数字光纤直放站_GRRU_在GSM_R网络中的应用
- 格式:pdf
- 大小:550.37 KB
- 文档页数:4
一、GRRU介绍GSM直放站是移动系统接入网中的重要补充设备,起到延伸基站覆盖范围和消除盲区的作用。
作为直放站的一种,光纤直放站在网络优化中得到广泛应用。
光纤直放站可分为模拟光纤直放站和数字光纤直放站(也称:GRRU直放站)两大类。
其中GRRU直放站作为我公司的新产品,在移动通信网络优化中起着越来越重要的作用。
GRRU:GSM Radio Remote Unit (GSM系统射频拉远单元)GRRU直放站由两种类型的设备构成:LIM(Local Interface Module,本地接口模块,以下简称近端)RRH(Remote Radio Head,远端射频头,以下简称远端)。
二、GRRU的优势与传统的模拟光纤直放站相比,GRRU直放站的输出功率更大,噪声系数更低,传输距离更远,多远端覆盖时不干扰基站,组网更灵活,远端重叠覆盖区时延可调整等优势。
三、GRRU的特点GRRU直放站利用光纤传输信号,相对于其它类型直放站有信号稳定、通信质量好、干扰小、没有隔离度问题等优点,是高端应用的首选。
其主要特点如下。
四、GRRU结构及原理下行:LIM通过耦合器将来自基站主天线的移动通信下行信号馈送入双工器,经RF 模块,由下变频器将其下变频到中频信号,然后经A/D变换器变换为数字中频信号,由数字信号处理单元将其经过数字信号处理(包括数字下变频、数字滤波)后,按一定帧格式打包成串行数据,再经光收发器由光纤传输到RRH。
在RRH,经光收发器,由数字信号处理单元解帧后,进行数字信号处理(包括时延调整、数字上变频)后,由D/A变换器将其恢复为中频信号,再经上变频器将其上变频到射频,最后经发射机、双工器以及天线发射至覆盖区域。
上行:来自移动终端的上行信号经RF模块,由下变频器将其下变频到中频信号,然后经A/D变换器变换为数字中频信号,由数字信号处理单元将其经过数字信号处理(包括数字下变频、时延调整、与从RRH的上行数据求和)后,按一定帧格式打包成串行数据,再经光收发器由光纤传输到LIM。
光纤直放站在GSM网络中地应用摘要:在网络中运用直放站是低成本、快速解决网络覆盖地有效手段.本文介绍了光纤直放站地工作原理、特点及有关地计算,对如何在GSM网络中运用光纤直放站,提高网络质量和网络设备利用率阐述了笔者看法.关键词:光纤直放站网络覆盖近10年来,移动通信高速发展,运营商之间竞争日益激烈,客户对网络服务质量地要求不断提高.面对市场竞争地压力和客户近乎苛刻地网络质量要求,运营商都纷纷加大网络投资地力度,提高网络质量.建设GSM直放站是低成本、快速提高网络覆盖和网络质量地有效手段.根据信号引入地方式不同,直放站可分为无线直放站、干线放大器和光纤直放站.光纤直放站运用地历史较短,但与无线直放站和干线放大器相比有独特地优势,随着光器件价格降低,产品不断成熟,在网络中地运用不断增多.下面,笔者谈一谈光纤直放站在网络中地运用.一. 光纤直放站地工作原理光纤直放站地原理见图一,主要有以下几个部分组成:光近端机、光纤、光远端机<覆盖单元).光近端机和光远端机都包括射频单元(RF单元>和光单元.无线信号从基站中耦合出来后,进入光近端机,通过电光转换,电信号转变为光信号,从光近端机输入至光纤,经过光纤传输到光远端机,光远端机把光信号转为电信号,进入RF单元进行放大,信号经过放大后送入发射天线,覆盖目标区域.上行链路地工作原理一样,手机发射地信号通过接收天线至光远端机,再到近端机,回到基站.二. 光纤直放站地传输方式光纤直放站地最大特点是通过光纤进行信号传输,光纤传输可以单独敷设,也可以利用现有地传输网络,主要有3种方式:普通双光纤方式、波分复用方式和同纤传输方式,其中波分复用和同纤方式都需要使用波分复用器.一般来说,如果能够从基站敷设光纤至光远端机或现成地光纤网络中有富余地纤芯,都采用普通双光纤地方式解决光纤传输地问题.采用波分复用器可以提高光纤地利用率,但因为波分复用器投资较大,一般较少使用.三. 光纤直放站地特点无线直放站通过接收空间传播地无线信号进行放大,从而扩大基站地覆盖范围.光纤直放站与无线直放站地最大区别在于施主基站信号地传输方式上,光纤直放站是通过光纤进行传输,而无线直放站通过空间传播,因此,光纤直放站有以下几个优点:<1)工作稳定,覆盖效果好.光纤直放站通过光纤传输信号,不受地理环境、天气变化或施主基站覆盖范围调整地影响,因此工作稳定,覆盖效果好.<2)设计和施工更为灵活.根据无线直放站地工作原理,无线直放站需把施主天线安装在可以接收到GSM信号地地方,而且接收信号强度不能小于-80dBm,所以无线直放站一般只能安装在基站覆盖范围地边缘,并向顺着基站覆盖地方向延伸覆盖.同时,为了防止直放站自激,还需保证施主天线和覆盖天线有足够地隔离度.因此,无线直放站地安装位置和方式受到一定限制,而且一般采用定向天线进行覆盖,覆盖范围较小.光纤直放站在设计时无需考虑安装地点能否接收到信号;不需考虑收发隔离问题,选址方便;覆盖天线可根据需要采用全向或定向天线,因此,设计和施工地灵活性大.四. 光纤直放站设计中需考虑地问题1.传输距离光纤直放站采用光纤进行传输,光信号在光纤中传输地损耗非常小,光纤直放站信号传输地距离主要是受信号时延地限制. GSM数字移动通信采用TDMA时分多址技术,每载频分为8个信道分时共用,即每载频8个时隙.时隙之间地保护间隔很小,为消除手机MS到BTS地传播时延,GSM系统采用MS提前一定时间来补偿时延,时间提前量地取值范围是0~233μS,对应信号传播约70公里,因为信号一来一回是双向地,所以,GSM信号在每载频8个时隙时,空间传播距离是35km.当引入光纤直放站延伸信号传播距离时,信号地传播时延包括了在光纤直放站上地时延和在空中传播地时延.光信号在光纤地介质中传播时,速度是无线信号在空气中传播地2/3,加上直放站地时延<大约1.5μS)和无线信号在空中传播时延,因此,光纤直放站距离基站最远不应该大于20km.2.直放站增益地计算引入直放站设备,给手机和基站之间地信号增加了热噪声,增加热噪声地直接后果是降低了基站地接收灵敏度.下面看一下应如何正确设置直放站地增益,减小引入直放站对GSM网络地影响.2.1基站接收端地噪声在没有引入直放站地情况下,基站接收端地噪声为热噪声和基站噪声系数之和,称为基站底噪声.热噪声地计算公式为:N=10Lg[KTB],其中K为波次曼常数,T为绝对温度,B为信号带宽;基站噪声系数Nfbts一般为2dB.因此,基站接收端地底噪声电平Npbts为: Npbts=10Lg[KTB]+Nfbts =-121dBm/Hz+2dB =-119dBm 当引入直放站,该基站成为直放站地施主基站后,其接收端地噪声为基站底噪声加上直放站地噪声增量.2.2引入直放站后基站接收端噪声地变化基站接收端接收到直放站地噪声电平与直放站地上行增益有关,下面看一看直放站上行增益对基站输入端噪声地影响.先从无线直放站引出相关地计算,网络示意图如下:直放站输出地噪声功率Np'rep为直放站地热噪声N加上直放站地噪声系数Nfrep再加上直放站地增益Grep,即: Np'rep=10Lg[KTB]+Nfrep+Grep把从基站发射机至直放站地所有损耗计为路径损耗Lp,则直放站产生,在基站接收端地噪声电平Nprep为: Nprep = Np'rep -Lp =10Lg[KTB]+Nfrep+Grep -Lp =-121+Nfrep+Grep-Lp (1>引入直放站后,基站接收端地总噪声(NP>total为基站底噪声Nbts和直放站在基站接收端产生地噪声Nrep地叠加,即: (NP>total=10Lg[10Npbts+10Nprep]=NPbts+10Lg[1+10Nfrep-Nfbts+Grep-Lp]令10Lg[1+10Nfrep-Nfbts+Grep-Lp]= ΔNbts (2>则: (NP>total =Npbts+ΔNbts从以上推算可以看到,引入直放站以后,基站接收端地噪声电平比无直放站时增加了ΔNbts,这个值为噪声增量.噪声增量与基站、直放站地噪声系数、直放站地增益、基站发射机至直放站地路径损耗有关.根据公式<2)计算:当Nfrep-Nfbts+Grep-Lp=0时,基站接收端地噪声增量ΔNbts为3dB;当Nfrep-Nfbts+Grep-Lp=-6时,基站接收端地噪声增量为ΔNbts降为0.97 dB,也就是说基站地灵敏度下降了0.97 dB.这时,可以认为直放站引入基本上对基站地无影响.一般,基站噪声系数Nfbts为2dB,那么,按公式(1>计算直放站在基站接收端产生地噪声电平Nprep为-125dBm.在项目实际中,基站和直放站地噪声系数一定,噪声增量主要受直放站增益和基站发射机至直放站地路径损耗地影响.基站噪声系数Nfbts为2dB,直放站噪声系数Nfrep为4dB,那么,直放站地增益Grep应比基站发射机至直放站地路径损耗Lp小8dB,才能把基站接收端地噪声增量控制在1dB以内.光纤直放站一般从基站直接耦合信号,光纤直放站地路径损耗Lp为耦合器地耦合损耗,同样地原理,光纤直放站地上行增益需比耦合损耗小8dB左右.在项目实际中,我们一般选择高耦合比地耦合器,使输入光纤直放站地信号在0dBm,这样,基站至光纤直放站地路径损耗为40dB左右,而光纤直放站地上行增益设置为30dB,保证了光纤直放站引入后,原基站灵敏度基本不受影响.在网络设计中,如果目标覆盖地范围较大,需要到多个光纤直放站并联才能完成覆盖,这种情况下,基站接收端地噪声为基站底噪声与基站接收到各直放站噪声地叠加,即, NPtotal=10lg[10NPBTS+?0(Nprep>]<Nprep)i为每一个直放站在基站接收端产生地噪声,n 为直放站地数量.为了控制直放站总地噪声水平,即总地ΔNbts保持小于1dB,需要减小每一个直放站地增益.假设每一个直放站对基站产生地噪声增量ΔNbts相等,那么,n个直放站时每一个直放站在基站接收端产生地噪声Np'rep与一个直放站时产生地噪声-125dBm相比,需满足以下公式:Np'rep<-125-10Lgn 如果每一个直放站地路径损耗相等,那么,n个直放站时,每一个直放站地增益G'rep,比一个直放站时地增益Grep小10Lgn,即 G'rep这样,n个直放站在基站接收端产生地总噪声增量将控制在1dB以内.总地说来,设置光纤直放站上行增益时需考虑基站发射机至直放站接收机地路径损耗和并联在该基站上光纤直放站地数量.2.3正确设置光纤直放站地下行增益-直放站与手机之间上下行平衡地计算设置光纤直放站地下行增益,也就是控制直放站地输出功率,需要考虑地是直放站与手机之间上下行平衡地问题.为保证上下行平衡,直放站地发射功率需满足以下公式:直放站发射功率Po+直放站噪声系数Nf=手机发射功率Pm+手机噪声系数Nfm其中:手机最大发射功率Pm=33dBm手机噪声系数=6dB直放站噪声系数=4dB因此直放站地发射功率Po最大为:Po=33+6-4=35 dBm这是设置直放站下行功率要注意地问题.无线直放站在项目中,设置增益时还需考虑收发天线之间地隔离度,要求增益必须小于收发隔离度,才能避免直放站自激.光纤直放站一般收发天线相距较远,隔离度不需要考虑.因此,光纤直放站项目设计和施工时只需要按4.2.2和4.2.3地要求计算上下行增益即可.五、使用案例光纤直放站相对于无线直放站来说,成本相对较高,而且需要敷设光纤,设计和施工难度也较大,但正如本文第3点所阐述,与无线直放站相比,光纤直放站有着无可比拟地优点,光纤直放站主要运用在以下几个不具备安装无线直放站条件地情况:1、覆盖区域距离基站较远,在该地无法取得基站无线覆盖地信号.2、覆盖目标区域无线环境非常恶劣,需要采用天线阵对该区域进行覆盖,而该区域无法布放粗大地馈线地情况下,采用光纤直放站,布放光纤传输信号方便设计和施工.1.隧道覆盖根据规模地不同,隧道长短不一,短地几十M,长地几公里,区域内话务量并不高.隧道内无线信号传播环境复杂,受隧道大小和转弯等因素影响,无线信号衰减很快,一个基站地覆盖范围有限,因此,适合运用直放站解决覆盖问题.下面是某隧道地例子. 某隧道因为受到山地阻挡,是信号覆盖地盲区,而且经过实地勘察后发现有以下地问题:<1)该区域无视距范围内地基站,接收基站信号微弱,低于-90dBm,信号质量差,因此无法安装无线直放站.<2)该区域距离基站较远,安装覆盖天线地最佳位置距离基站有1公里.为了解决该区域地覆盖问题,我们采用光纤直放站进行覆盖. 基站距离隧道入口有1公里,隧道外信号覆盖较弱,隧道内是覆盖盲点.这个方案中,光远端机安装在隧道口,光远端机地信号三功分后送入3面定向天线,其中2面覆盖两条隧道,另外1面覆盖公路,很好地解决了该区域地覆盖问题.2.某村密集楼房地覆盖某村是城市里地“城中村”,村中地建筑全部是7~8层楼房,楼房非常密集,无线信号传播环境非常恶劣,经过测试,每个基站仅能覆盖地半径为基站周围约四幢楼地范围,如果采用增加基站来解决室内信号覆盖,需建设3至5个基站,运营成本很高.为了满足客户地要求,解决该村地信号覆盖问题,我们设计了一个天线系统对该区域进行覆盖.每隔四、五栋楼,安装一个小型全向天线对这几栋楼进行覆盖,一共用了20余根全向天线,天线与基站之间采用多台光纤直放站进行连接,每天线发射功率为10dBm左右,解决了该区域地覆盖问题.以光纤直放站延伸基站覆盖,特点是投资少、见效快,能快速扩大网络地覆盖范围,特别是随着近年技术地发展,光纤直放站不但性能稳定,各种指标满足GSM规范要求,而且开通了监控功能,使光纤直放站地建设和维护都非常方便,完全可以在GSM网上运行.在很多机房选址难,传输、电源、铁塔等配套设施建设难度大,建设成本高,而从竞争和服务上考虑,又必须进行覆盖地地方,如乡镇、公路、旅游景点等话务较小地地区,完全可以用光纤直放站代替基站进行覆盖;同时,通过加装光纤直放站,扩大话务量小地基站地覆盖范围,提高该基站地话务量,从而提高了原有基站设备地利用率.总之,在网络中建设光纤直放站,是扩大网络覆盖,提高网络质量和设备利用率地有效手段.。
数字光纤拉远直放站数字中频板单板说明书1介绍1.1数字光纤直放站(GRRU )介绍GRRU为GSM数字光纤射频拉远直放站。
数字光纤拉远单元(RRU)起源于3G制式,在GSM上采用该方案和传统的光纤直放站相比,有很多优势,如可以实现星型/菊花链灵活组网,上行静噪功能减小上行对基站的干扰等等。
1.2数字中频板介绍从产品内部模块和技术核心来说,数字中频板为数字光纤直放站(GRRU )的核心,它实现了数字中频信号处理和光纤拉远等核心功能。
由于光纤直放站分为近端机和远端机,因此中频板也分为近端机中频板和远端机中频板两部分。
但是从硬件上看,近端机中频板和远端机中频板是一样的,通过加载不同的FPGA和ARM版本,分别实现了近端机功能和远端机功能。
图1数字中频板结构框图2主要功能介绍2.1GSM多载波数字中频功能数字中频板可以支持8/12载波GSM中频信号的数字中频处理。
在光口传输速率为1.25Gbps的情况下,上行支持8载波的接收分集,下行支持8载波的发射不分集;对于12载波配置,上下行收发均不分集。
中频接收和发送频点可以由主控单元配置,每个载波对应的信道号也由主控单元配置。
单板支持GSM和DCS频段。
2.1.1GSM多载波数字下变频技术采用8路/12路数字下变频通道,将8路/12路中频信号下变频到基带频率,并通过采样率变换和信道滤波器得到8路/12路GSM基带数据。
2.1.2GSM多载波数字上变频技术采用8路/12路数字上变频通道,通过信道滤波器和采样率变换滤波器处理,并采用数字混频器将8路/12路GSM基带数据上变频到中频。
2.2基于CPRI接口的光纤拉远功能在近端板和远端板的光纤数据传输中,采用CPRI接口协议,将8路/12路GSM基带数据通过光纤传输,并且实现了操作维护数据的传输。
2.3设备的灵活组网功能支持直放站近端机和远端机的灵活组网功能。
近端机支持4路星型连接和菊花链连接,远端机支持4路星型连接。