河南省南阳一中2016年高考数学三模试卷(文科)(解析版) (1)
- 格式:doc
- 大小:804.00 KB
- 文档页数:24
洛阳市2015——2016学年高三第三次统一考试数学试卷(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名、考号填写在答题卷上. 2.考试结束,将答题卷交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.复数z 满足(1+i )z =3+i ,则复数z 在复平面内所对应的点的坐标是 A .(1,-2) B .(-2,1) C .(-1,2) D .(2,-1) 2.设集合A ={x |2x -6x +8<0},B ={x |2<2x<8},则A ∪B = A .{x |2<x <3} B .{x |1<x <3} C .{x |1<x <4} D .{x |3<x <4} 3.下列函数中,在其定义域内,既是奇函数又是减函数的是A .f (x )=-3xB .f (xC .f (x )=-tanxD .f (x )=1x4.“等式sin (α+γ)=sin2β成立”是“α,β,γ成等差数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件5.设F 1、F 2分别是椭圆2212516x y +=的左、右焦点, P 为椭圆上一点,M 是F 1P 的中点,|OM |=3, 则P 点到椭圆左焦点的距离为 A .2 B .3 C .4 D .56.执行如图所示的程序框图,输出的T = A .17 B .29 C .44 D .52 7.为了得到函数y =12cos2x 的图象,可以把函数y = 12sin (2x +3)的图象上所有的点A .向右平移12π个单位 B .向右平移6π个单位 C .向左平移12π个单位 D .向左平移6π个单位8.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A .若α⊥γ,α⊥β,则γ∥βB .若m ∥n ,m ⊂α,n ⊂β,则α∥βC .若m ∥n ,m ∥α,则n ∥αD .若m ∥n ,m ⊥α,n ⊥β,则α∥β 9.在△ABC 中,点D 在线段BC 的延长线上,且BC =CD ,点O 在线段CD 上(点O 与点C ,D 不重合),若AO =x AB +y AC ,则x 的取值范围是A .(-1,0)B .(0,13) C .(0,1) D .(-13,0)10.已知正项等比数列{n a }满足a 7=a 6+2a 5,若a m ,a n8a 1,则1m +9n的最小值为A .2B .4C .6D .8 11.一个几何体的侧视图是边长为2的正三角形,正视图与俯视图的尺寸如图所示,则此几何体的体积为 A .12+3π B .12+3π C+D.3+12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且 左、右焦点分别为F 1、F 2,这两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,设椭圆与双曲线的离心率分别为e 1、e 2,则e 1+e 2的取值范围是 A .(54,+∞) B .(43,+∞) C .(32,+∞) D .(53,+∞) 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题。
河南省南阳市第一中学2016届高三数学第三次模拟考试试题 文(含解析)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.定义集合{}21xx A =≥,12log 0x x ⎧⎫⎪⎪B =<⎨⎬⎪⎪⎩⎭,则R AB ð=( )A .()1,+∞B .[]0,1C .[)0,1D .[)0,2 【答案】B 【解析】试题分析:集合{|11}A x x =-<<,集合{|01}B x x =<<,()0,1A B ∴⋂=,故选B. 考点:1、集合的表示;2、集合的交集.2.若复数z 满足()11z i i i -=-+,则z 的实部为( )A .12B 1C .1D .12【答案】A考点:1、复数的定义;2、复数的运算.3.设命题p :“若1x e >,则0x >”,命题q :“若a b >,则11a b<”,则( ) A .“p q ∧”为真命题 B .“p q ∨”为真命题 C .“p ⌝”为真命题D .以上都不对【答案】B 【解析】试题分析:因为01x e e >=,所以0x >,故p 正确,而0a b >>时,11a b<不成立,故q 错,由真值表知,p q ∨正确,故选B. 考点:1、复数的定义;2、复数的运算.4.双曲线C:2213y x -=的顶点到渐近线的距离与焦点到渐近线的距离之比为( )A .12B .2C .3D .2【答案】A考点:1、双曲线的几何意义;2、点到直线的距离公式.5. 若向量a 、b 满足2a b ==,a 与b 的夹角为60°,a 在向量a b +上的投影等于( )AB .2CD .4+【答案】C 【解析】 试题分析:()2221242224122a ba ab b +=++=+⨯⨯⨯+=,23a b ∴+=,()2a b a a a b +⋅=+⋅142262=+⨯⨯=,a 在a b += C. 考点:1、平面向量数量积公式;2、向量投影的几何意义.6.过点(),a a A 可作圆2222230x y ax a a +-++-=的两条切线,则实数a 的取值范围为( )A .3a <-或1a >B .32a <C .31a -<<或32a >D .3a <-或312a <<【答案】D考点:1、圆的几何性质;2、一元二次不等式的解法. 7.函数f (x )=Asin (ωx+φ)(其中A >0,ω>0,|φ|<2π)的图象如图所示,为了得到y=cos2x的图象,则只要将f (x )的图象( )A .向左平移6π个单位长度 B .向右平移6π个单位长度 C .向左平移12π个单位长度 D .向右平移12π个单位长度【答案】C试题分析:732,,2,41224T T ππππωω=-===∴=()()sin 2,2,33f x x πππϕϕϕ=+⨯==+, ()sin 23f x x π⎛⎫=+ ⎪⎝⎭向左平移12π后得sin 2cos 2123y x x ππ⎡⎤⎛⎫=++= ⎪⎢⎥⎝⎭⎣⎦,即向左平移12π个单位长度,故选C.考点:1、三角函数的图象和性质;2、三角函数的平移变换.8.执行如图所示的程序框图,若输入a =3,则输出i 的值是( )A .2B .3C .4D .5【答案】C 【解析】试题分析:当9a =时,1i =;当21a =时,2i =;当45a =时,3i =;当93a =时,4i =;循环结束,输出4i =,故选C. 考点:程序框图与循环结构域.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序.9.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( ) A .10a d >,40dS > B .10a d <,40dS < C .10a d >,40dS < D .10a d <,40dS >考点:1、等差数列的通项公式;2、等差数列的前n 项和公式 .10.如图,边长为1的菱形CD AB 中,D 60∠AB =,沿D B 将△D AB 翻折,得到三棱锥CD A-B ,则当三棱锥CD A-B 体积最大时,异面直线D A 与C B 所成的角的余弦值为( ) A .58 B .14 C .1316D .23【答案】B考点:1、异面直线所成的角;2、立体几何的翻折问题.11.已知定义在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x '<,且()2f x +为偶函数,()41f =,则不等式()xf x e <的解集为( )A .(-2,+∞)B .(0.+∞)C .(1,+∞)D .(4,+∞) 【答案】B 【解析】考点:1、抽象函数的单调性;2、抽象函数的单调性.【方法点睛】本题主要考察抽象函数的单调性以及抽象函数的单调性,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.12.设1F ,2F 分别是双曲线C:22221x y a b-=(0a >,0b >)的左、右焦点,P 是C 的右支上的点,射线PT 平分12F F ∠P 交x 轴于点T ,过原点O 作PT 的平行线交1F P 于点M ,若121FF 3MP =,则C 的离心率为( )A .32B .3CD 【答案】A 【解析】试题分析:因为设双曲线的顶点为A ,考察特殊位置,当P A →时,射线PT →直线x a =,此时PM AO →,即PM a →,特别地,P 与A 重合时PM a =,所以由121FF 3MP =得,23c a =,32e =,故选A. 考点:1、双曲线的几何性质;2、双曲线的离心率.【方法点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将e 用有关的一些量表示出来,再利用其中的一些关系构造出关于e 的等式,从而求出e 的值.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=2,则原图形OABC 的面积为________.【答案】考点:1、画直观图的基本原理;2、平行四边形的面积公式.14.若不等式222x y +≤所表示的平面区域为M ,不等式组0026x y x y y x -≥⎧⎪+≥⎨⎪≥-⎩表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.【答案】24π【解析】试题分析:试题分析:画出不等式组0026x y x y y x -≥⎧⎪+≥⎨⎪≥-⎩表示的平面区域如图,OCD ∆表示区域N ,其中()()6,6,22C D -,所以1122N S =⨯,2=42S ππ=阴影,因此豆子落在区域M 内的概率为21224ππ=,故答案为24π.考点:1、可行域的画法;2、几何概型概率公式.15.在C ∆AB 中,已知tan sin C 2A +B=,给出以下四个论断: ①tan cot 1A⋅B =②0sin sin <A +B ≤③22sin cos 1A +B =④222cos cos sin C A +B =,其中正确的是 . 【答案】②④考点:1、三角形内角和定理及诱导公式;2、两角和的正弦公式及同角三角函数之间的关系. 【方法点晴】本题通过对多个命题真假的判断考察三角函数的有界性、三角形内角和定理、诱导公式、两角和的正弦公式、同角三角函数关系以及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.16.已知O 为△ABC 内一点,且23C 0O A+O B+O =,则,,AOB AOC BOC ∆∆∆的面积之比为 . 【答案】3:2:1考点:1、向量的几何运算;2、平面向量的数量积公式.【方法点睛】本题主要考查向量的几何运算、平面向量的数量积公式,属于中档题.向量有几何法和坐标法两种表示方法,向量的运算也分为几何运算和坐标运算两种,因此向量问题的解答也有两种思路,即几何法和代数法:几何运算要掌握两种法则(平行四边形法则和三角形法则),同时还要熟练掌握平面向量数量积公式;代数运算要正确建立适当的坐标系,转化为解析几何问题进行解答.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知数列{}n b 的前n 项和232n n n-B =.(I )求数列{}n b 的通项公式;(II )设数列{}n a 的通项()12n nn n a b ⎡⎤=+-⋅⎣⎦,求数列{}n a 的前n 项和n T .【答案】(I )32n -;(II )()()1282352233nn n ++-+-. 【解析】考点:1、公式()12n n n a S S n -=-≥及等比数列前n 项和公式的应用;2、分组求和与错位相减法求和.18.(本小题满分12分)某工厂有工人500名,记35岁以上(含35岁)的为A 类工人,不足35岁的为B 类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从A ,B 两类工人中分别抽取了40人、60人进行测试. (1)求该工厂A ,B 两类工人各有多少人? (2)经过测试,得到以下三个数据图表:图一:75分以上A,B两类工人成绩的茎叶图(茎、叶分别是十位和个位上的数字)①先填写频率分布表(表一)中的六个空格,然后将频率分布直方图(图二)补充完整;②该厂拟定从参加考试的79分以上(含79分)的B类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.【答案】(1)A类工人有200,B类工人有300;(2)①频率分布表和频率分布直方图见解析;②12.(2)①表一:考点:1、分层抽样及频率分布直方图;2、古典概型概率公式. 19.(本小题满分12分)已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形, 俯视图为直 角梯形.(1)求证:BN 丄平面C 1B 1N ;(2)设M 为AB 中点,在BC 边上找一点P ,使MP//平面CNB 1,并求CBPP 的值;(3)求点A 到平面CB 1N 的距离.【答案】(1)证明见解析;(2)13;(3.又B 1N ∩B 1C 1 = B 1,∴BN ⊥平面C 1B 1N .考点:1、线面垂直的判定定理;2、线面平行的性质定理及等积变换. 20.(本小题满分12分)在平面直角坐标系xOy 中,一动圆经过点1,02⎛⎫ ⎪⎝⎭且与直线12x =-相切,设该动圆圆心的轨迹为曲线E.(1)求曲线E 的方程;(2)设P 是曲线E 上的动点,点B 、C 在y 轴上,△PBC 的内切圆的方程为()2211x y -+=,求△PBC面积的最小值.【答案】(1)22y x =;(2)8. 【解析】试题分析:(1)圆心到定点与到定直线距离相等符合抛物线定义,可直接写出标准方程22y x =;(2)设()00,x y P ,()0,b B ,()C 0,c ,直线PB 的方程为:()0000y b x x y x b --+=,由点到直线的距离公式得()2000220x b y b x -+-=,同理()2000220x c y c x -+-=可得022x b c x -=-,面积表示为关于0x 的函数,进而利用基本不等式求最值. 试题解析:解:(1)由题意可知圆心到1,02⎛⎫ ⎪⎝⎭的距离等于到直线12x =-的距离,由抛物线的定义可知,圆心的轨迹方程:22y x =.考点:1、抛物线的定义;2、点到直线的距离公式及基本不等式求最值.【方法点晴】本题主要考查抛物线的定义、点到直线的距离公及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的. 21.(本小题满分12分) 已知函数()ln f x x =. (1)若曲线()()1ag x f x x=+-在点(2,g (2))处的切线与直线x + 2y -1 = 0平行,求实数a 的值;(2)若()()()11b x h x f x x -=-+在定义域上是增函数,求实数b 的取值范围;(3)设m 、n ∈R *,且m ≠n ,求证:ln ln 2m n m nm n --<+. 【答案】(1)4a =;(2)(],2-∞;(3)证明见解析. 【解析】试题分析:(1)()1'22g =-可求得;(2)()()()()()()22211211111b x b x x b x h x x x x x +--+-+'=-=++,()0h x '>在()0,+∞上恒成立,得2212x x b x ++<,基本不等式求出2212x x x++最小值即可;(3)ln ln 2m n m n m n --<+等价于,21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+,构造函数()()21ln 1x h x x x -=-+(1x >)在()1,+∞上递增即可.(3)证:不妨设m > n > 0,则1m n> 要证ln ln 2m n m n m n --<+,即证ln ln 2m n m n m n --<+,即21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+.设()()21ln 1x h x x x -=-+(1x >) 由(2)知h (x )在(1,+∞)上递增,∴h (x ) > h (1) = 0故21ln 01m m n m n n⎛⎫- ⎪⎝⎭->+,∴ln ln 2m n m n m n --<+. 考点:1、导数的几何意义及不等式恒成立问题;2、利用导数研究函数的单调性及证明不等式.【方法点晴】本题主要考查利用利用导数研究函数的单调性及证明不等式、导数导数的几何意义以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)是利用方法①求得b 的最大值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.选修4-1:几何证明选讲如图,圆M 与圆N 交于A ,B 两点,以A 为切点作两圆的切线分别交圆M 和圆N 于C ,D 两点,延长延长DB 交圆M 于点E ,延长CB 交圆N 于点F .已知BC=5,DB=10. (1)求AB 的长; (2)求CFD E.【答案】(1)(2)1.(2)根据切割线定理,知CA 2=CB•CF,DA 2=DB•DE,两式相除,得22C C CFD D D A B =⋅A B E(*)由△ABC ∽△DBA ,得C D D 102A AB ===A B ,22C 1D 2A =A , 又C 51D 102B ==B ,由(*)得CF1D =E. 考点:1、弦切角定理;2、切割线定理及三角形相似. 23.选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是ρ=4cos θ.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直l 的参数方程是1cos sin x t y t αα=+⎧⎨=⎩(t 是参数)(1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A 、B 两点,且α的值. 【答案】(1)()2224x y -+=;(2)4πα=或34πα=.∴4πα=或34πα= ∴直线的倾斜角4πα=或34πα=. 考点:1、极坐标方程化为直角坐标方程; 2、直线参数的几何意义.24.选修4-5:不等式选讲设函数f (x )M .(1)求实数M 的值;(2)求关于x 的不等式x x ++的解集.【答案】(1)M =(2){x x -≤≤.考点:1、基本不等式求最值;2、绝对值不等式的解法.。
2016河南高考文科数学真题及答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,,则()。
(A){1,3}(B){3,5}(C){5,7}(D){1,7}【参考答案】B【答案解析】集合A与集合B公共元素有3,5,故选B。
【试题点评】本题在高考数学(理)提高班讲座第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(2)设的实部与虚部相等,其中a为实数,则a=()。
(A)-3(B)-2(C)2(D)3【参考答案】A【答案解析】设,由已知,得,解得,选A.【试题点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A)(B)(C)(D)【参考答案】A【答案解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有2种,故概率为,选A.【试题点评】本题在高考数学(理)提高班讲座第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(4)△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=()。
(A)(B)(C)2(D)3【参考答案】D【答案解析】由余弦定理得,解得(舍去),选D.【试题点评】本题在高考数学(理)提高班讲座第八章《三角函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()。
南阳市一中第三次模拟考试文科数学试题第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.集合{}{}2|113,|230M x x N x x x =<+<=-->,则()()R R C M C N =I A.[](]1,02,3-U B. ()()1,02,3-U C. ()[)1,02,3-U D. ()1,3-2.i 为虚数单位,则201711i i ⎛⎫-= ⎪-⎝⎭A.i -B. 1-C. iD.13.已知{}n a 为公差不为0的等差数列,满足134,,a a a 成等比数列,n S 为数列{}n a 的前n 项和,则3253S S S S --的值为A. -2B. -3C. 2D. 34.如图,小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 328π+B.8323π+C. 8163π+ D. 168π+5.设实数,x y 满足约束条件02200y x x y x -≥⎧⎪-+≥⎨⎪≥⎩,若目标函数()0z mx y m =+>的最大值为6,则m 的值为A. 2B. 4C. 8D. 166.已知曲线ln y x x =+在点()1,1处的切线与曲线()()2210y ax a x a =+++≠相切,则a 等于A. 7B. 8C. 9D. 107.《九章算术》是我国古代的数学名著,体现了古代劳动人民的智慧,其中第六章“均输”中,有一竹容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m 的值为35,则输入a 的值为 A. 4 B. 5 C. 7 D. 118.已知函数()()[]()2cos 0,0,f x x ωϕωϕπ=->∈的部分图象如图所示,若32,222A B ππ⎛⎛ ⎝⎝,则函数()f x 的单调递增区间为 A. 32,2,44k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦ B. 372,2,44k k k z ππππ⎡⎤++∈⎢⎥⎣⎦C. 3,,88k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦ D. 37,,88k k k z ππππ⎡⎤++∈⎢⎥⎣⎦9.在区间[]1,3-上随机取一个数x ,若x 满足x m <的概率为0.75,则m = A. 0 B. 1 C. 2 D. 310.使()2log 1x x -<+成立的实数的取值范围是A.(),1-∞B. (),0-∞C.()1,-+∞D.()1,0-11.三棱锥P ABC -的三条侧棱两两垂直,且1PA PB PC ===,则其外接球上的点到平面ABC 的距离的最大值为 A.32 B. 36 C. 332312.如图,在直角梯形ABCD 中,,//,2,1AB AD AB DC AB AD DC ⊥===,图中圆弧所在圆的圆心为点C,半径为12,且点P 在图中阴影部分(包含边界)运动,若AP xAB yBC =+u u u r u u u r u u u r ,其中,x y R ∈,则4x y-的最大值为 A. 53+234-173+二、填空题:本大题共4小题,每小题5分,共20分.13.若单位向量12,e e u r u u r 的夹角为3π,则向量122e e -u r u u r 与向量1e u r 的夹角为 .14.过点()2,3P 作圆()2211x y -+=的两条切线,与圆相切于,A B ,则直线AB 的方程为 .15.双曲线()2222:10,0x y C a b a b-=>>与抛物线()220y px p =>相交于,a b 两点,直线AB 恰好经过它们的公共焦点F,则双曲线的离心率为 . 16.已知函数()()ln 2x f x x=,关于x 的不等式()()20f x af x +>只有两个整数解,则实数a 的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足25cos 15.2A AB AC =⋅=u u ur u u u r (1)求ABC ∆的面积; (2)若tan 2B =,求a 的值.18.(本题满分12分)某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格售出,如果当天卖不完,剩下的蛋糕作垃圾处理,现搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图.以100天记录的各需求量的频率作为每天各需求量发生的概率.若蛋糕店一天制作17个生日蛋糕. (1)求当天的利润y (单位:元)关于当天需求量n (单位:个n N ∈)的函数关系式;(2)求当天的利润不低于750元的概率.19.(本题满分12分)如图(1)所示,已知四边形SBCD 是由直角SAB ∆和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=o ,且点A 为线段SD 的中点,21,AD DC AB SD ===.现将SAB ∆沿AB 进行翻折,使得二面角S AB C --的大小为90o ,得到图形(2),连接SC ,点,E F 分别在线段,SB SC 上. (1)证明:BD AF ⊥;(2)若三棱锥B AEC -的体积为四棱锥S ABCD -体积的25,求点E 到平面ABCD 的距离.20.(本题满分12分)已知椭圆()2222:10x y P a b a b +=>>的右焦点为()1,0F ,且经过点2263⎛ ⎝⎭(1)求椭圆P 的方程;(2)已知正方形ABCD 的顶点,A C 在椭圆P 上,顶点,B D 在直线7710x y -+=上,求该正方形ABCD 的面积.21.(本题满分12分)已知0a ≥,函数()()22.x f x x ax e =- (1)当x 为何值时,()f x 取得最小值?并证明你的结论; (2)设()f x 在[]1,1-上是单调函数,求a 的取值范围.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7} 2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b 9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x 11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.=×2××2×2=.所以四面体PDEF的体积V=×DE×S△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
高中数学学习材料马鸣风萧萧*整理制作2016年河南省八市重点高中高考数学三模试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x=3n﹣1,n∈Z},B={x|y=},则集合A∩B的元素个数为()A.2 B.3 C.4 D.52.已知=(x,1),=(﹣1,3),若∥,则x=()A.B.﹣C.3 D.﹣33.已知命题p:∀α∈R,sin(π﹣α)≠﹣sinα,命题q:∃x∈[0,+∞),sinx>x,则下面结论正确的是()A.¬p∨q是真命题B.p∨q是真命题C.¬p∧q是真命题D.q是真命题4.定义m⊕n=n m(m>0,n>0),已知数列{a n}满足a n=(n∈N*),若对任意正整数n,都有a n≥(n0∈N*),则的值为()A.3 B.C.1 D.5.存在函数f(x)满足对任意的x∈R都有()A.f(|x|)=x+1 B.f(x2+4x)=|x+2|C.f(2x2+1)=x D.f(cosx)=6.如图所示是一个几何体的三视图,则这个几何体的表面积是()A.3+B.2+C.2+D.3+7.已知O为直角坐标原点,点A(2,3),点P为平面区域(m>0)内的一动点,若•的最小值为﹣6,则m=()A.1 B.C.D.8.执行如图所示的程序框图,则输出的k为()A.3 B.4 C.5 D.6=3,D为线段AB上的一点,且9.在△ABC中,已知•=8,sinB=cosA•sinC,S△ABC=m•+n•,则mn的最大值为()A.1 B.C.2 D.310.已知双曲线﹣=1(a>0,b>0),A(0,﹣b),B(0,b),P为双曲线上的一点,且|AB|=|BP|,则双曲线离心率的取值范围是()A .[,+∞)B .(1,]C .[,+∞)D .[,+∞)11.定义在R 上的函数f (x )满足f (x )+f ′(x )<e ,f (0)=e +2(其中e 为自然对数的底数),则不等式e x f (x )>e x +1+2的解集为( ) A .(﹣∞,0) B .(﹣∞,e +2) C .(﹣∞,0)∪(e +2,+∞) D .(0,+∞)12.公差不为0的等差数列{a n }的部分项a n1,a ,a,…构成等比数列{a},且n 2=2,n 3=6,n 4=22,则下列项中是数列{a}中的项是( )A .a 46B .a 89C .a 342D .a 387二、填空题:本大题共4小题,每小题5分,共20分.13.若复数z 满足z 2=﹣i (i 为虚数单位),则z 的模为______.14.已知A (0,1),B (﹣,0),C (﹣,2),则△ABC 外接圆的圆心到直线y=﹣x 的距离为______.15.棱长为的正方体ABCD ﹣A 1B 1C 1D 1内切球O ,以A 为顶点,以平面B 1CD 1,被球O 所截的圆面为底面的圆锥的侧面积为______.16.存在正数m ,使得方程sinx ﹣cosx=m 的正根从小到大排成一个等差数列.若点A (1,m )在直线ax +by ﹣2=0(a >0,b >0)上,则+的最小值为______.三、解答题:解答应写出文字说明.证明过程或演算步骤.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且•cosA﹣sin (C ﹣A )•sinA +cos (B +C )=,c=2.(Ⅰ)求sinC ;(Ⅱ)求△ABC 面积的最大值.18.某校在高三抽取了500名学生,记录了他们选修A 、B 、C 三门课的选修情况,如表: 科目学生人数A B C120是 否 是 60否 否 是 70是 是 否 50是 是 是 150否 是 是 50是 否 否 (Ⅰ)试估计该校高三学生在A 、B 、C 三门选修课中同时选修2门课的概率. (Ⅱ)若该高三某学生已选修A ,则该学生同时选修B 、C 中哪门的可能性大?19.多面体ABCDEF 中,四边形ABCD 、四边形BDEF 均为正方形,且平面BDEF ⊥平面ABCD ,点G ,H 分别为BF ,AD 的中点. (Ⅰ)求证:GH ∥平面AEF ;(Ⅱ)求直线EA 与平面ACF 所成角的正弦值.20.已知椭圆C:=1(a>b>0)的焦距为2,且椭圆C过点A(1,),(Ⅰ)求椭圆C的方程;(Ⅱ)若O是坐标原点,不经过原点的直线l:y=kx+m与椭圆交于两不同点P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直线l的斜率k;(Ⅲ)在(Ⅱ)的条件下,求△OPQ面积的最大值.21.已知函数f(x)=lnx+m(x﹣1)2,(m∈R)(Ⅰ)讨论函数f(x)极值点的个数;(Ⅱ)若对任意的x∈[1,+∞),f(x)≥0恒成立,求m的取值范围.[选修4-1:几何证明选讲]22.如图,PA为半径为1的⊙O的切线,A为切点,圆心O在割线CD上,割线PD与⊙O相交于C,AB⊥CD于E,PA=.(1)求证:AP•ED=PD•AE;(2)若AP∥BD,求△ABD的面积.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.曲线C1的参数方程为(α为参数),曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4.(1)求曲线C1与曲线C2的普通方程;(2)若A为曲线C1上任意一点,B为曲线C2上任意一点,求|AB|的最小值.[选修4-5:不等式选讲]24.已知函数f(x)=2|x+a|﹣|x﹣1|(a>0).(1)若函数f(x)与x轴围成的三角形面积的最小值为4,求实数a的取值范围;(2)对任意的x∈R都有f(x)+2≥0,求实数a的取值范围.2016年河南省八市重点高中高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x=3n﹣1,n∈Z},B={x|y=},则集合A∩B的元素个数为()A.2 B.3 C.4 D.5【考点】交集及其运算.【分析】求出B中x的范围确定出B,找出A与B的交集即可作出判断.【解答】解:∵A={x|x=3n﹣1,n∈Z},B={x|y=}={x|25﹣x2≥0}={x|﹣5≤x≤5},∴A∩B={﹣4,﹣1,2,5},则集合A∩B的元素个数为4,故选:C.2.已知=(x,1),=(﹣1,3),若∥,则x=()A.B.﹣C.3 D.﹣3【考点】平行向量与共线向量.【分析】直接利用向量共线的充要条件列出方程,求解即可.【解答】解:=(x,1),=(﹣1,3),若∥,可得﹣1=3x,解得x=﹣.故选:B.3.已知命题p:∀α∈R,sin(π﹣α)≠﹣sinα,命题q:∃x∈[0,+∞),sinx>x,则下面结论正确的是()A.¬p∨q是真命题B.p∨q是真命题C.¬p∧q是真命题D.q是真命题【考点】复合命题的真假.【分析】命题p:是假命题,例如取α=0时,sin(π﹣α)=﹣sinα.命题q:∃x∈[0,+∞),sinx>x,是假命题,取x=0时,sinx=x.再利用复合命题真假的判定方法即可判断出结论.【解答】解:命题p:∀α∈R,sin(π﹣α)≠﹣sinα,是假命题,例如取α=0时,sin(π﹣α)=﹣sinα.命题q:∃x∈[0,+∞),sinx>x,是假命题,令f(x)=x﹣sinx,则f′(x)=1﹣cosx≥0,∴函数f(x)在∈[0,+∞)单调递增,∴f(x)≥f(0)=0,∴x>0时,sinx<x.x=0时,sinx=x.则下面结论正确的是¬p∨q是真命题.故选:A.4.定义m⊕n=n m(m>0,n>0),已知数列{a n}满足a n=(n∈N*),若对任意正整数n,都有a n≥(n0∈N*),则的值为()A.3 B.C.1 D.【考点】数列的函数特性.【分析】由题意可得:a n==,==f(n),可知:f(n)关于n 单调递增,经过假设可得:a1>a2>a3<a4<a5<…,即可得出.【解答】解:由题意可得:a n==,=×==f(n),则f(n)关于n单调递增,n=1时,f(1)=<1;n=2时,f(2)=<1;n≥3时,f(n)>1.∴a1>a2>a3<a4<a5<…,∴n0=3时,满足:对任意正整数n,都有a n≥(n0∈N*),==1.故选:C.5.存在函数f(x)满足对任意的x∈R都有()A.f(|x|)=x+1 B.f(x2+4x)=|x+2|C.f(2x2+1)=x D.f(cosx)=【考点】函数解析式的求解及常用方法.【分析】根据函数解析式,举特殊值,计算函数值,可判断A,C,D均不恒成立,可得B 正确.【解答】解:A项,当x=1时,f(1)=2;当x=﹣1时,f(1)=0,不合题意;C项,当x=1时,f(3)=1;当x=﹣1时,f(3)=﹣1,不合题意;D项,当x=0时,f(1)=1;当x=2π时,f(1)=,不合题意;故选B.6.如图所示是一个几何体的三视图,则这个几何体的表面积是()A.3+B.2+C.2+D.3+【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个三棱锥,由三视图求出几何元素的长度、并判断出线面位置关系,由勾股定理和三角形的面积公式求出各个面的面积,并加起来求出几何体的表面积.【解答】解:根据三视图可知几何体是一个三棱锥,直观图如图所示:且D是AB的中点,PD⊥平面ABC,PD=AD=BD=CD=1,∴PD⊥CD,PD⊥AB,由勾股定理得,PA=PB=PC=,由俯视图得,CD⊥AB,则AC=BC=,∴几何体的表面积S=+=2+,故选:B.7.已知O为直角坐标原点,点A(2,3),点P为平面区域(m>0)内的一动点,若•的最小值为﹣6,则m=()A.1 B.C.D.【考点】简单线性规划;平面向量数量积的运算.【分析】根据向量数量积的公式求出•=2x+3y,结合•的最小值为﹣6,得到y=﹣x﹣2,作出对应的直线方程,求出交点坐标进行求解即可.【解答】解:∵•=2x+3y,∴设z=2x+3y,得y=,∵•的最小值为﹣6,∴此时y=﹣x﹣2,作出y=﹣x﹣2则y=﹣x﹣2与x=﹣1相交为B时,此时B(﹣1,﹣),此时B也在y=m(x﹣2)上,则﹣3m=﹣,得m=,故选:C.8.执行如图所示的程序框图,则输出的k为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的a,k的值,当a=时,满足条件|a﹣1.42|<0.01,退出循环,输出k的值为4.【解答】解:模拟执行程序,可得a=1,k=1不满足条件|a﹣1.42|<0.01,执行循环体,a=,k=2不满足条件|a﹣1.42|<0.01,执行循环体,a=,k=3不满足条件|a﹣1.42|<0.01,执行循环体,a=,k=4满足条件|a﹣1.42|<0.01,退出循环,输出k的值为4.故选:B.=3,D为线段AB上的一点,且9.在△ABC中,已知•=8,sinB=cosA•sinC,S△ABC=m•+n•,则mn的最大值为()A.1 B.C.2 D.3【考点】平面向量数量积的运算.【分析】根据三角形内角和定理,利用三角恒等变换求出C=,再利用边角关系以及向量的数量积求出a、b和c的值;通过建立坐标系,利用平面向量的坐标表示,结合基本不等式,即可求出mn的最大值.【解答】解:△ABC中,sinB=cosA•sinC=sin(A+C),∴cosAsinC=sinAcosC+cosAsinC,∴sinAcosC=0,∵A,C∈(0,π),∴C=;∵•=8,∴ca•cosB=8,∴a2=8,解得a=2;ABC=3,∴ab=3,且a=2,∴b=;又∵S△∴c==;建立坐标系如图所示:∴点B(2,0),A(,0),∴直线AB的方程是+=1,∵=m•+n•=m(0,1)+n(1,0)=(n,m),点D(n,m)为线段AB上的一点,∴+=1,化简得4m+3n=6;4m+3n≥2,当且仅当4m=3n=3时“=”成立;∴12mn≤==18,即mn≤.故选:B.10.已知双曲线﹣=1(a>0,b>0),A(0,﹣b),B(0,b),P为双曲线上的一点,且|AB|=|BP|,则双曲线离心率的取值范围是()A.[,+∞)B.(1,]C.[,+∞)D.[,+∞)【考点】双曲线的简单性质.【分析】设P(m,n),即有﹣=1,运用两点的距离公式,可得2b=,转化为n的函数,由配方可得最小值,由离心率公式,解不等式可得e的范围.【解答】解:设P(m,n),即有﹣=1,由|AB|=|BP|,可得2b=,即有4b2=a2(1+)+(n﹣b)2,即为3b2﹣a2=n2﹣2bn=(n﹣)2﹣,即有3b2﹣a2≥﹣,即为(3c2﹣4a2)c2+(c2﹣a2)2≥0,化简可得4c4﹣6a2c2+a4≥0,由e=可得4e4﹣6e2+1≥0,(e>1),解得e2≥,即为e≥.故选:D.11.定义在R上的函数f(x)满足f(x)+f′(x)<e,f(0)=e+2(其中e为自然对数的底数),则不等式e x f(x)>e x+1+2的解集为()A.(﹣∞,0)B.(﹣∞,e+2)C.(﹣∞,0)∪(e+2,+∞)D.(0,+∞)【考点】导数的运算.【分析】构造函数g(x)=e x f(x)﹣e x+1﹣2(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.【解答】解:设g(x)=e x f(x)﹣e x+1﹣2(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x+1=e x[f(x)+f′(x)﹣e],∵f(x)+f′(x)<e,∴f(x)+f′(x)﹣e<0,∴g′(x)<0,∴y=g(x)在定义域上单调递减,∵f(0)=e+2,∴g(0)=e0f(0)﹣e﹣2=e+2﹣e﹣2>0,∴g(x)>g(0),∴x<0,∴不等式的解集为(﹣∞,0)故选:A.12.公差不为0的等差数列{a n}的部分项a n1,a,a,…构成等比数列{a},且n2=2,n3=6,n4=22,则下列项中是数列{a}中的项是()A.a46B.a89C.a342D.a387【考点】等差数列的通项公式.【分析】由题意a2,a6,a22成等比数列,求出等比数列的公比q,从而写出等比数列{a kn}的通项公式,再验证选项是否正确即可.【解答】解:等差数列{a n}中,a2,a6,a22构成等比数列,∴(a1+5d)2=(a1+d)(a1+21d),且d≠0,解得d=3a1,∴等比数列的公比为q===4;又等差数列{a n}的通项公式为a n=a1+(n﹣1)×3a1=3a1n﹣2a1=(3n﹣2)a1,∴等比数列{a kn}的通项公式为akn=a1×4n﹣1,且a46=a1+45d=136a1,a89=a1+88d=265a1,a342=a1+341d=1024a1=a1•45,a387=a1+386d=1159a1,∴a342是数列{a}中的项.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.若复数z满足z2=﹣i(i为虚数单位),则z的模为.【考点】复数求模.【分析】根据复数模的定义,直接求模即可.【解答】解:∵z2=﹣i,∴|z|2=|﹣i|==,∴z的模为|z|=.故答案为:.14.已知A(0,1),B(﹣,0),C(﹣,2),则△ABC外接圆的圆心到直线y=﹣x的距离为.【考点】点到直线的距离公式.【分析】由三角形的三个顶点坐标求出外接圆的圆心,再由点到直线的距离公式求得答案.【解答】解:∵A(0,1),B(﹣,0),C(﹣,2),∴AB的中点坐标为(),又,∴AB的垂直平分线的斜率为k=,则AB的垂直平分线方程为,又BC的垂直平分线方程为y=1,代入上式得:△ABC外接圆的圆心C(),则C到直线y=﹣x的距离为d=.故答案为:.15.棱长为的正方体ABCD﹣A1B1C1D1内切球O,以A为顶点,以平面B1CD1,被球O 所截的圆面为底面的圆锥的侧面积为π.【考点】球内接多面体.【分析】作出图形,求出截面圆的半径为,AF==,利用圆锥的侧面积公式求出以A为顶点,以平面B1CD1,被球O所截的圆面为底面的圆锥的侧面积.【解答】解:如图所示,△B1CD1,与球的切点为E,F,G,则EF=1,截面圆的半径为,AF==,∴以A为顶点,以平面B1CD1,被球O所截的圆面为底面的圆锥的侧面积为=π.故答案为:π.16.存在正数m,使得方程sinx﹣cosx=m的正根从小到大排成一个等差数列.若点A(1,m)在直线ax+by﹣2=0(a>0,b>0)上,则+的最小值为.【考点】基本不等式在最值问题中的应用.【分析】运用两角差的正弦公式,化简可得y=2sin(x﹣),可得0<m≤2,讨论m的范围,结合三角函数的图象和等差数列的定义,可得m=2,将A代入直线方程,可得a+2b=2,再由乘1法和基本不等式即可得到所求最小值.【解答】解:由sinx﹣cosx=2(sinx﹣cosx)=2sin(x﹣),存在正数m,使得方程sinx﹣cosx=m的正根从小到大排成一个等差数列,即有0<m≤2.若0<m <2,由y=2sin (x ﹣)的图象可得:直线y=m 与函数y=2sin (x ﹣)的图象的交点的横坐标不成等差数列,若m=2,即有x ﹣=2k π+,即为x=2k π+,k ∈Z ,可得所有正根从小到大排成一个等差数列,公差为2π, 则m=2,由点A (1,2)在直线ax +by ﹣2=0上, 可得a +2b=2,a ,b >0,即b +a=1,则+=(+)(b +a )=2+++≥+2=+2=.当且仅当a=b=时,取得最小值.故答案为:.三、解答题:解答应写出文字说明.证明过程或演算步骤.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且•cosA ﹣sin (C ﹣A )•sinA +cos (B +C )=,c=2.(Ⅰ)求sinC ;(Ⅱ)求△ABC 面积的最大值. 【考点】余弦定理.【分析】(Ⅰ)由三角函数恒等变换的应用,三角形内角和定理化简已知等式可得cosC=,利用同角三角函数基本关系式可求sinC 的值.(Ⅱ)由已知及余弦定理、基本不等式可得8=a 2+b 2﹣ab ≥ab ,解得ab ≤6,利用三角形面积公式即可得解. 【解答】(本题满分为12分)解:(Ⅰ)在△ABC 中,由•cosA ﹣sin (C ﹣A )•sinA +cos (B +C )=,得cos (C ﹣A )cosA ﹣sin (C ﹣A )•sinA=cosC=.…即sinC=.…(Ⅱ)由余弦定理c 2=a 2+b 2﹣2abcosC ,得8=a 2+b 2﹣ab ≥ab .…当且仅当a=b 时取等,即ab ≤6,所以S △ABC =absinC=ab ≤2.所以△ABC 面积的最大值为2.…18.某校在高三抽取了500名学生,记录了他们选修A 、B 、C 三门课的选修情况,如表: 科目学生人数A B C120是 否 是 60否 否 是 70是 是 否 50是 是 是 150否 是 是 50是 否 否 (Ⅰ)试估计该校高三学生在A 、B 、C 三门选修课中同时选修2门课的概率. (Ⅱ)若该高三某学生已选修A ,则该学生同时选修B 、C 中哪门的可能性大? 【考点】古典概型及其概率计算公式. 【分析】(Ⅰ)由频率估计概率得到答案, (Ⅱ),分别求出学生同时选修B 、C 的概率,比较即可.【解答】解:(I )由频率估计概率得P==0.68.(Ⅱ)若某学生已选修A ,则该学生同时选修B 的概率估计为.选修C 的概率估计为,即这位学生已选修A ,估计该学生同时选修C 的可能性大.19.多面体ABCDEF 中,四边形ABCD 、四边形BDEF 均为正方形,且平面BDEF ⊥平面ABCD ,点G ,H 分别为BF ,AD 的中点. (Ⅰ)求证:GH ∥平面AEF ;(Ⅱ)求直线EA 与平面ACF 所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(I)设AE中点M,以D为原点建立空间坐标系,求出和的坐标,得出,从而得出HG∥MF,故而HG∥平面AEF;(II)求出和平面ACF的法向量的坐标,设所求线面角为θ,则sinθ=|cos<>|,利用同角三角函数的关系得出tanθ.【解答】证明:(I)以D为原点,以DA,DC,DE为坐标轴建立空间直角坐标系,如图所示:设AB=2,AE的中点为M,则M(1,0,),H(1,0,0),F(2,2,2),G(2,2,).=(1,2,),=(1,2,).∴,∴HG∥MF,又HG⊄平面AEF,MF⊂平面AEF,∴GH∥平面AEF.(II)A(2,0,0),F(2,2,2),C(0,2,0),E(0,0,2).∴=(﹣2,0,2),=(0,2,2),=(﹣2,2,0),设平面ACF的法向量为=(x,y,z),则.∴,令z=1得=(﹣,﹣,1).∴=4,||=,||=2.∴cos<>==.设直线EA与平面ACF所成角为θ,则sinθ=,即直线EA与平面ACF所成角的正弦值为.20.已知椭圆C:=1(a>b>0)的焦距为2,且椭圆C过点A(1,),(Ⅰ)求椭圆C的方程;(Ⅱ)若O是坐标原点,不经过原点的直线l:y=kx+m与椭圆交于两不同点P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直线l的斜率k;(Ⅲ)在(Ⅱ)的条件下,求△OPQ面积的最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由椭圆的焦距为2,且椭圆C过点A(1,),列出方程求出a,b,由此能求出椭圆C的方程.(Ⅱ)由,得:(1+4k2)x2+8kmx+4(m2﹣1)=0,由此利用根的判别式、韦达定理,结合已知条件能求出直线l的斜率.(Ⅲ)把直线方程与椭圆方程联立,得:2x2+8mx+4m2﹣4=0,由此利用根的判别式、韦达定理、点到直线距离公式、弦长公式能求出△OPQ面积的最大值.【解答】解:(Ⅰ)∵椭圆C:=1(a>b>0)的焦距为2,且椭圆C过点A(1,),∴由题意得,可设椭圆方程为,则,得b2=1,所以椭圆C的方程为.…(Ⅱ)由消去y得:(1+4k2)x2+8kmx+4(m2﹣1)=0,△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,,故.又∵,∴,∴.∵m≠0,∴,解得k=,∴直线l的斜率为或﹣.…(Ⅲ)由(Ⅱ)可知直线l的方程为,由对称性,不妨把直线方程与椭圆方程联立,消去y得:2x2+8mx+4m2﹣4=0,△=64m2﹣4(4m2﹣4)>0,∵P(x1,y1),Q(x2,y2),∴x1+x2=﹣4m,,设d为点O到直线l的距离,则d==,∴.当且仅当m2=1时,等号成立.∴△OPQ面积的最大值为1.…21.已知函数f(x)=lnx+m(x﹣1)2,(m∈R)(Ⅰ)讨论函数f(x)极值点的个数;(Ⅱ)若对任意的x∈[1,+∞),f(x)≥0恒成立,求m的取值范围.【考点】利用导数研究函数的极值;函数恒成立问题.【分析】(Ⅰ)求出f(x)的导数,通过讨论m的范围,结合二次函数的性质判断函数f(x)的单调区间,从而判断其极值的个数;(Ⅱ)通过讨论m的范围,结合函数的单调性求出m的具体范围即可.【解答】解:(I)由已知得函数f(x)的定义域为(0,+∞),,令g(x)=2mx2﹣2mx+1,(x>0),当m=0时,g(x)=1,此时f′(x)>0,函数f(x)在(0,+∞)上单调递增,无极值点;当m>0时,△=4m2﹣8m=4m(m﹣2),①当0<m≤2时,△≤0,g(x)≥0,此时f′(x)≥0,函数f(x)在(0,+∞)上单调递增,无极值点;②当m>2时,△>0,令方程2mx2﹣2mx+1=0的两个实数根为x1,x2(x1<x2),且,可得,因此当x∈(0,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.所以函数f(x)在(0,+∞)上有两个极值点,当m<0时,△>0,x1+x2=1,x1•x2=<0,可得x1<0,x2>1,因此,当x∈(0,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.所以函数f(x)在(0,+∞)上有一个极值点.综上所述,当m<0时,函数f(x)在(0,+∞)上有一个极值点;当0≤m≤2时,函数f(x)在(0,+∞)上无极值点;当m>2时,函数f(x)在(0,+∞)上有两个极值点.(Ⅱ)当m≥0时,当x≥1时,lnx≥0,m(x﹣1)2≥0,即f(x)≥0,符合题意;当m<0时,由(I)知,x2>1,函数f(x)在(1,x2)上单调递增,在(x2,+∞)上单调递减;令h(x)=x﹣1﹣lnx,得,所以函数h(x)在[1,+∞)上单调递增,又h(1)=0,得h(x)≥0,即lnx≤x﹣1,所以f(x)≤x﹣1+m(x﹣1)2,当时,x﹣1+m(x﹣1)2<0,即f(x)<0,不符合题意;综上所述,m的取值范围为[0,+∞).[选修4-1:几何证明选讲]22.如图,PA为半径为1的⊙O的切线,A为切点,圆心O在割线CD上,割线PD与⊙O相交于C,AB⊥CD于E,PA=.(1)求证:AP•ED=PD•AE;(2)若AP∥BD,求△ABD的面积.【考点】与圆有关的比例线段.【分析】(1)连接AC,先证明,利用切割线定理得到=.Rt△ACD中,AB⊥CD,由射影定理得AE2=CE•ED,即可证明AP•ED=PD•AE;(2)求出AB,证明△ABD是等边三角形,即可求△ABD的面积.【解答】证明:(1)连接AC,∵PA为⊙O的切线,∴∠PAC=∠ADC,∵CD为⊙O的直径,AB⊥CD,∴∠BDC=∠ADC.∵∠BDC=∠CAB,∴∠PAC=∠CAB,∴=,∴,∵PA为⊙O的切线,∴AP2=PC•PD,∴=.Rt△ACD中,AB⊥CD,由射影定理得AE2=CE•ED,∴=,∴,∴AP•ED=PD•AE;解:(2)∵AP∥BD,∴∠P=∠BDC.Rt△APE中,∠PAC=∠CAB=∠P=30°,∴AP=PC.∵AP2=PC•PD,∴AP2=PC(PC+2),∴PC=AC=1,∴AE=,AB=∵∠ADB=60°,∴△ABD是等边三角形,=.∴S△ABD[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.曲线C1的参数方程为(α为参数),曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4.(1)求曲线C1与曲线C2的普通方程;(2)若A为曲线C1上任意一点,B为曲线C2上任意一点,求|AB|的最小值.【考点】参数方程化成普通方程.【分析】(1)曲线C1的参数方程为(α为参数),利用cos2α+sin2α=1可得普通方程.曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4,利用y=ρsinθ,x=ρcosθ即可化为直角坐标方程.(2)设B(cosβ,2sinβ),则|BC1|==,利用三角函数的单调性与值域、二次函数的单调性即可得出.【解答】解:(1)曲线C1的参数方程为(α为参数),利用cos2α+sin2α=1可得:x2+(y﹣1)2=.圆心C(0,1).曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4,可得直角标准方程:y2+4x2=4,即+y2=4.(2)设B(cosβ,2sinβ),则|BC1|==≥,当sin时取等号.∴|AB|的最小值=﹣.[选修4-5:不等式选讲]24.已知函数f(x)=2|x+a|﹣|x﹣1|(a>0).(1)若函数f(x)与x轴围成的三角形面积的最小值为4,求实数a的取值范围;(2)对任意的x∈R都有f(x)+2≥0,求实数a的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)求出f(x)分段函数的形式,求出A,B,C的坐标,从而表示出三角形的面积,求出a的范围即可;(2)求出f(x)的最小值,从而得到关于a的不等式,解出即可.【解答】解:(1)f(x)=,如图示:函数f(x)与x轴围成的△ABC,求得:A(﹣2a﹣1,0),B(,0),C(﹣a,﹣a﹣1),= [=(a+1)2≥4(a>0),∴S△ABC解得:a≥﹣1;(2)由(1)得:f(x)min=f(﹣a)=﹣a﹣1,对任意x∈R,都有f(x)+2≥0,即(﹣a﹣1)+2≥0,解得:0<a≤1.2016年10月6日。
2016年普通高中毕业班综合测试(三)文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.集合{}123456U =,,,,,,{}23A =,,{}2Z 650B x x x =∈-+<,()C U A B =I ( ) A .{}156,, B .{}1456,,, C .{}234,, D .{}16, 2.已知复数23i1i--(i 是虚数单位),它的实部与虚部的和是( ) A .2 B .3 C .4 D .63.设向量(1,4)AB = ,(,1)BC m =-,且AB AC ⊥ ,则实数m 的值为( )A .10-B .13-C .7-D .44.已知命题p :对任意,x R ∈,总有30x >;命题q :"2"x >是"4"x >的充分不必要条件,则下列命题为真命题的是( )A .p q ∧B .p q ⌝∧⌝C .p q ⌝∧D .p q ∧⌝ 5.已知)0(),6sin()(>+=ωπωx x f ,()y f x =的图像与1y =的图像的两相邻交点间的距离为π,要得到()y f x =的图像,只须把sin y x ω=的图像( ) A. 向右平移12π个单位 B. 向右平移6π个单位 C. 向左平移12π个单位 D. 向左平移6π个单位 6.已知等差数列{}n a 满足14n n a a n ++=,则=1a ( ) A .1- B .1 C .2 D .3 7.在区间上随机地取一个数,则事件“1211log 12x ⎛⎫-≤+≤ ⎪⎝⎭”发生的概率为( ) A .B .C .D . 8.某几何体的三视图如图所示,则该几何体的体积为( ) A .1312π+B .112π+C .134π+D .14π+ ]2,0[x 413143329.已知双曲线的右焦点与抛物线的焦点重合,且其渐近线方程为,则双曲线的方程为( ) A .B .C .D .10.右图给出了一个程序框图,其作用是输入的值, 输出相应的值,若要使输入的值与输出的值 相等,则这样的值有( ) A . 1个B .2个 C .3个 D .4个11.点A ,B ,C ,D 均在同一球面上,且AB ,C A ,D A 两两垂直,且1AB =,C 2A =,3AD =, 则该球的表面积为( )A .7πB .14πC .72π D.312.设)(x f 与)(x g 是定义在同一区间],[b a 上的两个函数,若函数)()(x g x f y -=在],[b a x ∈上 有两个不同的零点,则称)(x f 和)(x g 在],[b a 上是“关联函数”,区间],[b a 称为“关联区间” .若 43)(2+-=x x x f 与m x x g +=2)(在]3,0[上是“关联函数”,则m 的取值范围是( ) A .]0,1[-B .]2,49(--C .]2,(--∞D .),49(+∞- 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知在ABC ∆中,已知3sin(A)25π-=,则sin(2A)=. 14.已知变量x ,y 满足约束条件20020x y x y y +-≥⎧⎪-≤⎨⎪-≤⎩,设2z x y =+,则z 取最大值的最优解是.15.直线1y kx =+与曲线3y x ax b =++相切于点()13A ,,则实数b 的值为___________.2222:1(0,0)x y C a b a b-=>>x y 202=x y 34±=C 221916x y -=221169x y -=2213664x y -=2216436x y -=x y x y x16.已知函数()312,(1)2,x x x tf x a x x t⎧->=⎨-+≤⎩,如果对一切实数t ,函数()f x 在R 上不单调,则实数a 的取值范围是___________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12 分)在数列{}n a 中,111,22n n n a a a +==+.(1)设12nn n a b -=,证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和n S .18.(本小题满分12 分)已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码; (2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图所示, 从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两 名学生的成绩之和不小于154分的概率.19.(本小题满分12分)如图,在长方体1111CD C D AB -A B 中,1D 1A =AA =,2AB =,点E 是线段AB 中点. (1)求证:1D C E ⊥E ;(2)求A 点到平面1CD E 的距离.20.(本小题满分12分)如图,椭圆的中心在坐标原点,长轴端点为A 、B ,右焦点为F , 且1=⋅1=. (1)求椭圆的标准方程;(2)过椭圆的右焦点F 作直线1l 、2l ,直线1l点M 、N ,直线2l 与椭圆分别交于点P 、Q ,且+=+,求四边形MPNQ 的面积S21.(本小题满分12分)设函数21()ln 2f x x m x =-,2()(1)g x x m x =-+,0m >. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本题满分10分)选修41-:几何证明选讲如图所示,已知圆O 的半径长为4,两条弦,AC BD 相交于点E,若BD =BE DE >,E 为AC的中点,AB =.(1)求证:AC 平分BCD ∠; (2)求ADB ∠的度数.23.(本题满分10分)选修4-4:坐标系与参数方程已知直线52:12x l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). 以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直坐标方程;(2)设点M的直角坐标为,直线l 与曲线C 的交点为A 、B ,求||||MA MB ⋅的值.24.(本题满分10分)选修4-5:不等式选讲 已知函数()()2log 12f x x x a =-++-. (1)当7a =时,求函数()f x 的定义域;(2)若关于x 的不等式()3f x ≥的解集是R ,求实数a 的取值范围.。
2016年新课标全国卷Ⅲ文科数学3卷高考试题Word文档版(含答案)A)a+b>c (B)a+c>b (C)b+c>a (D)a+b+c>08)已知函数f(x)=x3-3x2+2x+1,g(x)=ax2+bx+c,满足g(1)=f(1),g(2)=f(2),g(3)=f(3)。
则a+b+c的值为A)0 (B)1 (C)2 (D)39)已知函数f(x)=x2-2x+1,g(x)=f(x-1),则g(-1)的值为A)-2 (B)-1 (C)0 (D)110)已知等差数列{an}的前n项和为Sn,且a1=2,d=3,则S10的值为A)155 (B)165 (C)175 (D)18511)已知函数f(x)=x3-3x2+2x+1,g(x)=f(x-1),则g(2)的值为A)-5 (B)-1 (C)1 (D)512)已知点A(1,2),B(3,4),C(5,6),则三角形ABC的周长为A)2 (B)4 (C)6 (D)81.设集合 $A=\{0,2,4,6,8,10\},B=\{4,8\}$。
则 $A\capB=\{4,8\}$。
2.若 $z=4+3i$。
则$\frac{z}{|z|}=\frac{4}{5}+\frac{3}{5}i$。
3.已知向量 $\overrightarrow{BA}=(1,3,3,1)$。
$\overrightarrow{BC}=(3,3,2,2)$。
则$\angle ABC=60^{\circ}$。
4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。
图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃。
下面叙述不正确的是:(A)各月的平均最低气温都在5℃以上;(B)七月的平均温差比一月的平均温差大;(C)三月和十一月的平均最高气温基本相同;(D)平均最高气温高于20℃的月份有5个。
5.XXX打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则XXX输入一次密码能够成功开机的概率是$\frac{2}{15}$。
河南省郑州一中教育集团2016届高三第三次联考试题数学(文)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、复数1z i =+,则1z z+(其中z 表示复数z 的共轭复数)对应的点所在的象限为 A .第一象限 B .第二象限 C .第三象限 D .第四象限2、已知命题12:1,log 0p x x ∀>>,命题3:,3xq x R x ∃∈>,则下列命题为真命题的是A .p q ∧B .()p q ∨⌝C .()p q ∧⌝D .()p q ⌝∧3、已知数列{}n a 和{}n b 都是等差数列,若22443,5a b a b +=+=,则77a b += A .7 B .8 C .9 D .104、在一组样本数据112212(,),(,),,(,)(2,,,,n n x y x y x y n x x n ≥不全相等)的散点图中,若所有样本点(,)(1,2,,)j j x y i n =都在直线112y x =-+上,则这组样本数据的样本相关系数为A .-1B .0C .12-D .1 5、若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为A .-2B .12-C .12D .2 6、如图,网格纸的各小格都是正方形,粗线画出的一个三棱锥的侧视图和俯视图,则该三棱锥的正视图可能是7、下列函数中,a R ∀∈,都有得()()1f a f a +-=成立是 A .()2ln(1)f x x x =+- B .()2cos ()4f x x π=-C .()21x f x x =+D .()11212x f x =+-8、函数ln x xx xe e y e e ---=+的图象大致为9、将函数()sin 2f x x =的图象向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图象,若对满足12()()2f x g x -=的12,x x ,有12min3x x π-=,则ϕ=A .512π B .3π C .4π D .6π10、已知,,A B C 2的球面上,且0,30AC BC ABC ⊥∠=,球心O 到平面ABC 的距离为1,点M 是线段BC 的中点,过点M 作球O 的截面,则截面面积的最小值为 A 3π B .34πC 3πD .3π 11、如图,,A F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左顶点和右焦点,过F 的直线l 与C 的一条渐近线垂直且与另一条渐近线和y 轴分别交于,P Q 两点,若AP AQ ⊥,则C 的离心率为A 2B 3.1134D 117+12、已知函数()2ln(2)(2x f x x a a=--为常数且0a ≠),若()f x 在0x 处取得极值, 且20[2,2]x e e ∉++,而()0f x ≥在2[2,2]e e ++上恒成立,则a 的取值范围是A .422a e e ≥+B .422a e e >+C .22a e e ≥+D .22a e e >+第Ⅱ卷二、填空题:本卷包括必考题和选考题两部分,第13-21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。
2016年河南省南阳一中高考数学三模试卷(文科)一、选择题:(本大题共12小题,每小题5分)1.定义集合A={x|2x≥1}},B={x|x<0},则A∩∁R B=()A.(1,+∞)B.[0,1] C.[0,1)D.[0,2)2.若复数z满足z(1﹣i)=|1﹣i|+i,则z的实部为()A.B.﹣1 C.1 D.3.设命题p:“若e x>1,则x>0”,命题q:“若a>b,则”,则()A.“p∧q”为真命题 B.“p∨q”为真命题C.“¬p”为真命题D.以上都不对4.双曲线C:x2﹣=1的顶点到渐近线的距离与焦点到渐近线的距离之比为()A.B.C.D.5.若向量,满足||=||=2,与的夹角为60°,在+上的投影等于()A.B.2 C.D.4+26.过点A(a,a)可作圆x2+y2﹣2ax+a2+2a﹣3=0的两条切线,则实数a的取值范围为()A.a<﹣3或a>1 B.a<C.﹣3<a<1 或a>D.a<﹣3或1<a<7.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.执行如图所示的程序框图.若输入a=3,则输出i的值是()A.2 B.3 C.4 D.59.已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 10.如图,边长为1的菱形ABCD中,∠DAB=60°,沿BD将△ABD翻折,得到三棱锥A﹣BCD,则当三棱锥A﹣BCD体积最大时,异面直线AD与BC所成的角的余弦值为()A.B.C.D.11.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f (x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)12.设F1,F2分别是双曲线C:﹣=1(a>0,b>0)的左、右焦点,P是C的右支上的点,射线PT平分∠F1PF2,过原点O作PT的平行线交PF1于点M,若|MP|=|F1F2|,则C 的离心率为()A.B.3 C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形的面积为.14.若不等式x2+y2≤2所表示的区域为M,不等式组表示的平面区域为N,现随机向区域N内抛一粒豆子,则豆子落在区域M内的概率为.15.在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1②0<sinA+sinB≤③sin2A+cos2B=1④cos2A+cos2B=sin2C,其中正确的是.16.已知O为△ABC的垂心,且+2+3=,则A角的值为.三、解答题(本大题共5小题,共70分,解答题写出必要的文字说明、推理和演算步骤.)17.已知数列{b n}的前n项和.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)设数列{a n}的通项,求数列{a n}的前n项和T n.18.某工厂有工人500名,记35岁以上(含35岁)的为A类工人,不足35岁的为B类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从A、B两类工人中分别抽取了40人、60人进行测试.(I)求该工厂A、B两类工人各有多少人?(Ⅱ)经过测试,得到以下三个数据图表:(茎、叶分别是十位和个位上的数字)(如图)表:100名参加测试工人成绩频率分布表组号分组频数频率1 [55,60) 5 0.052 [60,65)20 0.203 [65,70)4 [70,75)35 0.355 [75,80)6 [80,85)合计100 1.00①先填写频率分布表中的六个空格,然后将频率分布直方图(图二)补充完整;②该厂拟定从参加考试的79分以上(含79分)的B类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.19.已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN丄平面C1B1N;(2)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1,并求的值.(3)求点A到平面CB1N的距离.20.在平面直角坐标系xOy中,一动圆经过点(,0)且与直线x=﹣相切,设该动圆圆心的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)设P是曲线E的动点,点B、C在y轴上,△PBC的内切圆的方程为(x﹣1)2+y2=1,求△PBC面积的最小值.21.已知函数f(x)=lnx.(1)若曲线g(x)=f(x)+﹣1在点(2,g (2))处的切线与直线x+2y﹣1=0平行,求实数a的值.(2)若h(x)=f(x)﹣在定义域上是增函数,求实数b的取值范围.(3)设m、n∈R*,且m≠n,求证: |.[选修4-1:几何证明选讲]22.如图,圆M与圆N交于A,B两点,以A为切点作两圆的切线分别交圆M和圆N于C,D 两点,延长延长DB交圆M于点E,延长CB交圆N于点F.已知BC=5,DB=10.(1)求AB的长;(2)求.[选修4-4:坐标系与参数方程]23.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.[选修4-5:不等式选讲]24.设函数f(x)=的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣|+|x+2|≤M的解集.2016年河南省南阳一中高考数学三模试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分)1.定义集合A={x|2x≥1}},B={x|x<0},则A∩∁R B=()A.(1,+∞)B.[0,1] C.[0,1)D.[0,2)【考点】交、并、补集的混合运算.【分析】分别求出关于集合A、B的范围,得到B的补集,从而求出其和A的交集即可.【解答】解:∵A={x|2x≥1}}={x|x≥0},B={x|x<0}={x|x>1},∴∁R B={x|x≤1},故A∩∁R B=[0,1],故选:B.2.若复数z满足z(1﹣i)=|1﹣i|+i,则z的实部为()A.B.﹣1 C.1 D.【考点】复数代数形式的混合运算.【分析】z(1﹣i)=|1﹣i|+i,化为z=,再利用复数的运算法则、实部的定义即可得出.【解答】解:∵z(1﹣i)=|1﹣i|+i,∴z===+i,∴z 的实部为.故选:A.3.设命题p:“若e x>1,则x>0”,命题q:“若a>b,则”,则()A.“p∧q”为真命题 B.“p∨q”为真命题C.“¬p”为真命题D.以上都不对【考点】复合命题的真假.【分析】分别判断出p,q的真假,从而判断出复合命题的真假即可.【解答】解:命题p:“若e x>1,则x>0”是真命题,命题q:“若a>b,则”是假命题,如:a=1,b=﹣1,故“p∨q”为真命题,故选:B.4.双曲线C:x2﹣=1的顶点到渐近线的距离与焦点到渐近线的距离之比为()A.B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线的方程求出顶点坐标,焦点坐标以及渐近线方程,求出对应的距离,进行求解即可.【解答】解:双曲线的一个定点为A(1,0),焦点为F(2,0),双曲线的渐近线方程为y=±x,不妨设y=x,即x﹣y=0,则A到渐近线的距离d==,焦点到渐近线的距离d===,则顶点到渐近线的距离与焦点到渐近线的距离之比为,故选:A.5.若向量,满足||=||=2,与的夹角为60°,在+上的投影等于()A.B.2 C.D.4+2【考点】平面向量数量积的运算.【分析】利用向量在向量方向上的投影公式求得答案.【解答】解:∵||=||=2,与的夹角为60°,∴•(+)=||2+=||2+||•||cos60°=4+2×2×=6,∵|+|2=||2+||2+2=||2+||2+2||•||cos60=4+4+2×2×2×=12,∴|+|=2∴在+上的投影等于==,故选:C.6.过点A(a,a)可作圆x2+y2﹣2ax+a2+2a﹣3=0的两条切线,则实数a的取值范围为()A.a<﹣3或a>1 B.a<C.﹣3<a<1 或a>D.a<﹣3或1<a<【考点】圆的切线方程;圆的一般方程.【分析】把已知圆的方程化为标准方程,找出圆心P的坐标和圆的半径r,并根据二元二次方程构成圆的条件可得a的范围,利用两点间的距离公式求出|AP|的值,由过A可作圆的两条切线,得到点A在圆P外,可得|AP|的值大于圆的半径r,列出关于a的不等式,求出不等式的解集,与求出的a的范围求出并集,可得满足题意a的取值范围.【解答】解:把圆的方程化为标准方程得:(x﹣a)2+y2=3﹣2a,可得圆心P坐标为(a,0),半径r=,且3﹣2a>0,即a<,由题意可得点A在圆外,即|AP|=>r=,即有a2>3﹣2a,整理得:a2+2a﹣3>0,即(a+3)(a﹣1)>0,解得:a<﹣3或a>1,又a<,可得a<﹣3或1<a<,故选:D.7.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据图象确定A和T的值,进而根据三角函数最小正周期的求法求ω的值,再将特殊点代入求出φ值从而可确定函数f(x)的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可.【解答】解:由图象可知A=1,T=π,∴ω==2∴f(x)=sin(2x+φ),又因为f()=sin(+φ)=﹣1∴+φ=+2kπ,φ=(k∈Z)∵|φ|,∴φ=∴f(x)=sin(2x+)=sin(+2x﹣)=cos(﹣2x)=cos(2x﹣)∴将函数f(x)向左平移可得到cos[2(x+)﹣]=cos2x=y故选C.8.执行如图所示的程序框图.若输入a=3,则输出i的值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】由已知中的程序框图及已知中输入a=3,可得:进入循环的条件为a>45,模拟程序的运行结果,即可得到输出的i值.【解答】解:当a=9时,i=1;当a=21时,i=2;当a=45时,i=3;当a=93时,i=4;结束循环故选:C9.已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 【考点】等差数列与等比数列的综合.【分析】由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.【解答】解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.10.如图,边长为1的菱形ABCD中,∠DAB=60°,沿BD将△ABD翻折,得到三棱锥A﹣BCD,则当三棱锥A﹣BCD体积最大时,异面直线AD与BC所成的角的余弦值为()A.B.C.D.【考点】异面直线及其所成的角.【分析】当三棱锥A﹣BCD体积最大时,平面ADC⊥平面BDC,取DC中点O,连结AO,BO,则AO⊥平面BDC,BO⊥平面ADC,以O为原点,OB为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD与BC所成的角的余弦值.【解答】解:∵边长为1的菱形ABCD中,∠DAB=60°,∴AD=AC=BD=BC=DC=1,当三棱锥A﹣BCD体积最大时,平面ADC⊥平面BDC,取DC中点O,连结AO,BO,则AO⊥平面BDC,BO⊥平面ADC,以O为原点,OB为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,则D(0,﹣,0),A(0,0,),B(,0,0),C(0,,0),=(0,﹣,﹣),=(﹣,,0),设异面直线AD与BC所成的角为θ,则cosθ===.∴异面直线AD与BC所成的角的余弦值为.故选:B.11.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f (x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)【考点】利用导数研究函数的单调性;奇偶性与单调性的综合.【分析】构造函数g(x)=(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:∵y=f(x+2)为偶函数,∴y=f(x+2)的图象关于x=0对称∴y=f(x)的图象关于x=2对称∴f(4)=f(0)又∵f(4)=1,∴f(0)=1设g(x)=(x∈R),则g′(x)==又∵f′(x)<f(x),∴f′(x)﹣f(x)<0∴g′(x)<0,∴y=g(x)在定义域上单调递减∵f(x)<e x∴g(x)<1又∵g(0)==1∴g(x)<g(0)∴x>0故选B.12.设F1,F2分别是双曲线C:﹣=1(a>0,b>0)的左、右焦点,P是C的右支上的点,射线PT平分∠F1PF2,过原点O作PT的平行线交PF1于点M,若|MP|=|F1F2|,则C 的离心率为()A.B.3 C.D.【考点】双曲线的简单性质.【分析】运用极限法,设双曲线的右顶点为A,考察特殊情形,当点P→A时,射线PT→直线x=a,此时PM→AO,即|PM|→a,结合离心率公式即可计算得到.【解答】解:设双曲线的右顶点为A,考察特殊情形,当点P→A时,射线PT→直线x=a,此时PM→AO,即|PM|→a,特别地,当P与A重合时,|PM|=a.由|MP|=|F1F2|=,即有a=,由离心率公式e==.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形的面积为24.【考点】斜二测法画直观图.【分析】根据所给的数据做出直观图形的面积,根据直观图的面积:原图的面积=,得到原图形的面积.【解答】解:∵矩形O'A'B'C'是一个平面图形的直观图,其中O'A'=6,O'C'=2,∴直观图的面积是6×2=12∵直观图的面积:原图的面积=∴原图形的面积是12÷=24.故答案为:24.14.若不等式x2+y2≤2所表示的区域为M,不等式组表示的平面区域为N,现随机向区域N内抛一粒豆子,则豆子落在区域M内的概率为.【考点】几何概型;简单线性规划.【分析】由题意,所求概率满足几何概型的概率,只要分别求出S阴影,S N,求面积比即可.【解答】解:由题,图中△OCD表示N区域,其中C(6,6),D(2,﹣2)所以S N=×=12,S阴影==,所以豆子落在区域M内的概率为.故答案为:.15.在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1②0<sinA+sinB≤③sin2A+cos2B=1④cos2A+cos2B=sin2C,其中正确的是④.【考点】两角和与差的正切函数.【分析】已知式子变形可得A+B=90°,逐个选项判定即可.【解答】解:∵tan=sinC∴=2sin cos,整理求得cos(A+B)=0,∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)∵45°<A+45°<135°,∴<sin(A+45°)≤1,∴1<sinA+sinB≤,②不正确;cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,∴cos2A+cos2B=sin2C,④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知④正确故答案为:④16.已知O为△ABC的垂心,且+2+3=,则A角的值为.【考点】向量的线性运算性质及几何意义.【分析】取AC,BC的中点分别为E,F;化简可得2+4=0,从而记||=x,则||=2x,|AB|=6x,|AC|=|EC|=,|EH|=2xcosA,从而可得=cosA,从而解得.【解答】解:∵+2+3=,∴++2+2=,取AC,BC的中点分别为E,F;∴2+4=0,记||=x,则||=2x,|AB|=6x,|AC|=|EC|=,|EH|=2xcosA,故=cosA,即=2cosA,解得cosA=或cosA=﹣(舍去),故A=,故答案为:.三、解答题(本大题共5小题,共70分,解答题写出必要的文字说明、推理和演算步骤.)17.已知数列{b n}的前n项和.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)设数列{a n}的通项,求数列{a n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(I)利用递推关系即可得出;(II)=(3n﹣2)•2n+(﹣1)n•2n.设数列{(3n﹣2)•2n}的前n项和为A n,利用“错位相减法”与等比数列的前n项和公式即可得出;再利用等比数列的前n项和公式即可得出.【解答】解::(I)∵数列{b n}的前n项和,∴b1=B1==1;当n≥2时,b n=B n﹣B n﹣1=﹣=3n﹣2,当n=1时也成立.∴b n=3n﹣2.(II)=(3n﹣2)•2n+(﹣1)n•2n.设数列{(3n﹣2)•2n}的前n项和为A n,则A n=2+4×22+7×23+…+(3n﹣2)•2n,2A n=22+4×23+…+(3n﹣5)•2n+(3n﹣2)•2n+1,∴﹣A n=2+3(22+23+…+2n)﹣(3n﹣2)•2n+1=﹣4﹣(3n﹣2)•2n+1=(5﹣3n)•2n+1﹣10,∴A n=(3n﹣5)•2n+1+10.数列{(﹣1)n•2n}的前n项和== [1﹣(﹣2)n].∴数列{a n}的前n项和T n=(3n﹣5)•2n+1+10 [1﹣(﹣2)n].18.某工厂有工人500名,记35岁以上(含35岁)的为A类工人,不足35岁的为B类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从A、B两类工人中分别抽取了40人、60人进行测试.(I)求该工厂A、B两类工人各有多少人?(Ⅱ)经过测试,得到以下三个数据图表:(茎、叶分别是十位和个位上的数字)(如图)表:100名参加测试工人成绩频率分布表组号分组频数频率1 [55,60) 5 0.052 [60,65)20 0.203 [65,70)4 [70,75)35 0.355 [75,80)6 [80,85)合计100 1.00①先填写频率分布表中的六个空格,然后将频率分布直方图(图二)补充完整;②该厂拟定从参加考试的79分以上(含79分)的B类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)根据分层抽样即可求出A,B类工人;(Ⅱ)①根据茎叶图即可完成频率分布表和频率分布直方图;②79分以上的B类工人共4人,记80分以上的三人分别为甲,乙,丙,79分的工人为a,一一列举出所有的基本事件,找到满足条件恩对基本事件,根据概率公式计算即可.【解答】解:(I)有题知A类工人有500×=200(人);则B类工人有500﹣200=300(人).(Ⅱ)①表一,组号分组频数频率1 [55,60) 5 0.052 [60,65)20 0.203 [65,70)25 0.254 [70,75)35 0.355 [75,80)10 0.106 [80,85) 5 0.05合计100 1.00图二②79分以上的B类工人共4人,记80分以上的三人分别为甲,乙,丙,79分的工人为a,从中抽取2人,有(甲,乙),(甲,丙),(甲,a),(乙,丙),(乙,a),(丙,a)共6种抽法,抽到2人均在80分以上有(甲,乙),(甲,丙),(乙,丙),共3种抽法.则抽到2人均在80分以上的概率为=.19.已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN丄平面C1B1N;(2)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1,并求的值.(3)求点A到平面CB1N的距离.【考点】点、线、面间的距离计算;直线与平面平行的性质;直线与平面垂直的判定.【分析】(1)由题意可得BB1C1C是矩形,AB⊥BC,AB⊥BB1,BC⊥BB1 ,AB=BC=4,BB1=CC1=8,AN=4,BC⊥平面ANBB1,证明B1C1⊥BN,BN⊥B1N,可证得BN⊥平面C1B1N.(2)过M作MR∥BB1,交NB1于R,过P作PQ∥BB1,交CB1于Q.设PC=a,求得PQ=2a.由PQ=MR得a=3,此时,PMRQ是平行四边形,可得MP∥平面CNB1,可求得的值.(3)先求出△CNB1的面积,而△ANB1面积可求,设点A到平面CB1N的距离为h,根据等体积法可得=,由此求得h的值.【解答】(1)证明:如图:∵该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,∴BB1C1C是矩形,AB⊥BC,AB⊥BB1,BC⊥BB1 ,由三视图中的数据知:AB=BC=4,BB1=CC1=8,AN=4.∵AB⊥BC,BC⊥BB1,∴BC⊥平面ANBB1,∵B1C1∥BC,∴B1C1⊥平面ANBB1 ,因此B1C1⊥BN.在直角梯形B1BAN中,过N作NE∥AB交BB1于E,则B1E=BB1﹣AN=4,故△NEB1是等腰直角三角形,∴∠B1NE=45°,又AB=4,AN=4,∴∠ANB=45°,因此∠BNB1=90°,即BN⊥B1N,又B1N∩B1C1=B1,∴BN⊥平面C1B1N.(2)解:过M作MR∥BB1,交NB1于R,则MR==6,过P作PQ∥BB1,交CB1于Q,则PQ∥MR,设PC=a,则=,即=,∴PQ=2a.由PQ=MR得:2a=6,a=3,此时,PMRQ是平行四边形,∴PM∥RQ,PM=RQ.∵RQ⊂平面CNB1,MP⊄平面CNB1,∴MP∥平面CNB1, ==.(3)∵△CNB1中,CN===4,NB1===4,CB1===4,∴CN2+=,∴CN⊥NB1.设点A到平面CB1N的距离为h,∵=,∴•()•h=•(AN•NB1•sin∠ANB1)•CB,即CN•NB1•h=AN•NB1•sin(90°+45°)•CB,即 4•4•h=4•4••4,∴h=.20.在平面直角坐标系xOy中,一动圆经过点(,0)且与直线x=﹣相切,设该动圆圆心的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)设P是曲线E的动点,点B、C在y轴上,△PBC的内切圆的方程为(x﹣1)2+y2=1,求△PBC面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)运用抛物线的定义,可得轨迹为抛物线,进而得到方程;(Ⅱ)设P(x0,y0),B(0,b),C(0,c),求得直线PB的方程,运用直线和圆相切的条件:d=r,求得b,c的关系,求得△PBC的面积,结合基本不等式,即可得到最小值.【解答】解:(Ⅰ)由题意可知圆心到(,0)的距离等于到直线x=﹣的距离,由抛物线的定义可知,圆心的轨迹方程:y2=2x.(Ⅱ)设P(x0,y0),B(0,b),C(0,c),直线PB的方程为:(y0﹣b)x﹣x0y+x0b=0,又圆心(1,0)到PB的距离为1,即=1,整理得:(x0﹣2)b2+2y0b﹣x0=0,同理可得:(x0﹣2)c2+2y0c﹣x0=0,所以,可知b,c是方程(x0﹣2)x2+2y0x﹣x0=0的两根,所以b+c=,bc=,依题意bc<0,即x0>2,则(c﹣b)2=,因为y02=2x0,所以:|b﹣c|=||所以S=|b﹣c|•|x0|=(x0﹣2)++4≥8当x0=4时上式取得等号,所以△PBC面积最小值为8.21.已知函数f(x)=lnx.(1)若曲线g(x)=f(x)+﹣1在点(2,g (2))处的切线与直线x+2y﹣1=0平行,求实数a的值.(2)若h(x)=f(x)﹣在定义域上是增函数,求实数b的取值范围.(3)设m、n∈R*,且m≠n,求证: |.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出解析式与导数,求出直线的斜率,利用导数值,求解即可.(2)利用求出导函数,通过h′(x)>0在(0,+∞)上恒成立,得到,利用基本不等式求解最值.(3)不妨设m>n>0,利用分析法,结合函数的单调性证明即可.【解答】(1)解:,g (x)在点(2,g (2))处的切线与直线x+2y﹣1=0平行,∴(2)证:由得:∵h(x)在定义域上是增函数,∴h′(x)>0在(0,+∞)上恒成立∴x2+2(1﹣b)x+1>0,即恒成立∵当且仅当时,等号成立∴b≤2,即b的取值范围是(﹣∞,2](3)证:不妨设m>n>0,则要证,即证,即设由(2)知h (x)在(1,+∞)上递增,∴h (x)>h (1)=0故,∴成立[选修4-1:几何证明选讲]22.如图,圆M与圆N交于A,B两点,以A为切点作两圆的切线分别交圆M和圆N于C,D 两点,延长延长DB交圆M于点E,延长CB交圆N于点F.已知BC=5,DB=10.(1)求AB的长;(2)求.【考点】弦切角;与圆有关的比例线段.【分析】(1)根据弦切角定理,推导出△ABC∽△DBA,由此能求出AB的长.(2)根据切割线定理,推导出△ABC∽△DBA,得,,由此能求出.【解答】解:(1)根据弦切角定理,知∠BAC=∠BDA,∠ACB=∠DAB,∴△ABC∽△DBA,则,故.…(2)根据切割线定理,知CA2=CB•CF,DA2=DB•DE,两式相除,得(*)由△ABC∽△DBA,得,,又,由(*)得.…[选修4-4:坐标系与参数方程]23.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.【考点】参数方程化成普通方程.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.[选修4-5:不等式选讲]24.设函数f(x)=的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣|+|x+2|≤M的解集.【考点】函数的最值及其几何意义;绝对值不等式的解法.【分析】(Ⅰ)利用基本不等式以及重要不等式,转化求解函数的最值,即可求实数M的值;(Ⅱ)通过绝对值不等式的几何意义,之间求关于x的不等式|x﹣|+|x+2|≤M的解集.【解答】(本小题满分10分)选修4﹣5:不等式选讲解:(I)因为a,b>0时,,所以,当且仅当时等号成立.故函数f(x)的最大值﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由绝对值三角不等式可得.所以不等式的解x就是方程的解.由绝对值的几何意义得,当且仅当时,.所以不等式的解集为:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣。
2016年河南省南阳一中高考数学三模试卷(文科)一、选择题:(本大题共12小题,每小题5分)1.定义集合A={x|2x≥1}},B={x|x<0},则A∩∁R B=()A.(1,+∞)B.[0,1]C.[0,1)D.[0,2)2.若复数z满足z(1﹣i)=|1﹣i|+i,则z的实部为()A.B.﹣1 C.1 D.3.设命题p:“若e x>1,则x>0”,命题q:“若a>b,则”,则()A.“p∧q”为真命题B.“p∨q”为真命题C.“¬p”为真命题D.以上都不对4.双曲线C:x2﹣=1的顶点到渐近线的距离与焦点到渐近线的距离之比为()A.B.C.D.5.若向量,满足||=||=2,与的夹角为60°,在+上的投影等于()A.B.2 C.D.4+26.过点A(a,a)可作圆x2+y2﹣2ax+a2+2a﹣3=0的两条切线,则实数a的取值范围为()A.a<﹣3或a>1 B.a<C.﹣3<a<1 或a>D.a<﹣3或1<a<7.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度8.执行如图所示的程序框图.若输入a=3,则输出i的值是()A.2 B.3 C.4 D.59.已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 10.如图,边长为1的菱形ABCD中,∠DAB=60°,沿BD将△ABD翻折,得到三棱锥A ﹣BCD,则当三棱锥A﹣BCD体积最大时,异面直线AD与BC所成的角的余弦值为()A.B.C.D.11.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)12.设F1,F2分别是双曲线C:﹣=1(a>0,b>0)的左、右焦点,P是C的右支上的点,射线PT平分∠F1PF2,过原点O作PT的平行线交PF1于点M,若|MP|=|F1F2|,则C的离心率为()A.B.3 C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形的面积为.14.若不等式x2+y2≤2所表示的区域为M,不等式组表示的平面区域为N,现随机向区域N内抛一粒豆子,则豆子落在区域M内的概率为.15.在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1②0<sinA+sinB≤③sin2A+cos2B=1④cos2A+cos2B=sin2C,其中正确的是.16.已知O为△ABC的垂心,且+2+3=,则A角的值为.三、解答题(本大题共5小题,共70分,解答题写出必要的文字说明、推理和演算步骤.)17.已知数列{b n}的前n项和.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)设数列{a n}的通项,求数列{a n}的前n项和T n.18.某工厂有工人500名,记35岁以上(含35岁)的为A类工人,不足35岁的为B类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从A、B两类工人中分别抽取了40人、60人进行测试.(I)求该工厂A、B两类工人各有多少人?(Ⅱ)经过测试,得到以下三个数据图表:(茎、叶分别是十位和个位上的数字)(如图)表:100名参加测试工人成绩频率分布表②该厂拟定从参加考试的79分以上(含79分)的B类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.19.已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN丄平面C1B1N;(2)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1,并求的值.(3)求点A到平面CB1N的距离.20.在平面直角坐标系xOy中,一动圆经过点(,0)且与直线x=﹣相切,设该动圆圆心的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)设P是曲线E的动点,点B、C在y轴上,△PBC的内切圆的方程为(x﹣1)2+y2=1,求△PBC面积的最小值.21.已知函数f(x)=lnx.(1)若曲线g(x)=f(x)+﹣1在点(2,g (2))处的切线与直线x+2y﹣1=0平行,求实数a的值.(2)若h(x)=f(x)﹣在定义域上是增函数,求实数b的取值范围.(3)设m、n∈R*,且m≠n,求证:|.[选修4-1:几何证明选讲]22.如图,圆M与圆N交于A,B两点,以A为切点作两圆的切线分别交圆M和圆N于C,D两点,延长延长DB交圆M于点E,延长CB交圆N于点F.已知BC=5,DB=10.(1)求AB的长;(2)求.[选修4-4:坐标系与参数方程]23.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.[选修4-5:不等式选讲]24.设函数f(x)=的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣|+|x+2|≤M的解集.2016年河南省南阳一中高考数学三模试卷(文科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分)1.定义集合A={x|2x≥1}},B={x|x<0},则A∩∁R B=()A.(1,+∞)B.[0,1]C.[0,1)D.[0,2)【考点】交、并、补集的混合运算.【分析】分别求出关于集合A、B的范围,得到B的补集,从而求出其和A的交集即可.【解答】解:∵A={x|2x≥1}}={x|x≥0},B={x|x<0}={x|x>1},∴∁R B={x|x≤1},故A∩∁R B=[0,1],故选:B.2.若复数z满足z(1﹣i)=|1﹣i|+i,则z的实部为()A.B.﹣1 C.1 D.【考点】复数代数形式的混合运算.【分析】z(1﹣i)=|1﹣i|+i,化为z=,再利用复数的运算法则、实部的定义即可得出.【解答】解:∵z(1﹣i)=|1﹣i|+i,∴z===+i,∴z的实部为.故选:A.3.设命题p:“若e x>1,则x>0”,命题q:“若a>b,则”,则()A.“p∧q”为真命题B.“p∨q”为真命题C.“¬p”为真命题D.以上都不对【考点】复合命题的真假.【分析】分别判断出p,q的真假,从而判断出复合命题的真假即可.【解答】解:命题p:“若e x>1,则x>0”是真命题,命题q:“若a>b,则”是假命题,如:a=1,b=﹣1,故“p∨q”为真命题,故选:B.4.双曲线C:x2﹣=1的顶点到渐近线的距离与焦点到渐近线的距离之比为()A .B .C .D .【考点】双曲线的简单性质.【分析】根据双曲线的方程求出顶点坐标,焦点坐标以及渐近线方程,求出对应的距离,进行求解即可.【解答】解:双曲线的一个定点为A (1,0),焦点为F (2,0),双曲线的渐近线方程为y=±x ,不妨设y=x ,即x ﹣y=0,则A 到渐近线的距离d==,焦点到渐近线的距离d===,则顶点到渐近线的距离与焦点到渐近线的距离之比为,故选:A .5.若向量,满足||=||=2,与的夹角为60°,在+上的投影等于( )A .B .2C .D .4+2 【考点】平面向量数量积的运算.【分析】利用向量在向量方向上的投影公式求得答案.【解答】解:∵||=||=2,与的夹角为60°,∴•(+)=||2+=||2+||•||cos60°=4+2×2×=6,∵|+|2=||2+||2+2=||2+||2+2||•||cos60=4+4+2×2×2×=12,∴|+|=2∴在+上的投影等于==,故选:C . 6.过点A (a ,a )可作圆x 2+y 2﹣2ax+a 2+2a ﹣3=0的两条切线,则实数a 的取值范围为( )A .a <﹣3或a >1B .a <C .﹣3<a <1 或a >D .a <﹣3或1<a <【考点】圆的切线方程;圆的一般方程.【分析】把已知圆的方程化为标准方程,找出圆心P 的坐标和圆的半径r ,并根据二元二次方程构成圆的条件可得a 的范围,利用两点间的距离公式求出|AP|的值,由过A 可作圆的两条切线,得到点A 在圆P 外,可得|AP|的值大于圆的半径r ,列出关于a 的不等式,求出不等式的解集,与求出的a 的范围求出并集,可得满足题意a 的取值范围. 【解答】解:把圆的方程化为标准方程得:(x ﹣a )2+y 2=3﹣2a ,可得圆心P坐标为(a,0),半径r=,且3﹣2a>0,即a<,由题意可得点A在圆外,即|AP|=>r=,即有a2>3﹣2a,整理得:a2+2a﹣3>0,即(a+3)(a﹣1)>0,解得:a<﹣3或a>1,又a<,可得a<﹣3或1<a<,故选:D.7.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据图象确定A和T的值,进而根据三角函数最小正周期的求法求ω的值,再将特殊点代入求出φ值从而可确定函数f(x)的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可.【解答】解:由图象可知A=1,T=π,∴ω==2∴f(x)=sin(2x+φ),又因为f()=sin(+φ)=﹣1∴+φ=+2kπ,φ=(k∈Z)∵|φ|,∴φ=∴f(x)=sin(2x+)=sin(+2x﹣)=cos(﹣2x)=cos(2x﹣)∴将函数f(x)向左平移可得到cos[2(x+)﹣]=cos2x=y故选C.8.执行如图所示的程序框图.若输入a=3,则输出i的值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】由已知中的程序框图及已知中输入a=3,可得:进入循环的条件为a>45,模拟程序的运行结果,即可得到输出的i值.【解答】解:当a=9时,i=1;当a=21时,i=2;当a=45时,i=3;当a=93时,i=4;结束循环故选:C9.已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 【考点】等差数列与等比数列的综合.【分析】由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.【解答】解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.10.如图,边长为1的菱形ABCD中,∠DAB=60°,沿BD将△ABD翻折,得到三棱锥A ﹣BCD,则当三棱锥A﹣BCD体积最大时,异面直线AD与BC所成的角的余弦值为()A.B.C.D.【考点】异面直线及其所成的角.【分析】当三棱锥A﹣BCD体积最大时,平面ADC⊥平面BDC,取DC中点O,连结AO,BO,则AO⊥平面BDC,BO⊥平面ADC,以O为原点,OB为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD与BC所成的角的余弦值.【解答】解:∵边长为1的菱形ABCD中,∠DAB=60°,∴AD=AC=BD=BC=DC=1,当三棱锥A﹣BCD体积最大时,平面ADC⊥平面BDC,取DC中点O,连结AO,BO,则AO⊥平面BDC,BO⊥平面ADC,以O为原点,OB为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,则D(0,﹣,0),A(0,0,),B(,0,0),C(0,,0),=(0,﹣,﹣),=(﹣,,0),设异面直线AD与BC所成的角为θ,则cosθ===.∴异面直线AD与BC所成的角的余弦值为.故选:B.11.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)【考点】利用导数研究函数的单调性;奇偶性与单调性的综合.【分析】构造函数g(x)=(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解【解答】解:∵y=f(x+2)为偶函数,∴y=f(x+2)的图象关于x=0对称∴y=f(x)的图象关于x=2对称∴f(4)=f(0)又∵f(4)=1,∴f(0)=1设g(x)=(x∈R),则g′(x)==又∵f′(x)<f(x),∴f′(x)﹣f(x)<0∴g′(x)<0,∴y=g(x)在定义域上单调递减∵f(x)<e x∴g(x)<1又∵g(0)==1∴g(x)<g(0)∴x>0故选B.12.设F1,F2分别是双曲线C:﹣=1(a>0,b>0)的左、右焦点,P是C的右支上的点,射线PT平分∠F1PF2,过原点O作PT的平行线交PF1于点M,若|MP|=|F1F2|,则C的离心率为()A.B.3 C.D.【考点】双曲线的简单性质.【分析】运用极限法,设双曲线的右顶点为A,考察特殊情形,当点P→A时,射线PT→直线x=a,此时PM→AO,即|PM|→a,结合离心率公式即可计算得到.【解答】解:设双曲线的右顶点为A,考察特殊情形,当点P→A时,射线PT→直线x=a,此时PM→AO,即|PM|→a,特别地,当P与A重合时,|PM|=a.由|MP|=|F1F2|=,即有a=,由离心率公式e==.故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形的面积为24.【考点】斜二测法画直观图.【分析】根据所给的数据做出直观图形的面积,根据直观图的面积:原图的面积=,得到原图形的面积.【解答】解:∵矩形O'A'B'C'是一个平面图形的直观图,其中O'A'=6,O'C'=2,∴直观图的面积是6×2=12∵直观图的面积:原图的面积=∴原图形的面积是12÷=24.故答案为:24.14.若不等式x2+y2≤2所表示的区域为M,不等式组表示的平面区域为N,现随机向区域N内抛一粒豆子,则豆子落在区域M内的概率为.【考点】几何概型;简单线性规划.【分析】由题意,所求概率满足几何概型的概率,只要分别求出S,S N,求面积比即可.阴影【解答】解:由题,图中△OCD表示N区域,其中C(6,6),D(2,﹣2)==,所以S N=×=12,S阴影所以豆子落在区域M内的概率为.故答案为:.15.在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1②0<sinA+sinB≤③sin2A+cos2B=1④cos2A+cos2B=sin2C,其中正确的是④.【考点】两角和与差的正切函数.【分析】已知式子变形可得A+B=90°,逐个选项判定即可.【解答】解:∵tan=sinC∴=2sin cos,整理求得cos(A+B)=0,∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)∵45°<A+45°<135°,∴<sin(A+45°)≤1,∴1<sinA+sinB≤,②不正确;cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,∴cos2A+cos2B=sin2C,④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知④正确故答案为:④16.已知O为△ABC的垂心,且+2+3=,则A角的值为.【考点】向量的线性运算性质及几何意义.【分析】取AC,BC的中点分别为E,F;化简可得2+4=0,从而记||=x,则||=2x,|AB|=6x,|AC|=|EC|=,|EH|=2xcosA,从而可得=cosA,从而解得.【解答】解:∵+2+3=,∴++2+2=,取AC,BC的中点分别为E,F;∴2+4=0,记||=x,则||=2x,|AB|=6x,|AC|=|EC|=,|EH|=2xcosA,故=cosA,即=2cosA,解得cosA=或cosA=﹣(舍去),故A=,故答案为:.三、解答题(本大题共5小题,共70分,解答题写出必要的文字说明、推理和演算步骤.)17.已知数列{b n}的前n项和.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)设数列{a n}的通项,求数列{a n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(I)利用递推关系即可得出;(II)=(3n﹣2)•2n+(﹣1)n•2n.设数列{(3n﹣2)•2n}的前n项和为A n,利用“错位相减法”与等比数列的前n项和公式即可得出;再利用等比数列的前n 项和公式即可得出.【解答】解::(I)∵数列{b n}的前n项和,∴b1=B1==1;=﹣=3n﹣2,当n=1时也成立.当n≥2时,b n=B n﹣B n﹣1∴b n=3n﹣2.(II)=(3n﹣2)•2n+(﹣1)n•2n.设数列{(3n﹣2)•2n}的前n项和为A n,则A n=2+4×22+7×23+…+(3n﹣2)•2n,2A n=22+4×23+…+(3n﹣5)•2n+(3n﹣2)•2n+1,∴﹣A n=2+3(22+23+…+2n)﹣(3n﹣2)•2n+1=﹣4﹣(3n﹣2)•2n+1=(5﹣3n)•2n+1﹣10,∴A n=(3n﹣5)•2n+1+10.数列{(﹣1)n•2n}的前n项和==[1﹣(﹣2)n].∴数列{a n}的前n项和T n=(3n﹣5)•2n+1+10[1﹣(﹣2)n].18.某工厂有工人500名,记35岁以上(含35岁)的为A类工人,不足35岁的为B类工人,为调查该厂工人的个人文化素质状况,现用分层抽样的方法从A、B两类工人中分别抽取了40人、60人进行测试.(I)求该工厂A、B两类工人各有多少人?(Ⅱ)经过测试,得到以下三个数据图表:(茎、叶分别是十位和个位上的数字)(如图)②该厂拟定从参加考试的79分以上(含79分)的B类工人中随机抽取2人参加高级技工培训班,求抽到的2人分数都在80分以上的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)根据分层抽样即可求出A,B类工人;(Ⅱ)①根据茎叶图即可完成频率分布表和频率分布直方图;②79分以上的B类工人共4人,记80分以上的三人分别为甲,乙,丙,79分的工人为a,一一列举出所有的基本事件,找到满足条件恩对基本事件,根据概率公式计算即可.【解答】解:(I)有题知A类工人有500×=200(人);则B类工人有500﹣200=300(人).①②79分以上的B 类工人共4人,记80分以上的三人分别为甲,乙,丙,79分的工人为a ,从中抽取2人,有(甲,乙),(甲,丙),(甲,a ),(乙,丙),(乙,a ),(丙,a )共6种抽法,抽到2人均在80分以上有(甲,乙),(甲,丙),(乙,丙),共3种抽法.则抽到2人均在80分以上的概率为=.19.已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN 丄平面C 1B 1N ;(2)设M 为AB 中点,在BC 边上找一点P ,使MP ∥平面CNB 1,并求的值.(3)求点A 到平面CB 1N 的距离.【考点】点、线、面间的距离计算;直线与平面平行的性质;直线与平面垂直的判定. 【分析】(1)由题意可得BB 1C 1C 是矩形,AB ⊥BC ,AB ⊥BB 1,BC ⊥BB 1 ,AB=BC=4,BB 1=CC 1=8,AN=4,BC ⊥平面ANBB 1,证明B 1C 1⊥BN ,BN ⊥B 1N ,可证得BN ⊥平面C 1B 1N . (2)过M 作MR ∥BB 1,交NB 1于R ,过P 作PQ ∥BB 1,交CB 1于Q .设PC=a ,求得PQ=2a .由PQ=MR 得a=3,此时,PMRQ 是平行四边形,可得MP ∥平面CNB 1,可求得的值.(3)先求出△CNB1的面积,而△ANB1面积可求,设点A到平面CB1N的距离为h,根据等体积法可得=,由此求得h的值.【解答】(1)证明:如图:∵该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,∴BB1C1C是矩形,AB⊥BC,AB⊥BB1,BC⊥BB1 ,由三视图中的数据知:AB=BC=4,BB1=CC1=8,AN=4.∵AB⊥BC,BC⊥BB1,∴BC⊥平面ANBB1,∵B1C1∥BC,∴B1C1⊥平面ANBB1 ,因此B1C1⊥BN.在直角梯形B1BAN中,过N作NE∥AB交BB1于E,则B1E=BB1﹣AN=4,故△NEB1是等腰直角三角形,∴∠B1NE=45°,又AB=4,AN=4,∴∠ANB=45°,因此∠BNB1=90°,即BN⊥B1N,又B1N∩B1C1=B1,∴BN⊥平面C1B1N.(2)解:过M作MR∥BB1,交NB1于R,则MR==6,过P作PQ∥BB1,交CB1于Q,则PQ∥MR,设PC=a,则=,即=,∴PQ=2a.由PQ=MR得:2a=6,a=3,此时,PMRQ是平行四边形,∴PM∥RQ,PM=RQ.∵RQ⊂平面CNB1,MP⊄平面CNB1,∴MP∥平面CNB1,==.(3)∵△CNB1中,CN===4,NB1===4,CB1===4,∴CN2+=,∴CN⊥NB1.设点A到平面CB1N的距离为h,∵=,∴•()•h=•(AN•NB1•sin∠ANB1)•CB,即CN•NB1•h=AN•NB1•sin(90°+45°)•CB,即4•4•h=4•4••4,∴h=.20.在平面直角坐标系xOy中,一动圆经过点(,0)且与直线x=﹣相切,设该动圆圆心的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)设P是曲线E的动点,点B、C在y轴上,△PBC的内切圆的方程为(x﹣1)2+y2=1,求△PBC面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)运用抛物线的定义,可得轨迹为抛物线,进而得到方程;(Ⅱ)设P(x0,y0),B(0,b),C(0,c),求得直线PB的方程,运用直线和圆相切的条件:d=r,求得b,c的关系,求得△PBC的面积,结合基本不等式,即可得到最小值.【解答】解:(Ⅰ)由题意可知圆心到(,0)的距离等于到直线x=﹣的距离,由抛物线的定义可知,圆心的轨迹方程:y2=2x.(Ⅱ)设P(x0,y0),B(0,b),C(0,c),直线PB的方程为:(y0﹣b)x﹣x0y+x0b=0,又圆心(1,0)到PB的距离为1,即=1,整理得:(x0﹣2)b2+2y0b﹣x0=0,同理可得:(x0﹣2)c2+2y0c﹣x0=0,所以,可知b,c是方程(x0﹣2)x2+2y0x﹣x0=0的两根,所以b+c=,bc=,依题意bc<0,即x0>2,则(c﹣b)2=,因为y02=2x0,所以:|b﹣c|=||所以S=|b﹣c|•|x0|=(x0﹣2)++4≥8当x0=4时上式取得等号,所以△PBC面积最小值为8.21.已知函数f(x)=lnx.(1)若曲线g(x)=f(x)+﹣1在点(2,g (2))处的切线与直线x+2y﹣1=0平行,求实数a的值.(2)若h(x)=f(x)﹣在定义域上是增函数,求实数b的取值范围.(3)设m、n∈R*,且m≠n,求证:|.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出解析式与导数,求出直线的斜率,利用导数值,求解即可.(2)利用求出导函数,通过h′(x)>0在(0,+∞)上恒成立,得到,利用基本不等式求解最值.(3)不妨设m>n>0,利用分析法,结合函数的单调性证明即可.【解答】(1)解:,g (x)在点(2,g (2))处的切线与直线x+2y﹣1=0平行,∴(2)证:由得:∵h(x)在定义域上是增函数,∴h′(x)>0在(0,+∞)上恒成立∴x2+2(1﹣b)x+1>0,即恒成立∵当且仅当时,等号成立∴b≤2,即b的取值范围是(﹣∞,2](3)证:不妨设m>n>0,则要证,即证,即设由(2)知h (x)在(1,+∞)上递增,∴h (x)>h (1)=0故,∴成立[选修4-1:几何证明选讲]22.如图,圆M与圆N交于A,B两点,以A为切点作两圆的切线分别交圆M和圆N于C,D两点,延长延长DB交圆M于点E,延长CB交圆N于点F.已知BC=5,DB=10.(1)求AB的长;(2)求.【考点】弦切角;与圆有关的比例线段.【分析】(1)根据弦切角定理,推导出△ABC∽△DBA,由此能求出AB的长.(2)根据切割线定理,推导出△ABC∽△DBA,得,,由此能求出.【解答】解:(1)根据弦切角定理,知∠BAC=∠BDA,∠ACB=∠DAB,∴△ABC∽△DBA,则,故.…(2)根据切割线定理,知CA2=CB•CF,DA2=DB•DE,两式相除,得(*)由△ABC∽△DBA,得,,又,由(*)得.…[选修4-4:坐标系与参数方程]23.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.【考点】参数方程化成普通方程.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.[选修4-5:不等式选讲]24.设函数f(x)=的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣|+|x+2|≤M的解集.【考点】函数的最值及其几何意义;绝对值不等式的解法.【分析】(Ⅰ)利用基本不等式以及重要不等式,转化求解函数的最值,即可求实数M的值;(Ⅱ)通过绝对值不等式的几何意义,之间求关于x的不等式|x﹣|+|x+2|≤M的解集.【解答】(本小题满分10分)选修4﹣5:不等式选讲解:(I)因为a,b>0时,,所以,当且仅当时等号成立.故函数f(x)的最大值﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由绝对值三角不等式可得.所以不等式的解x就是方程的解.由绝对值的几何意义得,当且仅当时,.所以不等式的解集为:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2016年7月25日。