一元二次方程的根的分布PPT课件
- 格式:ppt
- 大小:118.00 KB
- 文档页数:9
布2023-11-07•定义和公式•根的分布情况•图像表示目录•实例分析•解题技巧和注意事项•练习题与答案01定义和公式定义一元二次方程的标准形式是$ax^2 + bx + c = 0$,其中$a \neq 0$。
说明一元二次方程的标准形式是解决一元二次方程问题的基础,通过配方等方法可以将非标准形式的一元二次方程转化为标准形式,便于分析其根的分布情况。
一元二次方程的标准形式一元二次方程的解是满足方程的根,记作$x_{1}, x_{2}$。
定义根据判别式的性质,一元二次方程的解的情况分为三种:有两个不相等的实数根、有两个相等的实数根和没有实数根。
判别式$b^2 - 4ac$是判断一元二次方程解的分布情况的依据。
说明一元二次方程的解02根的分布情况当判别式Δ大于0时,一元二次方程有两个不相等的实根。
两根不等实根与系数关系图像表示两个实根的和为-b/a,两个实根的积为c/a。
在实数平面上表示为两个不相交的直线。
030201当判别式Δ等于0时,一元二次方程有两个相等的实根。
两根相等两个实根的和为-b/a,两个实根的积为c/a。
实根与系数关系在实数平面上表示为一条直线。
图像表示当判别式Δ小于0时,一元二次方程有两个不相等的虚根。
两根不等且虚根两个虚根的实部为0。
实部为0两个虚根的虚部为√(-Δ)/a。
虚部与系数关系在复数平面上表示为两个相交的直线。
图像表示当Δ < 0时,方程的根的分布03图像表示图像表示一元二次方程的解实数根对于一元二次方程 $ax^2 + bx + c = 0$,如果 $a > 0$,那么该方程有两个实数根,分别是 $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ 和 $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$。
虚数根如果 $a < 0$,那么该方程有两个共轭虚数根,分别是 $x_1 = \frac{-b + i\sqrt{4ac - b^2}}{2a}$ 和 $x_2 = \frac{-b - i\sqrt{4ac - b^2}}{2a}$。