数列复习讲义
- 格式:doc
- 大小:788.50 KB
- 文档页数:9
等差数列、等比数列(一) 主要知识:()1定义法:1n n a a +-=常数(*n N ∈)⇔{}n a 为等差数列;()2中项公式法:122n n n a a a ++=+(*n N ∈)⇔{}n a 为等差数列; ()3通项公式法:n a kn b =+(*n N ∈)⇔{}n a 为等差数列;()4前n 项求和法:2n S pn qn =+(*n N ∈)⇔{}n a 为等差数列;2.等比数列的判定方法:()1{}n a 是等比数列1n na q a +⇔=(q 为非零常数); ()2{}n a 是等比数列n n a cq ⇔=(0,0c q ≠≠)()3{}n a 是等比数列212n n n a a a ++⇔=⋅ ()4{}n a 是等比数列n n S kq k ⇔=-(11a k q =-,0k ≠,1q ≠) (二)典例分析问题1.()1等差数列}{n a 的前n 项和记为n S ,已知1030a =,2050a =, ①求通项n a ;② 若242n S =,求n()2已知{}n a 为等比数列,32a =,24203a a +=,求{}n a 的通项公式; ()3在等比数列{}n a 中,318a a -=,64216a a -=,40n S =,求公比q 、1a 及n问题2.()1在等差数列}{n a 中,已知1234520a a a a a ++++=,则3a = .A 4.B 5 .C 6.D 7()2设等差数列}{n a 的前n 项和记为n S ,若28515a a a +=-,则9S = .A 60.B 45 .C 36.D 18()3已知数列{}n a 是等比数列,且>0n a ,n N ∈*,354657281a a a a a a ++=,则46a a +=()4在等比数列{}n a 中,11a =,103a =,则23456789a a a a a a a a =.A 81 .B .C .D 243()5在83和272之间插入三个数,使五个数成等比数列,则插入的三个数的乘积是(三)等差数列综合题1.设等差数列}{n a 的首项1a 及公差d 都是整数,前n 项和为n S ,(Ⅰ)若110a =,1498S =,求数列的通项公式;(Ⅱ)若1a ≥6,110a >,14S ≤77,,求所有可能的数列}{n a 的通项公式.2.已知函数()31xf x x =+,数列{}n a 满足11a =,()1()*n n a f a n N +=∈ ()1求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;()2记()212nn n x x x S x a a a =++⋅⋅⋅+,求()n S x .3.已知各项均为正数的数列{}n a 的前n 项和n S 满足11S >,且6(1)(2)n n n S a a =++,(*n N ∈).(Ⅰ)求{}n a 的通项公式;(Ⅱ)设数列{}n b 满足(21)1n bn a -=,并记n T 为{}n b 的前n 项和,求证:231log (3)n n T a ->+(*n N ∈).(四)等比数列综合题1.已知正项数列{}n a ,其前n 项和n S 满足21056n n n S a a =++且1a ,3a ,15a 成等比数列,求数列{}n a 的通项n a .2.设数列{}n a 满足211233333n n n a a a a -++++=…,a N ∈*. (Ⅰ)求数列{}n a 的通项;(Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S .3.已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(Ⅰ)证明:数列{}1n n a a +-是等比数列; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列数列求和(一)主要方法:1.基本公式法:()1等差数列求和公式:()()11122n n n a a n n S na d +-==+ ()2等比数列求和公式:()111,11,111n n n na q S a q a a qq q q =⎧⎪=-⎨-=≠⎪--⎩2.错位相消法:给n n a a a S +++=...21各边同乘以一个适当的数或式,然后把所得的等式和原等式相减,对应项相互抵消,最后得出前n 项和n S .一般适应于数列{}n n a b 的前n 向求和,其中{}n a 成等差数列,{}n b 成等比数列。
等差数列一、数列定义:有序的一列数表示方法:1)最常见的枚举法:1,2,3,4,5,6……2)★★★通项公式:()n a f n =,理解:数列是一种特殊的函数,特殊在定义域上,定义域n 是从1开始的自然数,所以说,数列又可以从函数解析式的角度来分析数列特征3)递推关系:1()n n a f a +=,理解:递推公式是最直观的,比如说等差数列就是后一项和前一项的差相等,但是递推公式不利于分析数列的性质,比如想知道第100项是多少,就需要由递推公式去推出通项公式4)求和公式:n S ,理解:n S 和n a 的关系11(2)(1)n n S S n S n --≥⎧⎨=⎩(记⑤)★★★难点:递推公式⇒通项公式 通项公式⇔求和公式 ☆☆☆一般考察思路:/n n a S ⇒递推公式⇒通项公式n S ⇒⇒不等式(中间截取一段或者几段)二、等差数列1. 递推公式:1n n a a d +=+(d 可以是0) ()n m a a n m d =+-2. 通项公式:1(1)()na a n d f n =+-=(可以把这个式子看成一个关于n 的一次函数(记①))1(dn a d =+-)(一次项系数为d (记②),这个式子递增递减的变化取决于公差d (记③))3. 求和公式: 1()2n n a a nS +=(把n a 的式子代入)1(1)2n n na d -=+ (更常用) 21=()22d d n a n +-(可看成二次函数,无常数项。
二次项系数为2d,决定开口方向。
(记④)⇒从函数的角度看一个数列的n S 有没有最大值和最小值是由d 的正负决定的)考点1:由数列函数性质速算通项公式和求和公式例题1.已知一个等差数列{}n a ,25a =,57a =,求通项公式解析:1)通常解法:求通项公式,求1a 求d52233a a d -== ,1133a =,1132211(1)(1)=3333n a a n d n n =+-=+-⋅+ 2)口算解法:把n a 看成一个函数1(n a dn a d =+-)(由②,只需要记住一次项系数为d )所以23n a n =+一个数,然后代入2a ,解得那个数是113例题2.1)已知数列{}n a 的通项公式是25n a n =+,求n S解析:由①知,通项公式为关于n 的一次函数,则n a 是等差数列常规解法:21221(1)7,9,2,7262n n n a a d a a S n n n -===-==+⋅=+ 口算解法:(函数的角度)由②,知道2d =,由④知,22n d S n =+一个数n ⨯2=n +一个数n ⨯想求得这个数只需要代入一个n S 即可,21171S a ===+一个数1⨯,可知,这个数为6所以26nS n n =+2)已知数列{}n a 的前n 项和为23nS n n =-,求{}n a 的通项公式解析:由④,n S 是没有常数项的二次函数,所以{}n a 是等差数列由口算解法,可知6na n =+一个数,由112S a ==,64n a n =-3)已知数列的前n 项和为232nS n n =--,求{}n a 的通项公式解析:由④,n S 是没有常数项的二次函数,所以{}n a 是等差数列由⑤,2n ≥,221=(32)(3(1)(1)2)64nn S S n n n n n ---------=-1n =,110S a ==(思考:其实,在2n ≥部分,上一题中的2213(3(1)(1))n n n a S S n n n n -=-=-----这一题中的22132(3(1)(1)2)n n n a S S n n n n -=-=-------恰好常数项约掉了,所以即使这题中的n S 不是等差数列的n S ,在2n ≥部分也可按上题的方法求得) 例题3. 已知等差数列{}n a 和{}n b 的前n 项和分别为,n n A B ,且2331n n A n B n +=-,则?n na b = 解析:由④,n A 和n B 的前n 项和应该是无常数项的二次函数,所以,可以这样理解22233n n A n nB n n+=-,因为要求的n na b ,要的是比值,与,n n a b 分别是多少没有关系,所以令2223,3n n A n n B n n =+=-,那么由例题2(2)可以口算求得41,64n n a n b n =+=-考点2:判断数列增减性例题4.(2013辽宁理4文4)下面是关于公差0d >的等差数列{}n a 的四个命题1:p 数列{}n a 是递增数列 2:p 数列{}n na 是递增数列3:p 数列n a n ⎧⎫⎨⎬⎩⎭是递增数列 4:p 数列{}3n a nd +是递增数列 上述命题中真命题的个数是几个? 解析:★★判断数列增加性的方法:1.从通项公式,函数的角度分析,增函数,即为递增数列,减函数,即为递减数列2.从递推公式的角度分析,10n na a +->,即为增函数,反之,减函数1p ,由③,0d >函数是个增函数,正确2p ,1(1)n n b na na n n d ==+-,111(1)(1)(1)n n b n a n a n nd ++=+=+++11+2n n b b a nd +-=,由于0d >,所以增减性取决于1a ,因此不能确定 3p ,解答思路同2p ,增减性也取决于1a ,因此不能确定4p ,11(1)3(41)n b a n d nd a n d =+-+=+-,11(4(1)1)n b a n d +=++-1(4(1)1(41))40n n b b n n d d +-=+---=> 递增数列,正确考点3:数列的最值问题例题5.(2012年浙江理7)设n S 是公差为(0)d d ≠的无穷等差数列{}n a 的前n 项和,则下列命题错误的是? A .若0d <,则数列{}n S 有最大项 B .若数列{}n S 有最大项,则0d <C .若数列{}n S 是递增数列,则对任意的n N ∈*,均有0n S >D .若对任意的n N ∈*,均有0n S >,则数列{}n S 是递增数列 解析:★★思路1:从函数的角度分析数列的增加性和最值A.数列{}n S ,把12,S S ……看成数列的每一项,可以把n S 看成一个函数,数列{}n S 有最大项,即函数n S 有最大值,由④,n S 是一个二次函数,二次项系数为2d,所以,0d <,开口向下,有最大值,正确 B .同理A ,有最大项,即开口向下,正确C .n S 为递增数列,即函数n S 在1n ≥上是增函数,所以开口向上。
《数列》讲义一、数列的定义在数学中,数列是按照一定顺序排列的一组数。
例如,1,3,5,7,9 就是一个数列;再比如,2,4,6,8,10 也是一个数列。
数列中的每一个数都被称为这个数列的项。
我们可以用符号 a₁,a₂,a₃,…,aₙ 来表示数列中的各项,其中 n 表示项数。
比如在数列 1,3,5,7,9 中,a₁= 1,a₂= 3,a₃= 5 等等。
二、数列的分类数列有多种分类方式。
1、按照项数的多少,数列可以分为有限数列和无限数列。
有限数列的项数是有限的,比如1,2,3,4,5 就是一个有限数列,它只有 5 项。
无限数列的项数是无限的,例如 1,2,4,8,16,… 就是一个无限数列,它的项数没有尽头。
2、按照数列的单调性,数列可以分为递增数列、递减数列、常数列和摆动数列。
递增数列是指从第二项起,每一项都大于它前一项的数列,比如1,2,3,4,5 。
递减数列是指从第二项起,每一项都小于它前一项的数列,例如5,4,3,2,1 。
常数列是指各项都相等的数列,像 3,3,3,3,3 。
摆动数列则是指从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列,比如 1,-1,1,-1,1,-1 。
三、数列的通项公式如果数列{aₙ}的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。
例如,数列 2,4,6,8,10,… 的通项公式可以表示为 aₙ = 2n 。
通过通项公式,我们可以很方便地求出数列中的任意一项。
但并不是所有的数列都有通项公式,有的数列的规律比较复杂,难以用一个简单的公式来表示。
四、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,通常用字母 d 表示。
例如,数列 3,5,7,9,11 就是一个公差为 2 的等差数列。
2、通项公式等差数列的通项公式为 aₙ = a₁+(n 1)d ,其中 a₁是首项,d是公差。
第二节等差数列课标解读考向预测1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.预计2025年高考将会从以下两个角度来考查:(1)等差数列及其前n 项和的基本运算与性质;(2)等差数列的综合应用,可能与等比数列、函数、方程、不等式相结合考查,难度中档.必备知识——强基础1.等差数列的有关概念(1)定义:一般地,如果一个数列从第012项起,每一项与它的前一项的差都等于02同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母03d 表示,定义表达式为a n -a n -1=d (常数)(n ≥2,n ∈N *).(2)等差中项:若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有2A =04a +b .提醒:在等差数列{a n }中,从第2项起,每一项都是它前后两项的等差中项,即{a n }成等差数列⇔a n +1+a n -1=2a n (n ≥2).2.等差数列的有关公式(1)通项公式:a n =05a 1+(n -1)d .(2)前n 项和公式:S n =n (a 1+a n )2或S n =06na 1+n (n -1)2d .3.等差数列的常用性质(1)通项公式的推广:a n =a m +07(n -m )d (n ,m ∈N *).(2)若已知等差数列{a n },公差为d ,前n 项和为S n ,则①等间距抽取a p ,a p +t ,a p +2t ,…,a p +(n -1)t ,…为等差数列,公差为td ;②等长度截取S m ,S 2m -S m ,S 3m -S 2m ,…为等差数列,公差为m 2d ;③算术平均值S 11,S 22,S 33,…为等差数列,公差为d2.(3)若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1),S 偶-S 奇=nd ,S 奇S 偶=a na n +1;若项数为奇数2n -1,则S 2n -1=(2n -1)a n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.(4)若{a n },{b n }是等差数列,则{pa n +qb n }(其中p ,q 为常数)也是等差数列.1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).5.若{a n }与{b n }为等差数列,且前n 项和分别为S n 与T n ,则a m b m =S 2m -1T 2m -1.1.概念辨析(正确的打“√”,错误的打“×”)(1)等差数列的前n 项和S n 是项数为n 的二次函数.()(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.()(3)等差数列{a n }的前n 项和S n =n (a m +a n +1-m )2.()(4)设等差数列{a n }的前n 项和为S n ,则S n 与a n 不可能相等.()答案(1)×(2)√(3)√(4)×2.小题热身(1)(2023·福建福州质检)在等差数列{a n }中,若a 1+a 2=5,a 3+a 4=15,则a 5+a 6=()A .10B .20C .25D .30答案C解析等差数列{a n }中,每相邻2项的和仍然构成等差数列,设其公差为d ,若a 1+a 2=5,a 3+a 4=15,则d =15-5=10,因此a 5+a 6=(a 3+a 4)+d =15+10=25.故选C.(2)(北师大版选择性必修第二册2.2练习3(2)改编)设数列{a n }是等差数列,其前n 项和为S n ,若a6=2且S5=30,则S8=() A.31B.32 C.33D.34答案B解析解法一:由S5=5a3=30,得a3=6,又a6=2,∴S8=8(a1+a8)2=8(a3+a6)2=8×(6+2)2=32.故选B.解法二:设等差数列{a n}的公差为d,1+5d=2,a1+5×42d=30,1=263,=-43,∴S8=8a1+8×72d=8×263-28×43=32.故选B.(3)(2022·全国乙卷)记S n为等差数列{a n}的前n项和.若2S3=3S2+6,则公差d=________.答案2解析由2S3=3S2+6可得2(a1+a2+a3)=3(a1+a2)+6,化简得2a3=a1+a2+6,即2(a1+2d)=2a1+d+6,解得d=2.(4)(人教A选择性必修第二册4.2.2例8改编)某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,则剧场总共的座位数为________.答案820解析设第n排的座位数为a n(n∈N*),数列{a n}为等差数列,其公差d=2,则a n=a1+(n-1)d=a1+2(n-1).由已知a20=60,得60=a1+2×(20-1),解得a1=22,则剧场总共的座位数为20(a1+a20)2=20×(22+60)2=820.(5)已知数列{a n}为等差数列,a2+a8=8,则a1+a5+a9=________.答案12解析a1+a9=a2+a8=2a5=8,则a5=4,所以a1+a5+a9=3a5=12.考点探究——提素养考点一等差数列基本量的运算例1(1)已知{a n}为等差数列,其前n项和为S n,若a1=1,a3=5,S n=64,则n=() A.6B.7C.8D.9答案C解析公差d=a3-a12=5-12=2,又S n=64,所以S n=na1+n(n-1)2d=n+n(n-1)=n2=64,解得n=8(负值舍去).故选C.(2)(2024·皖南八校开学考试)已知等差数列{a n}的前n项和为S n,且a3+a5=-10,S6=-42,则S10=()A.6B.10C.12D.20答案B解析设等差数列{a n}的公差为d,因为a3+a5=2a1+6d=-10,S6=6a1+15d=-42,解得a1=-17,d=4,所以S10=10a1+45d=-170+45×4=10.故选B.(3)已知等差数列{a n}中,S n为其前n项和,S4=24,S9=99,则a7=()A.13B.14C.15D.16答案C解析设等差数列{a n}的公差为d,因为S4=24,S9=99,所以a1+4×32d=24,a1+9×82d=99,即a1+3d=12,1+4d=11,1=3,=2,所以a7=a1+6d=3+12=15.故选C.【通性通法】等差数列基本量运算的思想方法方程思想等差数列中包含a1,d,n,a n,S n五个量,可通过方程组达到“知三求二”整体思想当所给条件只有一个时,可将已知和所求都用a1,d表示,寻求两者间的联系,整体代换即可求解等价转化思想运用等差数列性质可以化繁为简,优化解题过程【巩固迁移】1.(2023·陕西部分名校高三下仿真模拟)在等差数列{a n}中,a3+a7=a8=16,则{a n}的公差d =()A.83B.3C .103D .4答案A解析因为a 3+a 7=a 8=2a 5=16,所以a 8-a 5=3d =8,则d =83.故选A.2.(2023·湖南名校联考)设等差数列{a n }的前n 项和为S n ,且2a 7-a 11=4,则S 5=()A .15B .20C .25D .30答案B解析设等差数列{a n }的公差为d ,则2(a 1+6d )-(a 1+10d )=a 1+2d =4,所以S 5=5a 1+5×42d =5(a 1+2d )=5×4=20.故选B.考点二等差数列的性质及其应用(多考向探究)考向1等差数列项的性质例2(1)(2024·九省联考)记等差数列{a n }的前n 项和为S n ,a 3+a 7=6,a 12=17,则S 16=()A .120B .140C .160D .180答案C解析因为a 3+a 7=2a 5=6,所以a 5=3,所以a 5+a 12=3+17=20,所以S 16=(a 1+a 16)×162=8(a 5+a 12)=160.故选C.(2)设公差不为0的等差数列{a n }的前n 项和为S n ,已知S 9=3(a 3+a 5+a m ),则m =()A .9B .8C .7D .6答案C解析因为S 9=9a 5,所以9a 5=3(a 3+a 5+a m ),所以a 3+a 5+a m =3a 5,即a 3+a m =2a 5,所以m =7.故选C.【通性通法】等差数列项的性质的关注点关注点一项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n=a p +a q关注点二等差数列题目中,只要出现项的和问题,一般先考虑应用项的性质关注点三项的性质常与等差数列的前n 项和公式S n =n (a 1+a n )2相结合【巩固迁移】3.(2024·河南杞县模拟)已知项数为n 的等差数列{a n }的前6项和为10,最后6项和为110,所有项和为360,则n =()A .48B .36C .30D .26答案B解析由题意知a 1+a 2+…+a 6=10,a n +a n -1+…+a n -5=110,两式相加得6(a 1+a n )=120,所以a 1+a n =20,又n (a 1+a n )2=360,所以n =36.故选B.4.(多选)(2023·山东淄博调研)已知等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各项为定值的是()A .a 7B .a 8C .S 13D .S 15答案AC解析由题意知a 2+a 8+a 11=a 1+d +a 1+7d +a 1+10d =3a 1+18d =3(a 1+6d )=3a 7,∴a 7是定值,∴S 13=13(a 1+a 13)2=13a 7,是定值.故选AC.考向2等差数列前n 项和的性质例3(1)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15=()A .35B .42C .49D .63答案B解析解法一:由题意知,S 5,S 10-S 5,S 15-S 10成等差数列,即7,14,S 15-21成等差数列,∴S 15-21+7=28,∴S 15=42.故选B.解法二:∵{a n }为等差数列,∴2S 1010=S 55+S1515,∴S 15=42.故选B.(2)已知等差数列{a n }的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为()A .28B .29C .30D .31答案B解析设等差数列{a n }共有2n +1项,则S 奇=a 1+a 3+a 5+…+a 2n +1,S 偶=a 2+a 4+a 6+…+a 2n ,该数列的中间项为a n +1,又S 奇-S 偶=a 1+(a 3-a 2)+(a 5-a 4)+…+(a 2n +1-a 2n )=a 1+d +d +…+d =a 1+nd =a n +1,所以a n +1=S 奇-S 偶=319-290=29.【通性通法】熟练掌握等差数列前n 项和的性质是解决此类试题的关键,解题时注意化归与转化思想的合理运用.【巩固迁移】5.(2024·安徽蚌埠二中阶段考试)已知S n 是等差数列{a n }的前n 项和,若a 1=-2018,S20202020-S 20142014=6,则S 2023=________.答案8092解析,设其公差为d ,则S 20202020-S 20142014=6d =6,所以d =1,所以S 20232023=S 11+2022d =-2018+2022=4,所以S 2023=8092.6.(2023·广东湛江模拟)有两个等差数列{a n },{b n },其前n 项和分别为S n ,T n .若a n b n =2n -13n +1,则S 11T 11=________;若S n T n =2n -13n +1,则a 5b 4=________.答案11191722解析若a n b n =2n -13n +1,则S 11T 11=11a 611b 6=2×6-13×6+1=1119.若S n T n =2n -13n +1=2n 2-n 3n 2+n,则可设S n =(2n 2-n )k ,T n =(3n 2+n )k ,所以a 5=S 5-S 4=45k -28k =17k ,b 4=T 4-T 3=52k -30k =22k ,所以a 5b 4=1722.考向3等差数列前n 项和的最值问题例4在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15.求当n 取何值时,S n 取得最大值,并求出它的最大值.解解法一(函数法):因为a 1=20,S 10=S 15,所以10×20+10×92d =15×20+15×142d ,所以d =-53,S n =20n +n (n -1)2·=-56n 2+1256n +312524.因为n ∈N *,所以当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.解法二(邻项变号法——利用单调性):因为a 1=20,S 10=S 15,所以10×20+10×92d =15×20+15×142d ,所以d =-53,a n =20+(n -=-53n +653.因为a 1=20>0,d =-53<0,所以数列{a n }是递减数列.由a n =-53n +653≤0,得n ≥13,即a 13=0.当n ≤12时,a n >0;当n ≥14时,a n <0.所以当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×130.解法三:(邻项变号法——利用性质):由S 10=S 15得S 15-S 10=a 11+a 12+a 13+a 14+a 15=0,所以5a 13=0,即a 13=0.又d =a 13-a 113-1=-53,所以当n =12或13时,S n 有最大值,且最大值为S 12=S 13=12×20+12×112×130.【通性通法】求等差数列前n 项和S n 最值的两种方法【巩固迁移】7.(多选)(2023·济宁模拟)设等差数列{a n }的公差为d ,前n 项和是S n ,已知S 14>0,S 15<0,则下列说法正确的是()A .a 1>0,d <0B .a 7+a 8>0C .S 6与S 7均为S n 的最大值D .a 8<0答案ABD解析因为S 14>0,S 15<0,所以S 14=14×(a 1+a 14)2=7(a 1+a 14)=7(a 7+a 8)>0,即a 7+a 8>0,因为S 15=15×(a 1+a 15)2=15a 8<0,所以a 8<0,所以a 7>0,所以等差数列{a n }的前7项为正数,从第8项开始为负数,则a 1>0,d <0,S 7为S n 的最大值.故选ABD.8.(2024·陕西省洛南中学高三月考)已知S n 为等差数列{a n }的前n 项和,且S 2=35,a 2+a 3+a 4=39,则当S n 取得最大值时,n 的值为________.答案7解析解法一:设数列{a n }的公差为d ,a 1+d =35,2+a 3+a 4=3a 3=3(a 1+2d )=39,解1=19,=-3,则S n =19n +n (n -1)2×(-3)=-32n 2+412n +168124.又n ∈N *,∴当n =7时,S n 取得最大值.解法二:设等差数列{a n }的公差为d .∵a 2+a 3+a 4=3a 3=39,∴a 3=13,∴2a 3-S 2=(a 3-a 2)+(a 3-a 1)=3d =-9,解得d =-3,则a n =a 3+(n -3)d =22-3n ,-3n ≥0,-3(n +1)≤0,解得193≤n ≤223,又n ∈N *,∴n =7,即数列{a n }的前7项为正数,从第8项起各项均为负数,故当S n 取得最大值时,n =7.考点三等差数列的判定与证明例5(2021·全国甲卷)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{S n}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.解选择条件①③⇒②.已知数列{a n}是等差数列,a2=3a1,设数列{a n}的公差为d,则a2=3a1=a1+d,所以d=2a1.因为S n=na1+n(n-1)2d=n2a1,所以S n=n a1(a1>0),所以S n+1-S n=(n+1)a1-n a1=a1(常数).所以数列{S n}是等差数列.选择条件①②⇒③.已知数列{a n}是等差数列,数列{S n}是等差数列,设数列{a n}的公差为d,则S1=a1,S2=2a1+d,S3=3a1+3d,因为数列{S n}是等差数列,所以S1+S3=2S2,即a1+3a1+3d=22a1+d,化简整理得d=2a1.所以a2=a1+d=3a1.选择条件②③⇒①.已知数列{S n}是等差数列,a2=3a1,设数列{S n}的公差为d,所以S2-S1=d,即4a1-a1=d.所以a1=d2,S n=S1+(n-1)d=nd,所以S n=n2d2.所以a n=S n-S n-1=2d2n-d2(n≥2).又a1=d2也适合该通项公式,所以a n=2d2n-d2(n∈N*).a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.【通性通法】等差数列的判定与证明的常用方法判定方法定义法对任意n∈N*,a n+1-a n是同一常数等差中项法对任意n≥2,n∈N*,满足2a n=a n+1+a n-1通项公式法对任意n∈N*,都满足a n=pn+q(p,q为常数)前n项和公式法对任意n∈N*,都满足S n=An2+Bn(A,B为常数)证明方法定义法对任意n∈N*,a n+1-a n是同一常数等差中项法对任意n≥2,n∈N*,满足2a n=a n+1+a n-1【巩固迁移】9.已知公差大于零的等差数列{a n}的前n项和为S n,且满足a2a4=65,a1+a5=18.(1)求数列{a n}的通项公式;(2)是否存在常数k,使得数列{S n+kn}为等差数列?若存在,求出常数k;若不存在,请说明理由.解(1)设{a n}的公差为d.∵{a n}为等差数列,∴a1+a5=a2+a4=18,又a2a4=65,∴a2,a4是方程x2-18x+65=0的两个根,又公差d>0,∴a2<a4,∴a2=5,a4=13.1+d=5,1+3d=13,1=1,=4,∴a n=4n-3.(2)由(1)知,S n=n+n(n-1)2×4=2n2-n,假设存在常数k,使得数列{S n+kn}为等差数列.由S1+k+S3+3k=2S2+2k,得1+k+15+3k=26+2k,解得k=1.∴S n+kn=2n2=2n,当n≥2时,2n-2(n-1)=2,为常数,∴数列{S n+kn}为等差数列.故存在常数k=1,使得数列{S n+kn}为等差数列.课时作业一、单项选择题1.已知数列{a n},{b n}为等差数列,且公差分别为d1=2,d2=1,则数列{2a n-3b n}的公差为()A .7B .5C .3D .1答案D解析∵{a n },{b n }为等差数列,∴{2a n -3b n }为等差数列,设其公差为d ,则d =2a n +1-3b n+1-2a n +3b n =2(a n +1-a n )-3(b n +1-b n )=2d 1-3d 2=1.故选D.2.(2024·辽宁六校期初考试)设等差数列{a n }的前n 项和为S n ,若a 6+a 7+a 8+a 9+a 10=20,则S 15=()A .150B .120C .75D .60答案D解析由等差数列的性质可知a 6+a 7+a 8+a 9+a 10=5a 8=20,所以a 8=4,S 15=15(a 1+a 15)2=2a 8×152=15a 8=60.故选D.3.(2023·陕西宝鸡模拟)已知首项为2的等差数列{a n }的前30项中奇数项的和为A ,偶数项的和为B ,且B -A =45,则a n =()A .3n -2B .3n -1C .3n +1D .3n +2答案B解析由题意,n ∈N *,在等差数列{a n }中,首项a 1=2,设公差为d ,前30项中奇数项的和为A ,偶数项的和为B ,且B -A =45,∴-a 1+a 2+…-a 29+a 30=15d =45,解得d =3,∴a n =a 1+(n -1)d =2+3(n -1),即a n =3n -1(n ∈N *).故选B.4.(2023·重庆一诊)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S8S 16=()A .18B .19C .13D .310答案D解析解法一:设等差数列{a n }的公差为d ,由题设,S 4S 8=4a 1+6d 8a 1+28d =13,可得a 1=52d ,所以S8S 16=8a 1+28d 16a 1+120d =310.故选D.解法二:由题意知S 8=3S 4,又S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,且S 8-S 4=2S 4,故S 12-S 8=3S 4,故S 12=6S 4,S 16-S 12=4S 4,得S 16=10S 4,所以S 8S 16=310.故选D.5.数列{a n }和{b n }是两个等差数列,其中ak b k (1≤k ≤5)为常值,若a 1=288,a 5=96,b 1=192,则b 3=()A .64B .128C .256D .512答案B解析由已知条件可得a 1b 1=a 5b 5,则b 5=a 5b 1a 1=96×192288=64,因此b 3=b 1+b 52=192+642=128.故选B.6.(2024·漳州检测)已知S n 是数列{a n }的前n 项和,a 1=1,a 2=2,a 3=3,记b n =a n +a n +1+a n +2且b n +1-b n =2,则S 31=()A .171B .278C .351D .395答案C解析由b n +1-b n =a n +1+a n +2+a n +3-(a n +a n +1+a n +2)=a n +3-a n =2,得a 1,a 4,a 7,…是首项为1,公差为2的等差数列,a 2,a 5,a 8,…是首项为2,公差为2的等差数列,a 3,a 6,a 9,…是首项为3,公差为2的等差数列,所以S 31=(a 1+a 4+…+a 31)+(a 2+a 5+…+a 29)+(a 3+a 6+…+a 30)=1×11+11×10×22+2×10+10×9×22+3×10+10×9×22=351.故选C.7.在等差数列{a n }中,a 1=-9,a 5=-1.记T n =a 1a 2…a n (n =1,2,…),则数列{T n }()A .有最大项和最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项和最小项答案B解析设等差数列{a n }的公差为d ,∵a 1=-9,a 5=-1,∴a 5=-9+4d =-1,则d =2.∴a n =-9+2(n -1)=2n -11.令a n =2n -11≤0,得n ≤5.5.∴当n ≤5时,a n <0;当n ≥6时,a n ≥1>0.∵T n =a 1a 2…a n (n =1,2,…),∴T 1=-9,T 2=63,T 3=-315,T 4=945,T 5=-945.当n ≥6时,a n ≥1,∴T n <0,且T n +1<T n <0.∴数列{T n }有最大项T 4,无最小项.故选B.8.已知S n 是等差数列{a n }的前n 项和,若对任意的n ∈N *,均有S 6≤S n 成立,则a 17a 9的最小值为()A .2B .52C .3D .113答案D解析由题意知,S 6是等差数列{a n }的前n 项和中的最小值,必有a 1<0,公差d >0,当a 6=0时,有S 5=S 6,S 5,S 6是等差数列{a n }的前n 项和中的最小值,此时a 6=a 1+5d =0,即a 1=-5d ,则a 17a 9=a 1+16d a 1+8d =11d 3d =113.当a 6<0,a 7≥0,此时a 6=a 1+5d <0,a 7=a 1+6d ≥0,即-6≤a 1d <-5,则a 17a 9=a 1+16d a 1+8d =a 1d +16a 1d +8=1+8a 1d +8,又-6≤a 1d <-5,所以2≤a1d +8<3,即13<1a 1d +8≤12,则83<8a 1d +8≤4,所以113<1+8a 1d +8≤5,所以a 17a 9的最小值为113.故选D.二、多项选择题9.(2024·湖南长郡中学月考)已知数列{a n }的通项公式a n3n +b ,1≤n ≤8,2n -3,n ≥9,b ∈Z ,则下列说法正确的是()A .当{a n }递减时,b 的最小值为3B .当{a n }递减时,b 的最小值为4C .当b =20时,{a n }的前n 项和的最大值为57D .当b{|a n |}为递增数列答案BCD解析a 8=-3×8+b >a 9=-2×9-3⇒b >3,∵b ∈Z ,∴b 的最小值为4,∴A 错误,B 正确;当b =20时,数列{a n }的前6项为正,第7项开始往后为负,∴前6项和最大,S 6=6×(17+2)2=57,∴C 正确;当n ≥9时,a n <0,|a n |=2n +3,数列{|a n |}递增,当1≤n ≤8时,易知数列{a n }递减,当b,a 1>0,a 2<0,且数列{|a n |}1|<|a 2|,8|<|a 9|,∴数列{|a n |}递增,∴D 正确.故选BCD.10.(2023·河北邯郸模拟)已知{a n }为等差数列,S n 为其前n 项和,则下列说法正确的是()A .若a 1=a 5,则a 1=a 2=…=a nB .若a 5>a 3,则S 1<S 2<…<S nC.若a3=2,则a21+a25≥8D.若a4=8,a8=4,则S12=66答案ACD解析设等差数列{a n}的公差为d,因为a1=a5,所以a1=a1+4d,所以d=0,则a1=a2=…=a n,故A正确;因为a5>a3,所以a1+4d>a1+2d,所以d>0,{a n}为递增数列,但S1<S2<…<S n 不一定成立,如a1=-2,a2=-1,a3=0,S1=-2,S2=-3,S3=-3,故B不正确;因为a21+a25≥=2a23=8,当且仅当a1=a5=2时取等号,故C正确;4=a1+3d=8,8=a1+7d=4,=-1,1=11,则a12=a4+8d=8-8=0,得S12=a1+a122×12=66,故D正确.故选ACD.三、填空题11.(2023·上海奉贤统考一模)已知等差数列{a n}中,a7+a9=15,a4=1,则a12=________.答案14解析∵{a n}为等差数列,∴设首项为a1,公差为d,又a7+a9=15,a4=1,a1+14d=15,1+3d=1 1=-318,=138,∴a12=a1+11d=-318+11×138=14.12.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为________.答案3n2-2n解析数列{2n-1}的各项为1,3,5,7,9,11,13,…,数列{3n-2}的各项为1,4,7,10,13,….观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列,则a n=1+6(n-1)=6n-5.故其前n项和S n=n(a1+a n)2=n(1+6n-5)2=3n2-2n.13.(2024·浙江余姚中学质检)设等差数列{a n}的前n项和为S n,若S6>S7>S5,则满足S n S n+1<0的正整数n的值为________.答案12解析由S6>S7>S5,得S7=S6+a7<S6,S7=S5+a6+a7>S5,所以a7<0,a6+a7>0,所以S13=13(a1+a13)2=13a7<0,S12=12(a1+a12)2=6(a6+a7)>0,所以S12S13<0,即满足S n S n+1<0的正整数n的值为12.14.(2023·昆明诊断)已知数列{a n }满足a 1=2,a 2=4,a n +2-a n =(-1)n +3,则数列{a n }的前10项和为________.答案90解析由题意,当n 为奇数时,a n +2-a n =-1+3=2,所以数列{a 2n -1}是首项为2,公差为2的等差数列,所以a 2n -1=2+2(n -1)=2n ;当n 为偶数时,a n +2-a n =1+3=4,所以数列{a 2n }是首项为4,公差为4的等差数列,所以a 2n =4+4(n -1)=4n .设数列{a n }的前10项和为S 10,则S 10=a 1+a 2+…+a 10=(a 1+a 3+…+a 9)+(a 2+a 4+…+a 10)=5×(2+10)2+5×(4+20)2=90.四、解答题15.(2022·全国甲卷)记S n 为数列{a n }的前n 项和.已知2S nn+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.解(1)证明:因为2S nn+n =2a n +1,即2S n +n 2=2na n +n ,①当n ≥2时,2S n -1+(n -1)2=2(n -1)a n -1+(n -1),②①-②得,2S n +n 2-2S n -1-(n -1)2=2na n +n -2(n -1)a n -1-(n -1),即2a n +2n -1=2na n -2(n -1)a n -1+1,即2(n -1)a n -2(n -1)a n -1=2(n -1),所以a n -a n -1=1,n ≥2且n ∈N *,所以{a n }是以1为公差的等差数列.(2)由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 27=a 4a 9,即(a 1+6)2=(a 1+3)(a 1+8),解得a 1=-12,所以a n =n -13,所以S n =-12n +n (n -1)2=12n 2-252n -6258,所以,当n =12或n =13时,(S n )min =-78.16.(2023·全国乙卷)记S n 为等差数列{a n }的前n 项和,已知a 2=11,S 10=40.(1)求{a n }的通项公式;(2)求数列{|a n |}的前n 项和T n .解(1)设等差数列的公差为d ,2=a 1+d =11,10=10a 1+10×92d =40,1+d =11,a 1+9d =8,1=13,=-2,所以a n =13-2(n -1)=15-2n .(2)因为S n =n (13+15-2n )2=14n -n 2,令a n =15-2n >0,解得n <152,且n ∈N *,当n ≤7时,则a n >0,可得T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =14n -n 2;当n ≥8时,则a n <0,可得T n =|a 1|+|a 2|+…+|a n |=(a 1+a 2+…+a 7)-(a 8+…+a n )=S 7-(S n -S 7)=2S 7-S n =2×(14×7-72)-(14n -n 2)=n 2-14n +98.综上所述,T n n -n 2,n ≤7,2-14n +98,n ≥8.17.(2023·江西九所重点中学高三下第二次联考)已知函数y =f (x )对任意自变量x 都有f (x )=f (4-x ),且函数f (x )在[2,+∞)上单调.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 2018),则{a n }的前2023项和是()A .8092B .4046C .2023D .0答案B解析因为函数y =f (x )对任意自变量x 都有f (x )=f (4-x ),于是函数y =f (x )的图象关于直线x=2对称,数列{a n }是公差不为0的等差数列,则数列{a n }是单调数列,又函数f (x )在[2,+∞)上单调,由f (a 6)=f (a 2018)得a 6+a 2018=4,所以{a n }的前2023项和是a 1+a 20232×2023=a 6+a 20182×2023=4046.故选B.18.(2023·海口诊断)在等差数列{a n }中,a 2=-5,a 6与a 8互为相反数,S n 为{|a n |}的前n 项和,T n =nS n ,则T n 的最小值是________.答案6解析设等差数列{a n }的公差为d ,∵a 6+a 8=0,a 2=-5,a 1+12d =0,1+d =-5,1=-6,=1,∴a n=-6+(n-1)×1=n-7.由a n≥0得n≥7,由a n≤0得1≤n≤7,∴当1≤n≤7时,S n=-(a1+a2+…+a n)=-n(-6+n-7)2=-n(n-13)2;当n≥8时,S n=|a1|+|a2|+…+|a n|=-(a1+a2+…+a7)+(a8+a9+…+a n)=2S7+(a1+a2+…+a n)=42+n(n-13)2,∴当1≤n≤7时,T n=nS n=-n2(n-13)2.对于函数y=-x3-13x22,y′=-3x2-26x2,当1≤x≤7时,y′>0,∴y=-x3-13x22在[1,7]上单调递增,∴当1≤n≤7时,T1=6为最小值;当n≥8时,T n=nS n=42n+n2(n-13)2,对于函数y=42x+x3-13x22,y′=42+3x2-26x2,当x≥8时,y′>0,∴函数y=42x+x3-13x22在[8,+∞)上单调递增,∴当n=8时,T8=176为最小值.综上所述,T n的最小值是6.19.(2023·新课标Ⅰ卷)设等差数列{a n}的公差为d,且d>1.令b n=n2+na n,记S n,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99-T99=99,求d.解(1)∵3a2=3a1+a3,∴3d=a1+2d,解得a1=d,∴S3=3a2=3(a1+d)=6d,又T3=b1+b2+b3=2d+62d+123d=9d,∴S3+T3=6d+9d=21,即2d2-7d+3=0,解得d=3或d=12(舍去),∴a n=a1+(n-1)d=3n.(2)∵{b n}为等差数列,∴2b2=b1+b3,即12a2=2a1+12a3,∴=6da2a3=6d(a1+d)(a1+2d)=1a1,即a21-3a1d+2d2=0,解得a1=d或a1=2d,∵d>1,∴a n>0,又S99-T99=99,由等差数列的性质知,99a 50-99b 50=99,即a 50-b 50=1,∴a 50-2550a 50=1,即a 250-a 50-2550=0,解得a 50=51或a 50=-50(舍去).当a 1=2d 时,a 50=a 1+49d =51d =51,解得d =1,与d >1矛盾,无解;当a 1=d 时,a 50=a 1+49d =50d =51,解得d =5150.综上,d =5150.。
第四节数列求和课标解读考向预测1.熟练掌握等差、等比数列的前n 项和公式.2.掌握数列求和的几种常见方法.数列求和是高考考查的重点知识,预计2025年高考会考查等差、等比数列的前n 项和公式以及其他求和公式,可能与通项公式相结合,也有可能与函数、方程、不等式等相结合,综合命题,难度适中.必备知识——强基础数列求和的几种常用方法1.公式法(1)等差数列的前n 项和公式①已知等差数列的第1项和第n 项求前n 项和S n =n (a 1+a n )2;②已知等差数列的第1项和公差求前n 项和S n =na 1+n (n -1)2d .(2)等比数列的前n 项和公式当q =1时,S n =na 1;当q ≠1时,①已知等比数列的第1项和第n 项求前n 项和S n =a 1-a n q1-q ;②已知等比数列的第1项和公比求前n 项和S n =a 1(1-q n )1-q .2.分组求和法与并项求和法(1)若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)形如a n =(-1)n ·f (n )类型,常采用两项合并求解.3.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.5.倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解,如等差数列的前n 项和公式即是用此法推导的.1.1+2+3+4+…+n =n (n +1)2.2.12+22+…+n 2=n (n +1)(2n +1)6.3.裂项求和常用的变形(1)分式型:1n (n +k )=1(2n -1)(2n +1)=1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2)等.(2)指数型:2n (2n +1-1)(2n -1)=12n -1-12n +1-1,n +2n (n +1)·2n =1n ·2n -1-1(n +1)·2n 等.(3)根式型:1n +n +k =1k(n +k -n )等.(4)对数型:log m a n +1a n=log m a n +1-log m a n ,a n >0,m >0且m ≠1.1.概念辨析(正确的打“√”,错误的打“×”)(1)设数列{a n }的前n 项和为S n ,若a n =1n +1+n,则S 9=2.()(2)1n 2<1(n -1)n =1n -1-1n.()(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求和.()(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n=3n-12.()答案(1)×(2)×(3)×(4)√2.小题热身(1)(人教A选择性必修第二册4.4练习T2改编)数列{a n}的前n项和为S n,若a n=1n(n+1),则S5=()A.1B.56C.16D.130答案B解析∵a n=1n(n+1)=1n-1n+1,∴S5=a1+a2+…+a5=1-12+12-13+…+15-16=56.故选B.(2)(人教A选择性必修第二册4.4练习T1改编)数列{a n}的通项公式a n=(-1)n(2n-1),则该数列的前100项和为()A.-200B.-100C.200D.100答案D解析S100=(-1+3)+(-5+7)+…+(-197+199)=2×50=100.故选D.(3)(人教A选择性必修第二册习题4.3T3改编)若数列{a n}的通项公式a n=2n+2n-1,则数列{a n}的前n项和为()A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-2答案C解析S n=a1+a2+a3+…+a n=(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n+2n-1)=(2+22+…+2n)+2(1+2+3+…+n)-n=2(1-2n)1-2+2×n(n+1)2-n=2(2n-1)+n2+n-n=2n+1+n2-2.故选C.(4)在数列{a n}中,a1=1,a n a n+1=-2,则S100=________.答案-50解析根据题意,由a1=1,a1a2=-2,得a2=-2,又a2a3=-2,得a3=1,a3a4=-2,得a4=-2,…,所以{a n}中所有的奇数项均为1,所有的偶数项均为-2,所以S100=a1+a2+…+a 99+a 100=1-2+…+1-2=50×(-1)=-50.考点探究——提素养考点一拆项分组法求和例1(2023·湖南岳阳统考三模)已知等比数列{a n }的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列{a n }的通项公式;(2)已知b n log 13a n ,n 为奇数,n ,n 为偶数,求数列{b n }的前n 项和T n .解(1)因为{a n }是等比数列,公比q ≠-1,则a 4=a 1q 3,a 5=a 1q 4,a 7=a 1q 6,a 8=a 1q 7,所以a 4+a 5a 7+a 8=a 1q 3+a 1q 4a 1q 6+a 1q 7=1q 3=127,解得q =3,由S 4=a 3+93,可得a 1(1-34)1-3=9a 1+93,解得a 1=3,所以数列{a n }的通项公式为a n =3n .(2)由(1)得b nn ,n 为奇数,n ,n 为偶数.当n 为偶数时,T n =b 1+b 2+…+b n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-(1+3+…+n -1)+(32+34+…+3n )=-n2·[1+(n -1)]2+9(1-9n2)1-9=98(3n -1)-n 24;当n 为奇数时,T n =T n +1-b n +1=98(3n +1-1)-(n +1)24-3n +1=18·3n +1-98-(n +1)24.综上所述,T nn +1-98-(n +1)24,n 为奇数,3n -1)-n 24,n 为偶数.【通性通法】拆项分组法求和的常见类型【巩固迁移】1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值为________.答案n 2+1-12n解析由题意可得,通项公式为a n =(2n -1)+12n,则S n =[1+3+5+…+(2n -1)]++122+123+…=n [1+(2n -1)]2+21-12=n 2+1-12n .考点二并项转化法求和例2在等差数列{a n }中,已知a 6=12,a 18=36.(1)求数列{a n }的通项公式;(2)若b n =(-1)n ·a n ,求数列{b n }的前n 项和S n .解(1)由题意,设等差数列{a n }的公差为d,1+5d =12,1+17d =36,1=2,=2,∴a n =2+(n -1)×2=2n .(2)由(1),得b n =(-1)n ·a n =(-1)n ·2n ,∴S n =b 1+b 2+…+b n =-2+4-6+8-…+(-1)n ·2n ,(ⅰ)当n 为偶数时,S n =b 1+b 2+…+b n =-2+4-6+8-…+(-1)n ·2n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=2+2+…+2=n2×2=n ;(ⅱ)当n 为奇数时,n -1为偶数,S n =b 1+b 2+…+b n =S n -1+b n =n -1-2n =-n -1.∴Sn ,n 为偶数,n -1,n 为奇数.【通性通法】并项转化法求和【巩固迁移】2.(2024·浙江台州中学质检)已知数列{a n }满足a 1+2a 2+…+na n =2n ,数列{b n }满足对任意正整数m ≥2均有b m -1+b m +b m +1=1a m 成立.(1)求数列{a n }的通项公式;(2)求数列{b n }的前99项和.解(1)因为a 1+2a 2+…+na n =2n ,所以当n ≥2时,a 1+2a 2+…+(n -1)a n -1=2(n -1).两式相减,得na n =2,所以a n =2n (n ≥2).又当n =1时,a 1=2,也符合上式,所以a n =2n .(2)由(1)知1a n =n2.因为对任意的正整数m ≥2,均有b m -1+b m +b m +1=1a m =m2,故数列{b n }的前99项和b 1+b 2+b 3+b 4+b 5+b 6+…+b 97+b 98+b 99=(b 1+b 2+b 3)+(b 4+b 5+b 6)+…+(b 97+b 98+b 99)=1a 2+1a 5+…+1a 98=22+52+…+982=825.考点三裂项相消法求和例3(2023·承德模拟)已知数列{a n }的前n 项和为S n ,且a n +1S n=2n .(1)证明:数列{a n }是等差数列;(2)若a 2+1,a 3+1,a 5成等比数列.从下面三个条件中选择一个,求数列{b n }的前n 项和T n .①b n =na 2n a 2n +1;②b n =1a n +a n +1;③b n =2n +3a n a n +12n +1.注:如果选择多个条件分别解答,按第一个解答计分.解(1)证明:因为a n +1S n=2n ,即n (a n +1)=2S n ,当n =1时,a 1+1=2S 1,解得a 1=1,当n ≥2时,(n -1)(a n -1+1)=2S n -1,所以n (a n +1)-(n -1)(a n -1+1)=2S n -2S n -1,即n (a n +1)-(n -1)(a n -1+1)=2a n ,所以(n -2)a n -(n -1)a n -1+1=0,当n =2时,上述式子恒成立,当n >2时,两边同除以(n -2)(n -1)可得a n n -1-a n -1n -2=-1(n -1)(n -2)=1n -1-1n -2,即a n n -1-1n -1=a n -1n -2-1n -2,,即a n -1n -1=a 2-1,所以a n -1=(n -1)(a 2-1),即a n =(n -1)(a 2-1)+1,当n =1时,也适合上式,所以a n +1-a n =n (a 2-1)+1-(n -1)(a 2-1)-1=a 2-1,所以数列{a n }是以1为首项,a 2-1为公差的等差数列.(2)设{a n }的公差为d ,因为a 2+1,a 3+1,a 5成等比数列,所以(a 3+1)2=a 5(a 2+1),即(2+2d )2=(1+4d )(2+d ),解得d =2,所以a n =2n -1.若选①b n =na 2n a 2n +1,则b n =n (2n -1)2(2n +1)2=181(2n -1)2-1(2n +1)2,所以T n =18112-132+132-152+…+1(2n -1)2-1(2n +1)2=181-1(2n +1)2.若选②b n =1a n +a n +1,则b n =12n -1+2n +1=2n +1-2n -1(2n -1+2n +1)(2n +1-2n -1)=12(2n +1-2n -1),所以T n =12(3-1+5-3+…+2n +1-2n -1)=12(2n +1-1).若选③b n =2n +3a n a n +12n +1,则b n =2n +3(2n -1)(2n +1)2n +1=1(2n -1)×2n -1(2n +1)×2n +1,所以T n =11×21-13×22+13×22-15×23+…+1(2n -1)×2n -1(2n +1)×2n +1=12-1(2n +1)×2n +1.【通性通法】利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项.(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=,1a n a n +2=【巩固迁移】3.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =()A .25B .576C .624D .625答案C解析a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24,得n =624.故选C.4.(2022·新高考Ⅰ卷)记S n 为数列{a n }的前n 项和,已知a 1=1是公差为13的等差数列.(1)求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <2.解(1)1,公差为13的等差数列,所以S n a n =1+13(n -1)=n +23,故S n =n +23a n .①当n ≥2时,S n -1=n +13a n -1.②由①-②可知a n =n +23a n -n +13a n -1,所以(n -1)a n =(n +1)a n -1,即a n a n -1=n +1n -1.所以a 2a 1×a3a 2×…×a n -1a n -2×a n a n -1=31×42×53×…×n n -2×n +1n -1=n (n +1)2(n ≥2),所以a n =n (n +1)2(n ≥2),又a 1=1也满足上式,所以a n =n (n +1)2(n ∈N *).(2)证明:因为1a n =2n (n +1)=2n -2n +1所以1a 1+1a 2+…+1a n =21-22+22-23+…+2n -2n +1=2-2n +1<2.考点四错位相减法求和例4(2023·全国甲卷)已知数列{a n }中,a 2=1,设S n 为{a n }的前n 项和,2S n =na n .(1)求{a n }的通项公式;(2)n 项和T n .解(1)因为2S n =na n ,当n =1时,2a 1=a 1,即a 1=0;当n =3时,2(1+a 3)=3a 3,即a 3=2,当n ≥2时,2S n -1=(n -1)a n -1,所以2(S n-S n-1)=na n-(n-1)a n-1,即2a n=na n-(n-1)a n-1,化简得(n-2)a n=(n-1)a n-1,当n≥3时,a nn-1=a n-1n-2=…=a32=1,即a n=n-1,当n=1,2时都满足上式,所以a n=n-1(n∈N*).(2)因为a n+12n=n2n,所以T n=+++…+n,1 2T n=++…+(n-+n+1,两式相减得12T n+…-n+1=12×11-12-n+1=1-,即T n=2-(2+n,n∈N*.【通性通法】1.错位相减法求和的适用条件若{a n}是公差为d(d≠0)的等差数列,{b n}是公比为q(q≠1)的等比数列,求数列{an b n}的前n项和S n.2.错位相减法求和的步骤3.错位相减法求和的注意事项注意在写出S n与qS n的表达式时,应特别注意将两式“错位对齐”,以便下一步准确写出点一S n -qS n ,特别是等比数列公比为负数的情形注意点二等式右边由第一项、中间n -1项的和式、最后一项三部分组成注意点三经常把b 2+b 3+…+b n 这n -1项和看成n 项和,把-a n b n +1写成+a n b n +1导致错误【巩固迁移】5.(2023·河北示范性高中调研)已知数列{a n }的前n 项和为S n ,且a 2=6,a n +1=2(S n +1).(1)证明{a n }为等比数列,并求{a n }的通项公式;(2)求数列{na n }的前n 项和T n .解(1)因为a n +1=2(S n +1),所以a n =2(S n -1+1)(n ≥2),故a n +1-a n =2(S n -S n -1)=2a n ,即a n +1a n=3(n ≥2),又a 2=2(S 1+1)=2a 1+2,故a 1=2,即a2a 1=3,因此a n +1a n=3(n ∈N *).故{a n }是以2为首项,3为公比的等比数列.因此a n =2×3n -1(n ∈N *).(2)因为T n =2×1+2×2×3+2×3×32+…+2n ×3n -1,①故3T n =2×1×3+2×2×32+…+2(n -1)×3n -1+2n ×3n ,②①-②,得-2T n =2+(2×3+2×32+…+2×3n -1)-2n ×3n=2+2×3(3n -1-1)3-1-2n ×3n =-1+(1-2n )×3n ,即T n =(2n -1)×3n +12.考点五倒序相加法求和例5已知数列{a n },{b n }满足a 1=118,2a n +1-a n =16a n +1a n ,b n =1a n-16.(1)证明{b n }为等比数列,并求{b n }的通项公式;(2)求a 1b 1+a 2b 2+a 3b 3+…+a 7b 7.解(1)由2a n +1-a n =16a n +1a n ,可得1a n +1=2a n-16,于是1a n +1-16=即b n +1=2b n ,而b 1=1a 1-16=2,所以{b n }是首项为2,公比为2的等比数列.所以b n =2×2n -1=2n .(2)由(1)知a n =12n +16,所以a n b n =2n2n +16.因为a k b k +a 8-k b 8-k =2k 2k +16+28-k 28-k +16=2k -42k -4+1+11+2k -4=1,所以2(a 1b 1+a 2b 2+a 3b 3+…+a 7b 7)=(a 1b 1+a 7b 7)+(a 2b 2+a 6b 6)+…+(a 7b 7+a 1b 1)=7,因此a 1b 1+a 2b 2+a 3b 3+…+a 7b 7=72.【通性通法】倒序相加法的使用策略策略一将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项和公式的推导即用此方法)策略二和对称性有关求和时可用倒序相加,比如函数关于点对称的性质,组合数中C k n =C n -kn 的性质【巩固迁移】6.已知函数f (x )对任意的x ∈R ,都有f (x )+f (1-x )=1,数列{a n }满足a n =f (0)+…+f (1),则数列{a n }的通项公式为________.答案a n =n +12解析∵f (x )+f (1-x )=1,∴1,又a n =f (0)+…+f (1)①,∴a n =f (1)+…+f (0)②,①+②,得2a n =n +1,∴a n =n +12.∴数列{a n }的通项公式为a n =n +12.课时作业一、单项选择题1.(2024·黑龙江牡丹江第二次阶段测试)已知等差数列{a n },a 2=3,a 5=6前8项和为()A .15B .25C .35D .45答案B解析由a 2=3,a 5=6可得公差d =a 5-a 23=1,所以a n =a 2+(n -2)d =n +1,因此1a n a n +1=1(n +1)(n +2)=1n +1-1n +2,8…=12-110=25.故选B.2.在数列{a n }中,a n =(-1)n -1(4n -3),前n 项和为S n ,则S 22-S 11为()A .-85B .85C .-65D .65答案C解析∵S 22=a 1+a 2+a 3+…+a 21+a 22=(1-5)+(9-13)+…+(81-85)=(-4)×11=-44,S 11=a 1+a 2+a 3+…+a 10+a 11=(1-5)+(9-13)+…+(33-37)+41=(-4)×5+41=21,∴S 22-S 11=-44-21=-65.3.(2023·青岛调研)已知数列{a n }的前n 项和是S n ,且满足a 1=3,a 2k =8a 2k -1,a 2k +1=12a 2k ,k ∈N *,则S 2023=()A .42023-1B .3×22023-3C .3×41012-9D .5×41011-2答案C解析∵a 2k =8a 2k -1,a 2k +1=12a 2k ,∴a 2k +1=4a 2k -1.又a 1=3,∴数列{a 2k -1}是首项为3,公比为4的等比数列.∵a 2=8a 1=24,a 2k +2a 2k =a 2k +2a 2k +1·a 2k +1a 2k=4,∴数列{a 2k }是首项为24,公比为4的等比数列.∴S 2023=(a 1+a 3+…+a 2023)+(a 2+a 4+…+a 2022)=3(1-41012)1-4+24(1-41011)1-4=3×41012-9.4.已知数列{a n }的前n 项和为S n ,且满足a n +a n +1+a n +2=cosn π3,a 1=1,则S 2023=()A .0B .12C .1D .32答案C解析S 2023=a 1+(a 2+a 3+a 4)+(a 5+a 6+a 7)+…+(a 2021+a 2022+a 2023)=1+cos2π3+cos 5π3+…+cos 2018π3+cos 2021π3=1+cos 2π3+1.故选C.5.数列{a n }的前n 项和S n =2n +2,数列{log 2a n }的前n 项和为T n ,则T 20=()A .190B .192C .180D .182答案B解析当n =1时,a 1=S 1=21+2=4,当n ≥2时,a n =S n -S n -1=2n +2-(2n -1+2)=2n -2n -1=2n -1,经检验a 1=4不满足上式,所以a n,n =1,n -1,n ≥2.设b n =log 2a n ,则b n,n =1,-1,n ≥2,所以T 20=b 1+b 2+b 3+b 4+…+b 20=2+1+2+3+…+19=192.故选B.6.(2024·湖北黄冈调研)已知数列{a n }满足a n ·(-1)n +a n +2=2n -1,S 20=650,则a 23=()A .231B .234C .279D .276答案B解析由a n ·(-1)n +a n +2=2n -1,S 20=650可知,当n 为偶数时,a n +a n +2=2n -1,当n 为奇数时,a n +2=a n +2n -1,所以S 20=(a 1+a 3+…+a 19)+(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)+(a 18+a 20)=650,即a 1+(a 1+1)+(a 1+6)+(a 1+15)+(a 1+28)+(a 1+45)+(a 1+66)+(a 1+91)+(a 1+120)+(a 1+153)+3+11+19+27+35=650,由此解得a 1=3,所以a 23=a 1+231=234.故选B.7.(2024·江苏常州高三阶段考试)已知正项数列{a n }是公差不为0的等差数列,且a 1,a 2,a 4成等比数列.若∑24k =11a k +a k +1=3,则a 1=()A .169B .916C .43D .34答案A解析设正项等差数列{a n }的公差为d ,且d ≠0,∵a 1,a 2,a 4成等比数列,∴a 22=a 1a 4,即(a 1+d )2=a 1(a 1+3d ),整理得,d 2=a 1d ,∵d ≠0,∴d =a 1,∵∑24k =11a k +a k +1=∑24k =1a k +1-a k(a k +1+a k )(a k +1-a k )=∑24k =1a k +1-a k a k +1-a k =∑24k =11d(a k +1-a k )=1d (a 2-a 1+a 3-a 2+…+a 25-a24)=1d (a25-a 1)=1d (a 1+24d -a 1)=3,即1a 1(5a 1-a 1)=3,即4a 1=3a 1,∵a 1>0,∴a1=169.故选A.8.已知函数fg(x )=f (x )+1,若an ={a n }的前2022项和为()A.2023B .2022C .2021D .2020答案B 解析由于函数f,则x 即0,所以f (x )+f (1-x )=0,所以g (x )+g (1-x )=[f (x )+1]+[f (1-x )+1]=2,所以2(a 1+a 2+…+a 2022)=2g…+=g+g +…+g2×2022,因此数列{a n }的前2022项和为a 1+a 2+…+a 2022=2022.故选B.二、多项选择题9.(2024·广东梅州市大埔县高三质检)已知数列{a n }的首项为4,且满足2(n +1)a n -na n +1=0(n ∈N *),则()A B .{a n }为递增数列C .{a n }的前n 项和S n =(n -1)·2n +1+4D n 项和T n =n 2+n 2答案BD解析由2(n +1)a n -na n +1=0得a n +1n +1=2·a n n ,是以a11=a 1=4为首项,2为公比的等比数列,故A 错误;因为an n =4·2n -1=2n +1,所以a n =n ·2n +1,显然递增,故B 正确;因为S n=1×22+2×23+…+n ×2n +1,2S n =1×23+2×24+…+n ×2n +2,所以-S n =1×22+23+…+2n +1-n ×2n +2=22(1-2n )1-2-n ·2n +2,故S n =(n -1)·2n +2+4,故C 错误;因为a n 2n +1=n ·2n +12n +1=n ,所n 项和T n =n (1+n )2=n 2+n 2,故D 正确.故选BD.10.设数列{a n }的前n 项和为S n ,若a n =1+1n 2+1(n +1)2,则下列结论中正确的是()A .a n =n 2+n +1n (n +1)B .S n =n 2+n -1n +1C .a n ≤32D .满足S n ≤2024的n 的最大值为2023答案ACD 解析a n =1+1n 2+1(n +1)2=[n (n +1)+1]2n 2(n +1)2=n 2+n +1n (n +1),故A 正确;因为a n =1+1n (n +1)=1+1n -1n +1,所以S n =n …n +1-1n +1=n 2+2n n +1,故B 错误;因为1+1n (n +1)>1+1(n +1)(n +2),所以a n >a n +1,所以{a n }是递减数列,所以a n ≤a 1=32,故C正确;因为a n =1+1n -1n +1>0,所以S n 递增,且S 2023<2024,S 2024>2024,所以满足S n ≤2024的n 的最大值为2023,故D 正确.故选ACD.三、填空题11.12!+23!+34!+…+n (n +1)!=________.答案1-1(n +1)!解析∵k (k +1)!=k +1-1(k +1)!=1k !-1(k +1)!,∴12!+23!+34!+…+n(n +1)!=1-12!+12!-13!+13!-14!+…+1(n -1)!-1n !+1n !-1(n +1)!=1-1(n +1)!.12.已知数列{a n }满足a n +2n +2,n 为奇数,a n ,n 为偶数,且a 1=2,a 2=1,则此数列的前20项和为________.答案1133解析当n 为奇数时,由a n +2=a n +2可知,{a n }的奇数项成等差数列,且公差为2,首项为a 1=2;当n 为偶数时,由a n +2=2a n 可知,{a n }的偶数项成等比数列,且公比为2,首项为a 2=1,故前20项和为a 1+a 2+a 3+…+a 19+a 20=(a 1+a 3+a 5+…+a 19)+(a 2+a 4+a 6+…+a 20)+10×92×2+1-2101-2=110+1023=1133.13.(2024·云南曲靖高三月考)已知正项数列{a n }满足a 1=2且a 2n +1-2a 2n -a n a n +1=0,令b n =(n +2)a n -257,则数列{b n }的前7项和为________.答案2021解析由a 2n +1-2a 2n -a n a n +1=0可得(a n +1+a n )(a n +1-2a n )=0,因为a n +1+a n >0,所以a n +1=2a n ,即a n +1a n=2,所以数列{a n }是以a 1=2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =2n (n +2)-257,令c n =2n (n +2),{c n }的前n 项和为T n ,则T 7=3×21+4×22+5×23+…+9×27,2T 7=3×22+4×23+5×24+…+9×28,两式相减可得,-T 7=3×21+22+23+…+27-9×28=6+4×(1-26)1-2-9×28=6+4×63-9×256=-2046,所以T 7=2046,所以数列{b n }的前7项和为T 7-257×7=2046-25=2021.14.(2023·湖北重点中学模拟)已知数列{a n }的前n 项和为S n ,且2a n -S n =2,记数列n 项和为T n .若对于任意n ∈N *,不等式k >T n 恒成立,则实数k 的取值范围为________.答案13,+解析依题意2a n -S n =2,当n =1时,a 1=2,由2a n -1-S n -1=2,n ≥2,两式相减并化简得a n =2a n -1,所以数列{a n }是首项为2,公比为2的等比数列,即a n =2n ,所以a n(a n +1)(a n +1+1)=2n(2n +1)(2n +1+1)=12n +1-12n +1+1,所以T n …+=13-12n +1+1<13,所以实数k 的取值范围是13,+四、解答题15.(2024·湖北恩施模拟)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1·4na n a n +1,求数列{b n }的前n 项和T n .解(1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12.由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n -1·4na n a n +1=(-1)n -1·4n(2n -1)(2n +1)=(-1)n -1当n 为偶数时,T n…1-12n +1=2n2n +1;当n 为奇数时,T n…1+12n +1=2n +22n +1.所以T nn为奇数n 为偶数T n16.已知数列{a n }的前n 项和为S n ,且a 1=1,a n =-2S n -1S n (n ≥2).(1)求a n ;(2)设b n =2nS n ,求数列{b n }的前n 项和T n .解(1)∵a n =-2S n -1S n ,∴S n -S n -1=-2S n -1S n ,∴S n -1-S n =2S n S n -1,∴1S n -1S n -1=2,∴,且1S n =1S 1+2(n -1)=1+2n -2=2n -1,∴S n =12n -1(n ∈N *),∴当n ≥2时,a n =-2(2n -1)(2n -3),又a 1=1不满足上式,∴a nn ≥2.(2)由(1)可得b n =(2n -1)2n ,则T n =1×21+3×22+…+(2n -3)2n -1+(2n -1)2n ,2T n =1×22+3×23+…+(2n -3)2n +(2n -1)2n +1,两式相减得-T n =2+23+24+…+2n +1-(2n -1)2n +1=2+23(1-2n -1)1-2-(2n -1)2n +1=2-8+2n +2-(2n -1)2n +1=-6-(2n -3)2n +1,∴T n =(2n -3)2n +1+6.17.(2024·江西临川一中阶段考试)函数f (x )=ln x ,其中f (x )+f (y )=2,记S n =ln x n +ln (x n -1y )+…+ln (xy n -1)+ln y n(n ∈N *),则∑2024i =11S i =()A .20242025B .20252024C .20254048D .40482025答案A解析∵f (x )=ln x ,f (x )+f (y )=2,∴f (x )+f (y )=ln x +ln y =ln (xy )=2.S n =ln x n +ln (x n -1y )+…+ln (xy n -1)+ln y n ,即S n =ln y n +ln (xy n -1)+…+ln (x n -1y )+ln x n ,两式相加得,2S n =(n +1)ln(x n y n )=n (n +1)ln (xy )=2n (n +1),∴S n =n (n +1),∑2024i =11S i =∑2024i =11i (i +1)=∑2024i =11-12025=20242025.故选A.18.(2023·广西玉林统考三模)已知函数f (x )=e -x -e x ,若函数h (x )=f (x -4)+x ,数列{a n }为等差数列,a 1+a 2+a 3+…+a 11=44,则h (a 1)+h (a 2)+…+h (a 11)=________.答案44解析由题意,可得h (x )=f (x -4)+x =e -(x -4)-e x -4+x ,设等差数列{a n }的前n 项和为S n ,公差为d ,则S 11=11a 1+11×102d =11(a 1+5d )=11a 6=44,解得a 6=4,则h (a 6)=h (4)=e -(4-4)-e 4-4+a 6=a 6=4,根据等差中项的性质,可得a 1+a 11=2a 6=8,则h (a 1)+h (a 11)=e-(a 1-4)-e a 1-4+a 1+e-(a11-4)-e a 11-4+a 11=1e a 1-4+1e a 11-4-(e a 1-4+e a 11-4)+a 1+a 11=e a 1-4+e a 11-4e a 1+a 11-8-(e a 1-4+e a 11-4)+a 1+a 11=a 1+a 11=8,同理可得,h (a 2)+h (a 10)=8,h (a 3)+h (a 9)=8,h (a 4)+h (a 8)=8,h (a 5)+h (a 7)=8,所以h (a 1)+h (a 2)+…+h (a 11)=5×8+4=44.19.(2023·山西太原二模)已知等比数列{a n }的前n 项和为S n (S n ≠0),满足S 1,S 2,-S 3成等差数列,且a 1a 2=a 3.(1)求数列{a n }的通项公式;(2)设b n =-3a n(a n +1)(a n +1+1),求数列{b n }的前n 项和T n .解(1)设数列{a n }的公比为q ,依题意得S 1+(-S 3)=2S 2,所以-(a 2+a 3)=2(a 1+a 2),即-a 1(q +q 2)=2a 1(1+q ),因为a 1≠0,所以q 2+3q +2=0,解得q =-1或q =-2,因为S n ≠0,所以q =-2,又因为a 1a 2=a 3,所以a 21q =a 1q 2,即a 1=q =-2,所以a n =(-2)n .(2)由题意可得,b n =-3(-2)n[(-2)n +1][(-2)n +1+1]=(-2)n +1-(-2)n[(-2)n +1][(-2)n +1+1]=1(-2)n +1-1(-2)n +1+1,则T n =1(-2)1+1-1(-2)2+1+1(-2)2+1-1(-2)3+1+…+1(-2)n +1-1(-2)n +1+1=-1-1(-2)n +1+1.20.(2024·新疆阿克苏地区质检)已知正整数数列{a n },a 1=1,a 2=2,当n ≥2时,a 2n -1a n +1<a n -2025年高考数学复习讲义及练习解析211<a 2n +1a n +1恒成立.(1)证明数列{a n }是等比数列并求出其通项公式;(2)定义:|x |表示不大于xn 项和为S n ,求|S 1|+|S 2|+|S 3|+…+|S 2024|的值.解(1)由a 2n -1a n +1<a n -1<a 2n +1a n +1,得a 2n -1<a n -1a n +1<a 2n +1.因为{a n }是正整数数列,所以a n -1a n +1=a 2n (n ≥2,n ∈N *),于是{a n }是等比数列.又a 1=1,a 2=2,所以a n =2n -1,n ∈N *.(2)因为2n -1a n =2n -12n -1,S n =120+321+522+…+2n -12n -1,12S n =121+322+523+…+2n -12n ,两式相减得,12S n =1++122+123+…-2n -12n =3-2n +32n,所以S n =6-2n +32n -1<6,又S n +1-S n =2n +12n >0,即{S n }为递增数列,S 1=1,2<S 2=52<3,3<S 3=154<4,4<S 4=378<5,S 5=8316>5,所以|S 1|=1,|S 2|=2,|S 3|=3,|S 4|=4,|S n |=5(n ≥5),所以|S 1|+|S 2|+|S 3|+…+|S 2024|=1+2+3+4+=10110.。
§6.1 数列的概念考试要求 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.知识梳理1.数列的定义按照确定的顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.2.数列的分类分类标准类型满足条件有穷数列项数有限项数无穷数列项数无限递增数列a n +1>a n 递减数列a n+1<a n 常数列a n +1=a n 其中n ∈N *项与项间的大小关系摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列3.数列的通项公式如果数列{a n }的第n 项a n 与它的序号n 之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.4.数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.常用结论1.已知数列{a n }的前n 项和S n ,则a n =Error!2.在数列{a n }中,若a n 最大,则Error!(n ≥2,n ∈N *);若a n 最小,则Error!(n ≥2,n ∈N *).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( × )(2)1,1,1,1,…,不能构成一个数列.( × )(3)任何一个数列不是递增数列,就是递减数列.( × )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( √ )教材改编题1.若数列{a n }满足a 1=2,a n +1=1+a n1-a n ,则a 2 023的值为( )A .2B .-3C .-12 D.13答案 C解析 因为a 1=2,a n +1=1+a n1-a n ,所以a 2=1+a 11-a 1=-3,同理可得a 3=-12,a 4=13,a 5=2,…,可得a n +4=a n ,则a 2 023=a 505×4+3=a 3=-12.2.数列13,18,115,124,135,…的通项公式是a n =________.答案 1n (n +2),n ∈N*解析 ∵a 1=11×(1+2)=13,a 2=12×(2+2)=18,a 3=13×(3+2)=115,a 4=14×(4+2)=124,a5=15×(5+2)=135,∴通过观察,我们可以得到如上的规律,则a n=1n(n+2),n∈N*.3.已知数列{a n}的前n项和S n=2n2-3n,则数列{a n}的通项公式a n=________.答案 4n-5解析 a1=S1=2-3=-1,当n≥2时,a n=S n-S n-1=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5,因为a1也适合上式,所以a n=4n-5.题型一 由a n与S n的关系求通项公式例1 (1)设S n为数列{a n}的前n项和,若2S n=3a n-3,则a4等于( )A.27 B.81C.93 D.243答案 B解析 根据2S n=3a n-3,可得2S n+1=3a n+1-3,两式相减得2a n+1=3a n+1-3a n,即a n+1=3a n,当n=1时,2S1=3a1-3,解得a1=3,所以数列{a n}是以3为首项,3为公比的等比数列,所以a4=a1q3=34=81.(2)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n,则a n=________.答案 Error!解析 当n=1时,a1=21=2.∵a1+3a2+…+(2n-1)a n=2n,①∴a1+3a2+…+(2n-3)a n-1=2n-1(n≥2),②由①-②得,(2n-1)·a n=2n-2n-1=2n-1,∴a n=2n-12n-1(n≥2).显然n=1时不满足上式,∴a n=Error!教师备选1.已知数列{a n}的前n项和S n=n2+2n,则a n=________.答案 2n+1解析 当n=1时,a1=S1=3.当n≥2时,a n=S n-S n-1=n2+2n-[(n-1)2+2(n-1)]=2n+1.由于a1=3适合上式,∴a n=2n+1.2.已知数列{a n}中,S n是其前n项和,且S n=2a n+1,则数列的通项公式a n=________.答案 -2n-1解析 当n=1时,a1=S1=2a1+1,∴a1=-1.当n≥2时,S n=2a n+1,①S n-1=2a n-1+1.②①-②得S n-S n-1=2a n-2a n-1,即a n=2a n-2a n-1,即a n=2a n-1(n≥2),∴{a n}是首项为a1=-1,公比为q=2的等比数列.∴a n=a1·q n-1=-2n-1.思维升华 (1)已知S n求a n的常用方法是利用a n=Error!转化为关于a n的关系式,再求通项公式.(2)S n与a n关系问题的求解思路方向1:利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.方向2:利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.跟踪训练1 (1)已知数列{a n}的前n项和为S n,且S n=2n2+n+1,n∈N*,则a n=________.答案 Error!解析 根据题意,可得S n-1=2(n-1)2+(n-1)+1.由通项公式与求和公式的关系,可得a n=S n-S n-1,代入化简得a n=2n2+n+1-2(n-1)2-(n-1)-1=4n-1.经检验,当n=1时,S1=4,a1=3,所以S1≠a1,所以a n=Error!(2)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则a n=________.答案 Error!解析 由已知得a n +1=S n +1-S n =S n +1S n ,两边同时除以S n +1S n ,得1S n +1-1S n =-1.故数列{1S n }是以-1为首项,-1为公差的等差数列,则1S n =-1-(n -1)=-n .所以S n =-1n.当n ≥2时,a n =S n -S n -1=-1n +1n -1=1n (n -1),故a n =Error!题型二 由数列的递推关系求通项公式命题点1 累加法例2 在数列{a n }中,a 1=2,a n +1=a n +ln (1+1n ),则a n 等于( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n答案 A解析 因为a n +1-a n =ln n +1n=ln(n +1)-ln n ,所以a 2-a 1=ln 2-ln 1,a 3-a 2=ln 3-ln 2,a 4-a 3=ln 4-ln 3,……a n -a n -1=ln n -ln(n -1)(n ≥2),把以上各式分别相加得a n -a 1=ln n -ln 1,则a n =2+ln n (n ≥2),且a 1=2也适合,因此a n =2+ln n (n ∈N *).命题点2 累乘法例3 若数列{a n }满足a 1=1,na n -1=(n +1)·a n (n ≥2),则a n =________.答案 2n +1解析 由na n -1=(n +1)a n (n ≥2),得a na n-1=nn+1(n≥2).所以a n=a na n-1·a n-1a n-2·a n-2a n-3·…·a3a2·a2a1·a1=nn+1×n-1n×n-2n-1×…×34×23×1=2n+1,又a1=1满足上式,所以a n=2 n+1.教师备选1.在数列{a n}中,a1=3,a n+1=a n+1n(n+1),则通项公式a n=________.答案 4-1 n解析 ∵a n+1-a n=1n(n+1)=1n-1n+1,∴当n≥2时,a n-a n-1=1n-1-1n,a n-1-a n-2=1n-2-1n-1,……a2-a1=1-1 2,∴以上各式相加得,a n-a1=1-1 n ,∴a n=4-1n,a1=3适合上式,∴a n=4-1 n .2.若{a n}满足2(n+1)·a2n+(n+2)·a n·a n+1-n·a2n+1=0,且a n>0,a1=1,则a n=________.答案 n·2n-1解析 由2(n+1)·a2n+(n+2)·a n·a n+1-n·a2n+1=0得n(2a2n+a n·a n+1-a2n+1)+2a n(a n+a n+1)=0,∴n(a n+a n+1)(2a n-a n+1)+2a n(a n+a n+1)=0,(a n+a n+1)[(2a n-a n+1)·n+2a n]=0,又a n>0,∴2n·a n+2a n-n·a n+1=0,∴a n+1a n=2(n+1)n,又a1=1,∴当n≥2时,a n=a na n-1·a n-1a n-2·…·a3a2·a2a1·a1=2nn-1×2(n-1)n-2×2(n-2)n-3×…×2×32×2×21×1=2n-1·n.又n=1时,a1=1适合上式,∴a n=n·2n-1.思维升华 (1)形如a n+1-a n=f(n)的数列,利用累加法,即利用公式a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1(n≥2),即可求数列{a n}的通项公式.(2)形如a n+1a n=f(n)的数列,常令n分别为1,2,3,…,n-1,代入a n+1a n=f(n),再把所得的(n-1)个等式相乘,利用a n=a1·a2a1·a3a2·…·a na n-1(n≥2)即可求数列{a n}的通项公式.跟踪训练2 (1)已知数列{a n}的前n项和为S n,若a1=2,a n+1=a n+2n-1+1,则a n=________.答案 2n-1+n解析 ∵a n+1=a n+2n-1+1,∴a n+1-a n=2n-1+1,∴当n≥2时,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a3-a2)+(a2-a1)+a1=2n-2+2n-3+…+2+1+a1+n-1=1-2n-11-2+2+n-1=2n-1+n.又∵a1=2满足上式,∴a n=2n-1+n.(2)(2022·莆田模拟)已知数列{a n}的前n项和为S n,a1=1,S n=n2a n(n∈N*),则数列{a n}的通项公式为________.答案 a n=2n(n+1)解析 由S n=n2a n,可得当n≥2时,S n-1=(n-1)2a n-1,则a n=S n-S n-1=n2a n-(n-1)2a n-1,即(n2-1)a n=(n-1)2a n-1,易知a n≠0,故a na n-1=n-1n+1(n≥2).所以当n≥2时,a n=a na n-1×a n-1a n-2×a n-2a n-3×…×a3a2×a2a1×a1=n -1n +1×n -2n ×n -3n -1×…×24×13×1=2n (n +1).当n =1时,a 1=1满足a n =2n (n +1).故数列{a n }的通项公式为a n =2n (n +1).题型三 数列的性质命题点1 数列的单调性例4 已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若数列{a n }为递增数列,则有a n +1-a n >0,∴(n +1)2-2λ(n +1)-n 2+2λn=2n +1-2λ>0,即2n +1>2λ对任意的n ∈N *都成立,于是有λ<(2n +12)min =32,∵由λ<1可推得λ<32,但反过来,由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件.命题点2 数列的周期性例5 (2022·广州四校联考)数列{a n }满足a 1=2,a n +1=11-a n(n ∈N *),则a 2 023等于( )A .-2B .-1C .2D.12答案 C解析 ∵数列{a n}满足a1=2,a n+1=11-a n(n∈N*),∴a2=11-2=-1,a3=11-(-1)=12,a4=11-12=2,…,可知此数列有周期性,周期T=3,即a n+3=a n,则a2 023=a1=2.命题点3 数列的最值例6 已知数列{a n}的通项公式a n=(n+1)·(1011)n,则数列{a n}的最大项为( ) A.a8或a9B.a9或a10C.a10或a11D.a11或a12答案 B解析 结合f(x)=(x+1)(1011)x的单调性,设数列{a n}的最大项为a n,所以Error!所以Error!解不等式组可得9≤n≤10.所以数列{a n}的最大项为a9或a10.教师备选1.已知数列{a n}的通项公式为a n=3n+k2n,若数列{a n}为递减数列,则实数k的取值范围为( )A.(3,+∞) B.(2,+∞) C.(1,+∞) D.(0,+∞)答案 D解析 因为a n+1-a n=3n+3+k2n+1-3n+k2n=3-3n-k 2n+1,由数列{a n}为递减数列知,对任意n∈N*,a n+1-a n=3-3n-k2n+1<0,所以k>3-3n对任意n∈N*恒成立,所以k∈(0,+∞).2.在数列{a n}中,a1=1,a n a n+3=1,则log5a1+log5a2+…+log5a2 023等于( )A.-1 B.0C.log53 D.4答案 B解析 因为a n a n+3=1,所以a n+3a n+6=1,所以a n+6=a n,所以{a n}是周期为6的周期数列,所以log5a1+log5a2+…+log5a2 023=log5(a1a2…a2 023)=log5[(a1a2…a6)337·a1],又因为a1a4=a2a5=a3a6=1,所以a1a2…a6=1,所以原式=log5(1337×1)=log51=0.思维升华 (1)解决数列的单调性问题的方法用作差比较法,根据a n+1-a n的符号判断数列{a n}是递增数列、递减数列还是常数列.(2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.(3)求数列的最大项与最小项的常用方法①函数法,利用函数的单调性求最值.②利用Error!(n≥2)确定最大项,利用Error!(n≥2)确定最小项.跟踪训练3 (1)在数列{a n}中,a n+1=Error!若a1=45,则a2 023的值为( )A.35B.45C.25D.15答案 D解析 a1=45>1 2,∴a2=2a1-1=35>1 2,∴a3=2a2-1=15<1 2,∴a4=2a3=25<1 2,∴a5=2a4=4 5,……可以看出四个循环一次,故a2 023=a4×505+3=a3=1 5 .(2)(2022·沧州七校联考)已知数列{a n}满足a n=n+13n-16(n∈N*),则数列{a n}的最小项是第________项.答案 5解析 a n=n+13n-16=13(1+193n-16),当n>5时,a n>0,且单调递减;当n≤5时,a n<0,且单调递减,∴当n=5时,a n最小.课时精练1.数列{a n}的前几项为12,3,112,8,212,…,则此数列的通项公式可能是( )A.a n=5n-42B.a n=3n-22C.a n=6n-52D.a n=10n-92答案 A解析 数列为12,62,112,162,212,…,其分母为2,分子是以首项为1,公差为5的等差数列,故数列{a n}的通项公式为a n=5n-4 2.2.在数列{a n}中,a1=1,a n=1+(-1)na n-1(n≥2),则a5等于( )A.32B.53C.85D.23答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.3.已知数列{a n }的前n 项积为T n ,且满足a n +1=1+a n 1-a n (n ∈N *),若a 1=14,则T 2 023为( )A .-4B .-35C .-53D.14答案 C解析 由a n +1=1+a n 1-a n ,a 1=14,得a 2=53,a 3=-4,a 4=-35,a 5=14,…,所以数列{a n }具有周期性,周期为4,因为T 4=a 1·a 2·a 3·a 4=1,2 023=4×505+3,所以T 2 023=(a 1a 2a 3a 4)…(a 2 021a 2 022a 2 023)=14×53×(-4)=-53.4.若数列{a n }的前n 项和S n =2a n -1(n ∈N *),则a 5等于( )A .8 B .16 C .32 D .64答案 B解析 数列{a n }的前n 项和S n =2a n -1(n ∈N *),则S n -1=2a n -1-1(n ≥2),两式相减得a n =2a n -1(n ≥2),由此可得,数列{a n }是等比数列,又S 1=2a 1-1=a 1,所以a 1=1,故数列{a n }的通项公式为a n =2n -1,令n =5,得a 5=16.5.(多选)已知数列{a n }的通项公式为a n =9n 2-9n +29n 2-1(n ∈N *),则下列结论正确的是( )A .这个数列的第10项为2731B.97100是该数列中的项C.数列中的各项都在区间[14,1)内D.数列{a n}是单调递减数列答案 BC解析 a n=9n2-9n+29n2-1=(3n-1)(3n-2)(3n-1)(3n+1)=3n-2 3n+1,令n=10得a10=2831,故A错误;令3n-23n+1=97100得n=33∈N*,故97100是数列中的项,故B正确;因为a n=3n-23n+1=3n+1-33n+1=1-33n+1,又n∈N*.所以数列{a n}是单调递增数列,所以14≤a n<1,故C正确,D不正确.6.(多选)若数列{a n}满足:对任意正整数n,{a n+1-a n}为递减数列,则称数列{a n}为“差递减数列”.给出下列数列{a n}(n∈N*),其中是“差递减数列”的有( )A.a n=3n B.a n=n2+1C.a n=n D.a n=ln nn+1答案 CD解析 对于A,若a n=3n,则a n+1-a n=3(n+1)-3n=3,所以{a n+1-a n}不为递减数列,故A错误;对于B,若a n=n2+1,则a n+1-a n=(n+1)2-n2=2n+1,所以{a n+1-a n}为递增数列,故B错误;对于C,若a n=n,则a n+1-a n=n+1-n=1n+1+n,所以{a n+1-a n}为递减数列,故C正确;对于D ,若a n =ln nn +1,则a n +1-a n =ln n +1n +2-lnnn +1=ln (n +1n +2·n +1n )=ln (1+1n 2+2n),由函数y =ln (1+1x 2+2x)在(0,+∞)上单调递减,所以{a n +1-a n }为递减数列,故D 正确.7.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则a n =________.答案 Error!解析 ∵a n +1=3S n (n ∈N *),∴当n =1时,a 2=3;当n ≥2时,a n =3S n -1,∴a n +1-a n =3a n ,得a n +1=4a n ,∴数列{a n }从第二项起为等比数列,当n ≥2时,a n =3·4n -2,故a n =Error!8.(2022·临沂模拟)已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________.答案 (-3,+∞)解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ∈N *,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.9.已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3,由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知当n =1时,a 1=1.当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1,于是a 2=31a 1,a 3=42a 2,…,a n -1=nn -2a n -2,a n =n +1n -1a n -1,将以上n -1个等式中等号两端分别相乘,整理得a n =n (n +1)2.当n =1时,a 1=1满足a n =n (n +1)2.综上可知,{a n }的通项公式为a n =n (n +1)2.10.求下列数列{a n }的通项公式.(1)a 1=1,a n +1=a n +3n ;(2)a 1=1,a n +1=2n a n .解 (1)由a n +1=a n +3n 得a n +1-a n =3n ,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=1+31+32+33+…+3n -1=1×(1-3n )1-3=3n -12,当n =1时,a 1=1=31-12,满足上式,∴a n =3n -12(n ∈N *).(2)由a n +1=2n a n 得a n +1an =2n ,当n ≥2时,a n =a 1×a 2a 1×a 3a 2×a 4a 3×…×a na n -1=1×2×22×23×…×2n -1=21+2+3+…+(n -1)=()122n n -.当n =1时,a 1=1满足上式,∴a n =()122n n -(n ∈N *).11.已知数列{a n }满足a n =Error!且{a n }是递增数列,则实数a 的取值范围是( )A.(167,3)B.[167,3)C .(1,3)D .(2,3)答案 D解析 若{a n }是递增数列,则Error!即Error!解得2<a <3,即实数a 的取值范围是(2,3).12.(多选)(2022·江苏盐城中学模拟)对于数列{a n },若存在数列{b n }满足b n =a n -1a n (n ∈N *),则称数列{b n }是{a n }的“倒差数列”,下列关于“倒差数列”描述正确的是( )A .若数列{a n }是单增数列,则其“倒差数列”不一定是单增数列B .若a n =3n -1,则其“倒差数列”有最大值C .若a n =3n -1,则其“倒差数列”有最小值D .若a n =1-(-12)n ,则其“倒差数列”有最大值答案 ACD解析 若数列{a n }是单增数列,则b n -b n -1=a n -1a n -a n -1+1a n -1=(a n -a n -1)(1+1a n a n -1),虽然有a n >a n -1,但当1+1a n a n -1<0时,b n <b n -1,因此{b n }不一定是单增数列,A 正确;a n =3n -1,则b n =3n -1-13n -1,易知{b n }是递增数列,无最大值,B 错误;C 正确,最小值为b 1.若a n =1-(-12)n ,则b n =1-(-12)n -11-(-12)n,∵函数y =x -1x在(0,+∞)上单调递增,∴当n 为偶数时,a n =1-(12)n ∈(0,1),∴b n =a n -1a n <0,当n 为奇数时,a n =1+(12)n >1,显然a n 是单调递减的,因此b n =a n -1a n 也是单调递减的,即b 1>b 3>b 5>…,∴{b n }的奇数项中有最大值为b 1=32-23=56>0,∴b 1=56是数列{b n }(n ∈N *)中的最大值,D 正确.13.已知数列{a n }的通项公式a n =632n ,若a 1·a 2·…·a n ≤a 1·a 2·…·a k 对n ∈N *恒成立,则正整数k 的值为________.答案 5解析 a n =632n ,当n ≤5时,a n >1;当n ≥6时,a n <1,由题意知,a 1·a 2·…·a k 是{a n }的前n 项乘积的最大值,所以k =5.14.(2022·武汉模拟)已知数列{a n }中,a 1=1,1a n +1-1a n =n +1,则其前n 项和S n =________.答案 2n n +1解析 ∵1a 2-1a 1=2,1a 3-1a 2=3,1a 4-1a 3=4,…,1a n -1a n -1=n ,累加得1a n -1a 1=2+3+4+…+n ,得1a n =1+2+3+4+…+n =n (n +1)2,∴a n =2n (n +1)=2(1n-1n +1),∴S n =2[(11-12)+(12-13)+(13-14)+…+(1n-1n +1)]=2n n +1.15.(多选)若数列{a n }满足a 1=1,a 2=3,a n a n -2=a n -1(n ≥3),记数列{a n }的前n 项积为T n ,则下列说法正确的有( )A .T n 无最大值 B .a n 有最大值C .T 2 023=1 D .a 2 023=1答案 BCD解析 因为a 1=1,a 2=3,a n a n -2=a n -1(n ≥3),所以a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,…因此数列{a n }为周期数列,a n +6=a n ,a n 有最大值3,a 2 023=a 1=1,因为T 1=1,T 2=3,T 3=9,T 4=9,T 5=3,T 6=1,T 7=1,T 8=3,…,所以{T n }为周期数列,T n +6=T n ,T n 有最大值9,T 2 023=T 1=1.16.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2,已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8.即a 的取值范围是(-10,-8).。
知识点1一、数列的通项的求法1.公式法:①等差数列通项公式1(1)n a a n d =+-; ②等比数列通项公式11n n a a q-=.2.作差法:已知n S (即12()n a a a f n +++= )求n a 用作差法:11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩.3.作商法:已知12()n a a a f n ⋅⋅⋅= 求n a 用作商法:()(1)(1),(1),(2)n f n f n f n a n -=⎧⎪=⎨≥⎪⎩.4.叠加法:若1()n n a a f n +-=求n a 用叠加法.5.叠乘法:已知1()n na a f n +=,求n a 用叠乘法.6.构造法(构造等差、等比数列):①形如1n n a ka b -=+,1n n n a ka b -=+, 1n n a ka a n b -=+⋅+(,k b 为常数)的递推数列都可以用待定 系数法转化为公比为k 的等比数列后,再求n a . ②形如11n n n a ka ba --+=的递推数列都可以用 “取倒数法”求通项.二、数列求和的方法 1、公式法:等差数列求和公式:2)(1n n a a n s +=或2111(1)222n dd S n a n n d n a n ⎛⎫=+-=+- ⎪⎝⎭ 等比数列求和公式;⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na s n nn2、分组求和法:若数列的通项是若干项的代数和,可将其分成几部分来求.3、倒序相加法:此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和.4、错位相减法:源于等比数列前n 项和公式的推导,对于形如{}n n a b 的数列,其中{}n a 为等差数列,{n b 为等比数列,均可用此法.5、裂项相消法:如果一个数列的每一项都能化为两项之差,而前一项的减数恰与后一项的被减数相同,一减一加,中间项全部相消为零,那么原数列的前n 项之和等于第一项的被减数与最末项的减数之差.多用于分母为等差数列的相邻k 项之积,且分子为常数的分式型数列的求和. 公式:12123(1)n n n ++++=+ ; 222216123(1)(21)n n n n ++++=++ ;33332(1)2123[]n n n +++++= ;2135n n ++++= ;常见裂项公式:111(1)1n n nn ++=-;1111()()n n k knn k++=-;1111(1)(1)2(1)(1)(2)[]n n n n n n n -++++=-;常见放缩公式:21211112()2()n n n n n nnn n +-+++--=<<=-.知识点2一、等差或等比数列的证明判断和证明数列是等差(等比)数列常有三种方法:1、定义法:对于n ≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。
2、通项公式法: ①若=+(n-1)d=+(n-k )d ,则{}n a 为等差数列; ②若,则{}n a 为等比数列。
3、中项公式法:验证都成立。
知识点3一、数列的应用1、“分期付款”、“森林木材”型应用问题⑴这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算 “年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决.⑵利率问题: ①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金p 元,每期利率为r ,则n 期后本利 和为:(1)2(1)(12)(1)()n n n S p r p r p n r p n r +=+++++=+(等差数列问题);②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)p 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分n 期还清.如果每期利率为r (按复利),那么每期等额还款x 元应满足:12(1)(1)(1)(1)n n n p r x r x r x r x --+=+++++++ (等比数列问题).【精讲精练】【例题1】已知数列{}n a 的前n 项和为n S ,且34-=n na S (*n ∈N )。
(Ⅰ)证明:数列{}n a 是等比数列;(Ⅱ)若数列{}n b 满足*1()n n n b a b n +=+∈N ,且12b =,求数列{}n b 的通项公式.【考点】等比数列通项与前n 项和公式【分析】根据n a 与n s 的关系可求得n a ,继而代入已知条件中即可得到关于数列{}n b 的递推关系式,再利用叠加法求得通项。
【解答】解:(Ⅰ)证明:由34-=n n a S ,1n =时,3411-=a a ,解得11=a .因为34-=n n a S ,则3411-=--n n a S (2)n ≥, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得143n n a a -=.又110a =≠,所以{}n a 是首项为1,公比为43的等比数列.(Ⅱ) 因为14()3n n a -=,由*1()n n n b a b n +=+∈N ,得114()3n n n b b -+-=.当2≥n 时,有1232121)34()34()34(=-=-=------b b b b b b n n n n n n可得)()()(1231`21--++-+-+=n n n b b b b b b b b=1)34(3341)34(1211-=--+--n n ,(2≥n ), 当1n =时,21=b ,也满足上式,所以数列{}n b 的通项公式为1)34(31-=-n n b 。
【点评】本题主要考察用作差法和叠加法求数列通项的技巧,要注意1=n 时的情况,必要时分 段书写。
【巩固1】数列{}n a 的前n 项和rra S n n(1+=为不等于0,1的常数),求其通项公式n a 。
【考点】数列通项求法【分析】可利用n a 与n s 的关系可求得通项公式n a 。
【解答】解:由n n ra S +=1可得当2≥n 时111--+=n n ra S , )(11---=-∴n n n n a a r S S ,1--=∴n n n ra ra a ,,)1(1-=-∴n n ra r a ,1≠r ∴11-=-r r a a n n ,0≠r ,}{n a ∴是公比为1-r r 的等比数列.又当1=n 时,111ra S +=,∴ra -=111,1)1(11---=∴n n r r r a 。
【点评】本题复习作差法求通项公式,注意题中字母的范围,必要时要分类讨论。
【例题2】设{}n a 是首项为1的正项数列,且满足2211(1)0()n n n n n a na a a n *+++-+=∈N , 则它的通项公式n a = .【考点】数列通项公式的求法。
【分析】化简已知条件中给出的递推公式,通过叠乘等式,得到通项。
解:由2211(1)0n n n n n a na a a +++-+=·,得11[(1)]()0n n n n n a na a a +++-+=·. 由0n a >,得10n n a a ++≠, 1(1)0n n n a na ++-=∴,即11n na n a n +=+.∴11n n a n a n--=,12212112n n a a n a n a ---==- ,,. 将以上1n -个式子叠乘,得11n a a n=.因为11a =,所以1n a n=.【点评】形如1()(2)n n a a f n n -=·≥的递推数列求通项适用此法。
【例题3】★★★数列{}n a ,首项为1a ,满足BAaa nn +=+1(1≠A),求通项公式na 。
【考点】数列通项公式的求法。
【分析】整理变形递推公式,构造新数列,再利用整体代换方法求得通项。
【解答】解:设存在一实数λ,满足)(1λλ-=-+n n a A a ,即)1(1A Aa a n n -+=+λ. 又因为B Aa a n n +=+1,所以,B A =-)1(λ即:AB -=1λ.由)(1λλ-=-+n n a A a 可知数列{}λ-n a 是首项为λ-1a ,公比为A 的等比数列。
故11)(--=-n n A a a λλ,即λλ+-=-11)(n n Aa a .代入AB -=1λ得:AB AAB a a n n -+--=-1)1(11【点评】注意此类问题中可用待定系数法求出λ。
【巩固1】★★根据下面各个数列{}n a 的首项和递推关系,求其通项公式。
⑴==+11,1n a a )(2*N n n a n ∈+⑵==+11,1n a a 1+n n)(*N n a n ∈ ⑶==+11,1n a a 121+n a )(*N n ∈【考点】数列通项公式的求法。
【分析】根据不同递推公式的特点,依次选择用叠加、叠乘、构造法求得各个通项。
【解答】解:(1)n a a n n 21+=+ ,n a a n n 21=-∴+,)()()(123121--++-+-+=∴n n n a a a a a a a a 1)1(1)1(2221212+-=-⨯+=-⨯++⨯+⨯+=n n n n n(2)11+=+n n a a nn123121-⋅⋅⋅⋅=∴n n n a a a a a a a a =nnn 1132211=-⋅⋅⋅⋅又由题意可知,n n na a n =++1)1(对一切自然数n 成立, 11)1(11=⋅==-=∴-a a n na n n .1na n =∴(3)}2{)2(21212111-∴-=-∴+=++n n n n n a a a a a 是首项为121-=-a 公比为21的等比数列,.)21(2,)21(1211---=∴⋅-=-∴n n n n a a【点评】本例复习求通项公式的几种方法:迭加法、迭乘法、构造法。
【例题4】求数列11111246248162n n ++ ,,,,, 的前n 项和n S .【考点】分组法数列求和。
【分析】此数列的通项公式是1122n n a n +=+,而数列{2}n 是一个等差数列,数列112n +⎧⎫⎨⎬⎩⎭是一个等比数列,故采用分组求和法求解.【解答】解:23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++-⎪⎝⎭. 【点评】在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别构成等差数列或等比数列,那么我们就用此方法求和【例题5】数列{}n a 为等差数列,试证明数列的前n 项和。