方程和湍流模型当汽车高速行驶时,流体雷诺数均大于临界雷诺数,其流动应按湍流处理。
目前对于工程流场计算,常采用平均N-S方程对其进行求解[4]。
本文可以用Navier-Stokes方程来描述,在笛卡尔坐标中x,y,z三分量上的动量方程:式中:P为流体微元体所受的压力;Fx、Fy、Fz为微元体中流体受到x、y、z三个方向上的体力。
本文的计算假设流动为完全湍流,分子粘性的影响可以忽略。
因此采用k-ε模型[3],其表达式是为:式中,是由平均速度梯度引起的湍流动能所产生;是由浮力影响引起的湍流动能产生;是可压速湍流S脉动膨胀对总的耗散率的影响,湍流粘性系数;是经验常数,根据Launder等的推荐值及后来的实验验证,模型常数=1.44,=1.92,当主流方向与重力方向平行时:=1;主流方向与重力方向垂直时=0,=0.09;和分别是与湍动能k和耗散率对应的Prandtl数,=1.0,=1.3;和是用户定义的源项。