一元二次方程复习课PPT课件
- 格式:ppt
- 大小:267.00 KB
- 文档页数:8
初三数学第21章一元二次方程复习讲义一、一元二次方程的定义方程中只含有一个未知数,•并且未知数的最高次数是2,•这样的整式的方程叫做一元二次方程,通常可写成如下的一般形式:ax 2+bx+c=0(a ≠0)其中二次项系数是a ,一次项系数是b ,常数项是c .例1.求方程2x 2+3=22x-4的二次项系数,一次项系数及常数项的积.例2.若关于x 的方程(m+3)27m x -+(m-5)x+5=0是一元二次方程,试求m 的值,•并计算这个方程的各项系数之和.例3.若关于x 的方程(k 2-4)x 2+1k -x+5=0是一元二次方程,求k 的取值范围.例4.若α是方程x 2-5x+1=0的一个根,求α2+21α的值.1.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( ) A .4 B .0或2 C .1 D .1-2.一个三角形的两边长为3和6,第三边的边长是方程(2)(4)0x x --=的根,则这个三角形的周长是( ) A.11 B.11或13 C.13 D.11和13 3.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽.(部分参考数据:2321024=,2522704=,2482304=)二、一元二次方程的一般解法 基本方法有:(1)配方法; (2)公式法; (3) 因式分解法。
联系:①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次. ②公式法是由配方法推导而得到.③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程. 区别:①配方法要先配方,再开方求根. ②公式法直接利用公式求根.③因式分解法要使方程一边为两个一次因式相乘,另一边为0,•再分别使各一次因式等于0.例1、用三种方法解下列一元二次方程1、x 2 +8x+12=02、3x 23x-6=0用适当的方法解一元二次方程1、x2-2x-2=02、2x23、x(2x-3)=(3x+2)(2x-3)4、4x2-4x+1=x2+6x+95、(x-1)2-2(x2-1)=0注意:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法三、判定一元二次方程的根的情况?一元二次方程ax2+bx+c=0(a≠0)的根的判别式是△=b2-4ac,1.△=b2-4ac>0↔一元二次方程有两个不相等的实根;2.△=b2-4ac=0↔一元二次方程有两个相等的实数;3.△=b2-4ac<0↔一元二次方程没有实根.例1、不解方程判断下列方程根的情况1、x2-(2、x2-2kx+(2k-1)=0例2、关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a 的值为例3、已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,•则△ABC为例5、已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根求4)2(222-+-baab的值例6、(2006.广东)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.四、一元二次方程根与系数的关系一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x 1x2x1 + x 2= -bax 1 x2=ca例1.方程的x2-2x-1=0的两个实数根分别为x1,x2, 则(x1 -1)(x 2-1)=例2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-ba,x1·x2=ca;(2)•求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.五、一元二次方程与实际问题的应用步骤:①审②设③列④解⑤答应用题常见的几种类型:1. 增长率问题 [增长率公式:b x a =2)1( ]例1:某工厂一月份产值为50万元,采用先进技术后,第一季度共获产值182万元,二、三月份平均每月增长的百分率是多少?例2:某种产品的成本在两年内从16元降至9元,求平均每年降低的百分率。