湍流模型简述
- 格式:ppt
- 大小:1.44 MB
- 文档页数:19
由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。
用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。
涉及的湍流模型:标准k-ε湍流模型(SKE)1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。
2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。
在fluent中,标准k-ε湍流模型自从被Launder and Spalding 提出之后,就变成流场计算中的主要工具。
其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。
3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。
另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。
它是个半经验的公式,是从实验现象中总结出来的。
动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。
应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。
可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。
·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
应用范围:可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。
而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。
可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。
由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNG k-ε模型有更好的表现。
湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种:直接模拟(direct numerical simulation, DNS)直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。
这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。
基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。
另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。
大涡模拟(large eddy simulation, LES)大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。
大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。
大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。
这些对涡旋的认识基础就导致了大涡模拟方法的产生。
Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。
大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。
LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。
应用Reynolds时均方程(Reynolds-averaging equations)的模拟方法许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。
第三章 湍流模型第一节 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。
即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有:ij ijj i t j i k x u xu u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。
根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。
第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。
第三类是大涡模拟。
前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。
大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。
实际求解中,选用什么模型要根据具体问题的特点来决定。
选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。
FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。
湍流模型种类示意图Direct Numerical Simulation包含更多 物理机理每次迭代 计算量增加提的模型选RANS-based models第二节 平均量输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。
对于速度,有:i i i u u u '+= 3-3其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3)类似地,对于压力等其它标量,我们也有:φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。
湍流模型介绍
湍流模型是数学模型的一种,用于描述液体或气体中的湍流运动。
湍流是一种不规律的、难以预测的流体运动,通常是由于速度、密度或温度的不规则分布引起的。
湍流模型通过使用一系列方程,描述流体的速度、压力和密度等参数之间的相互作用,以预测和模拟流体的复杂运动行为。
湍流模型主要分为两类:基于雷诺平均的模型(如k-ε模型、k-ω模型)和直接数值模拟(DNS)。
每种模型都有其适用的范围和局限性,需要根据具体问题的特性选择合适的模型。
湍流模型在气象、水文、工程、航空航天等领域中得到了广泛应用。
湍流模型介绍因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。
在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。
FLUENT 中采用的湍流模拟方法包括Spalart-Allmaras模型、standard(标准)k −ε模型、RNG(重整化群)k −ε模型、Realizable(现实)k −ε模型、v2 −f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。
7.2.1 雷诺平均与大涡模拟的对比因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。
这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。
雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。
湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。
在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。
根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。
FLUENT 中使用的三种k −ε模型、Spalart-Allmaras 模型、k −ω模型及雷诺应力模型RSM)等都属于湍流模式理论。
大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。
大多数飞行器都是在高Re数下飞行,表面的流态是湍流。
为了准确地确定湍流流态下的摩阻、热流,湍流成为一个重要而困难的研究课题。
(一)DNS目前处理湍流数值计算问题有三种方法,第一种方法即所谓直接数值模拟方法(DNS方法),直接求解湍流运动的N-S方程,得到湍流的瞬时流场,即各种尺度的随机运动,可以获得湍流的全部信息。
随着现代计算机的发展和先进的数值方法的研究,DNS方法已经成为解决湍流的一种实际的方法。
但由于计算机条件的约束,目前只能限于一些低Re数的简单流动,不能用于工程应用。
目前国际上正在做的湍流直接数值模拟还只限于较低的需诺数(Re~200)和非常简单的流动外形,如平板边界层、完全发展的槽道流,以及后台阶流动等。
用直接数值模拟方法处理工程中的复杂流动问题,即使是当前最先进的计算机也还差三个量级。
(二)LES另一种方法称做大涡模拟方法(LES方法)。
这是一种折衷的方法,即对湍流脉动部分直接地模拟,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。
小涡对大涡的影响会出现在大涡方程中,再通过建立模型(亚格子尺度模型)来模拟小涡的影响。
由于湍流的大涡结构强烈地依赖于流场的边界形状和边界条件,难以找出普遍的湍流模型来描述具有不同的边界特征的大涡结构,宜做直接模拟。
相反地,小尺度涡对边界条件不存在直接依赖关系,而且一般具有各向同性性质。
所以亚格子模型具有更大的普适性,比较容易构造,这是它比雷诺平均方法要优越的地方。
自从1970年Deardorff第一次给出具有工程意义的LES计算以来,LES方法已经成为计算湍流的最强有力的工具之一,应用的方向也在逐步扩展,但是仍然受计算机条件等的限制,使之成为解决大量工程问题的成熟方法仍有很长的路要走。
(三)RANS目前能够用于工程计算的方法就是模式理论。
所谓湍流模式理论,就是依据湍流的理论知识、实验数据或直接数值模拟结果,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。
由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。
用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。
涉及的湍流模型:标准k-ε湍流模型(SKE)1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。
2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。
在fluent中,标准k-ε湍流模型自从被Launder and Spalding 提出之后,就变成流场计算中的主要工具。
其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。
3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。
另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。
它是个半经验的公式,是从实验现象中总结出来的。
动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。
应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。
可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。
·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
应用范围:可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。
而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。
可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。
由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNG k-ε模型有更好的表现。
流体力学中的流体流动的湍流模型在流体力学中,流体流动是一个复杂而广泛的研究领域。
湍流作为流体流动的一种重要模型,具有不可忽视的影响。
本文将讨论湍流模型在流体力学中的应用和意义。
一、湍流的概念和特点湍流是指在流体中存在不规则、混乱的流动现象。
与之相对的是层流,层流是指流体以平行且有序的路径运动。
湍流的主要特点包括:不规则性、三维性、旋转性和不可预测性。
湍流具有广泛的应用领域,如气象学、航空航天、工程流体力学等。
二、湍流模型的分类湍流模型主要用于描述湍流流动的数学和物理特性,有多种分类方法。
根据直接数值模拟(DNS)、雷诺平均模拟(RANS)和大涡模拟(LES)等,湍流模型可分为直接模拟模型、统计模型和动态模型等。
1. 直接模拟模型直接模拟模型是基于流体力学方程的解析解,通过数值方法模拟流体流动的全过程。
这种模型能够精确描述湍流的数学和物理特性,但计算量大,适用范围有限。
2. 统计模型统计模型是通过对湍流流动的统计数据进行建模,以得到平均场变量的表达式。
常见的统计模型包括雷诺平均模型(RANS)、湍动能方程模型和湍流动能理论模型等。
这些模型适用于工程实际,计算量相对较小。
3. 动态模型动态模型是指结合统计模型和直接模拟模型的模型。
它能够根据流动状态自适应地调整模型参数,以提高模型的准确性。
动态模型适用于大尺度流动和高雷诺数流动的模拟。
三、湍流模型的应用湍流模型在流体力学研究和工程实践中有着广泛的应用。
以下是一些典型的应用案例:1. 空气动力学湍流模型在飞行器气动性能研究中起到了重要作用。
通过模拟湍流的生成和演化过程,可以预测飞行器在不同工况下的气动特性。
这对于飞机设计、空气动力学优化和飞行安全都具有重要意义。
2. 水力学湍流在水动力学中的应用同样不可忽视。
例如,在水坝设计中,湍流模型可以用来预测水体在溢流过程中的流速、压力和能量损失等参数。
这对于保证水坝的安全性和有效性至关重要。
3. 工业应用湍流模型在工业领域中的应用十分广泛。
流体的湍流模型和雷诺平均法在流体力学中,湍流是一种复杂的流动形式,通常包括随机性和混沌性。
湍流模型是用来描述和计算湍流过程的数学模型。
本文将介绍两种被广泛使用的湍流模型,分别是湍流模型和雷诺平均法。
一、湍流模型湍流模型是用来描述湍流流动的数学方程。
最常用的湍流模型是雷诺应力传输方程,其中流体中的湍流应力可以分解为三个部分:紊流应力、剪切应力和正压力梯度。
湍流模型通过模拟这些应力的传输过程来描述湍流的产生和发展。
湍流模型可以分为两大类:一是基于经验参数的现象学模型,二是基于湍流方程的直接数值模型。
现象学模型是基于实验数据和经验参数的统计方法,可以用于工程实践中。
直接数值模型则是基于湍流方程的求解,可以提供更精确的湍流计算结果。
在实际工程应用中,湍流模型的选择要根据具体情况和需求进行。
一些常用的湍流模型包括:k-ε模型、k-ω模型、Reynolds stress model (RSM)等。
这些模型基于不同的假设和方程,适用于不同的流动条件和复杂性。
二、雷诺平均法雷诺平均法是湍流模拟中的一种重要方法,它通过将流体流动分解为平均分量和脉动分量来描述湍流流动。
在雷诺平均法中,流体的物理量(如速度、压力)被分解为时均分量和涡旋分量。
雷诺平均法通过时间平均和空间平均的操作,将湍流流动中的涡旋分量消除,从而得到平均流动的描述。
利用统计学的方法,雷诺平均法可以获得平均流速、湍流能量和相关涡旋结构等湍流统计信息。
雷诺平均法的优点是可以较好地描述流体流动的平均特性,并具有较低的计算成本。
然而,雷诺平均法忽略了湍流中的空间和时间涨落,对于某些复杂的湍流流动问题,其精度可能不够高。
三、小结湍流是流体力学中常见的复杂流动形式,湍流模型和雷诺平均法是描述和计算湍流流动的重要工具。
湍流模型通过数学方程模拟湍流的产生和发展,可以精确描述湍流流动的特性。
而雷诺平均法则通过将流动分解为平均分量和脉动分量来描述湍流流动的平均特性。
在实际应用中,需要根据具体问题和要求选择合适的湍流模型和计算方法。
流体力学中的湍流模型与数值方法研究在流体力学研究中,湍流是一种普遍存在的现象,广泛应用于工程领域。
湍流的复杂性使得其数值模拟变得非常困难。
因此,研究建立可靠的湍流模型与数值方法,成为流体力学领域的热门课题之一。
一、湍流模型的基本原理湍流模型是描述湍流流动的数学模型。
根据湍流的不同特性和流动情况,主要有两种常用的湍流模型,一种是雷诺平均湍流模型(RANS),另一种是大涡模拟(LES)。
1. 雷诺平均湍流模型(RANS)雷诺平均湍流模型是基于雷诺平均的假设,将湍流流动分解为平均流场和涨落流场,并对平均流场施加雷诺应力平衡方程。
其中,最常用的湍流模型是k-ε模型和k-ω模型。
- k-ε模型是最早提出的一种湍流模型,基于湍流能量方程和湍流耗散率方程,通过求解k和ε两个涡量的方程来计算湍流应力和雷诺应力。
- k-ω模型是基于湍流能量方程和湍流湍流耗散率方程,通过求解k和ω两个涡量的方程来计算湍流应力和雷诺应力。
2. 大涡模拟(LES)大涡模拟是一种直接模拟湍流中的大尺度结构,对小尺度结构进行模型化处理。
在大涡模拟中,流场被分为大尺度结构和小尺度结构,其中大尺度结构可以直接计算,小尺度结构通过湍流模型间接计算。
大涡模拟可以提供更详细的湍流信息,但计算量大,适用于高性能计算。
二、湍流模型的应用领域湍流模型在工程领域有广泛的应用,以下是一些常见的领域:1. 空气动力学湍流模型在飞行器、汽车等流体力学分析中具有重要作用。
通过模拟流场的湍流特性,可以准确预测阻力和升力等空气动力学性能。
2. 水力学在河流、水库等水力学分析中,湍流模型可以用来预测水体的流速分布、流速剖面和局部流动特性,对水工建筑物的设计具有指导作用。
3. 燃烧工程在燃烧系统中,湍流模型可以用来模拟燃烧反应和燃烧产物的输运过程。
通过研究湍流在燃烧系统中的特性,可以提高燃烧效率和减少污染物产生。
三、湍流模型的数值方法湍流模型的数值求解是湍流模拟的关键。
通常采用的数值方法包括有限差分法、有限元法和谱方法等。
湍流模型发展综述摘要:在概述了湍流问题的基础上,本文简要介绍了湍流的四种模型,对湍流模型在不同情况下的模拟能力进行了对比,最后简述了湍流模型的发展方向。
关键词:湍流模型;Navier-Stokes方程组;J-K模型Abstract:On the basis of introducing the problems of turbulence, this paper briefly analyzed four kinds of turbulence models and compared their ability of simulation in different situations. At last, the paper expounded the development direction of the turbulence model.Key words:Turbulence model; Navier-Stokes equations; J-K model一、引言湍流又称紊流,是自然界中常见的一种很不规则的流动现象。
当粘性阻尼无法消除惯性的影响时,自然界中的绝大部分流动都是湍流。
湍流运动的实验研究表明,虽然湍流结构十分复杂,但它仍然遵循连续介质的一般动力学规律,湍流流动的各物理量的瞬时值也应该服从一般的N-S方程。
对粘性流体服从的N-S方程进行时均化,就可以得到雷诺平均方程。
与定常的N-S方程相比,不同之处是在该式右边多了九项与脉动量有关的项,这脉动量的乘积的平均值与密度的乘积是湍流流动中的一种应力,称为湍流应力或雷诺应力。
其中,法向雷诺应力和切向雷诺应力各有三个。
湍流问题就是在给定的边界条件下解雷诺方程。
由于雷诺平均方程中未知数个数远多于方程个数而出现了方程不封闭的问题,这就需要依据各种半经验理论提出相应的补充方程式,即各种湍流模型。
一般按照所用湍流量偏微分方程的物理含义或者数量进行区分,分别称为梅罗尔—赫林方法和雷诺方法。
湍流模型构建一、湍流模型概述湍流是指流体在运动过程中出现的不规则、无序的运动状态。
由于湍流的不稳定性和复杂性,使得研究湍流问题成为流体力学中的难点之一。
为了描述湍流运动,需要建立适当的数学模型,即湍流模型。
目前常用的湍流模型主要有直接数值模拟(DNS)、大涡模拟(LES)和雷诺平均Navier-Stokes方程(RANS)三种。
二、雷诺平均Navier-Stokes方程1.基本原理雷诺平均Navier-Stokes方程是一种基于统计平均方法来描述湍流运动的数学模型。
该模型假设了在一个足够长时间内,湍流中各个位置上的速度和压力都会发生变化,并且这些变化都是随机性的。
因此,可以通过对时间进行平均来消除这种随机性,并得到一个稳定的平均场。
2.方程形式雷诺平均Navier-Stokes方程包含了连续性方程、动量守恒方程和能量守恒方程三个部分。
其中,连续性方程描述了质量守恒;动量守恒方程描述了动量守恒;能量守恒方程描述了能量守恒。
这三个方程的具体形式如下:连续性方程:$$\frac{\partial \rho}{\partial t}+\nabla \cdot (\rho u)=0$$动量守恒方程:$$\rho \frac{\partial u}{\partial t}+\rho u \cdot \nabla u=-\nabla p+\mu\nabla^2u+\rho g$$能量守恒方程:$$\rho c_p(\frac{\partial T}{\partial t}+u \cdot \nablaT)=\nabla\cdot(k\nabla T)+Q$$其中,$\rho$为流体密度,$u$为流速,$p$为压力,$\mu$为粘性系数,$g$为重力加速度,$c_p$为比热容,$T$为温度,$k$为热导率,$Q$为单位时间内的热源或热汇。
3.湍流模型雷诺平均Navier-Stokes方程中包含了湍流运动的统计平均过程。