遗传学复习资料
- 格式:doc
- 大小:369.50 KB
- 文档页数:21
遗传学复习附答案(朱军)名词解释:第⼀章绪论1.遗传学(genetics):2.遗传(heredity):3.变异(variation):是指后代个体发⽣了变化,与其亲代不相同的⽅⾯。
4.表型(phenotype):⽣物体所表现出来的所有形态特征、⽣理特征和⾏为特征称为表型。
5.基因型(genotype):个体能够遗传的、决定各种性状发育的所有基因称为基因型。
第⼆章遗传的细胞学基础6.⽣殖(reproduction):⽣物繁衍后代的过程。
7.有性⽣殖(sexual reproduction):通过产⽣两性配⼦和两性配⼦的结合⽽产⽣后代的⽣殖⽅式称为有性⽣殖。
8.同源染⾊体(homologous chromosome):⽣物的染⾊体在体细胞内通常是成对存在的,即形态、结构、功能相似的染⾊体都有2条,它们成为同源染⾊体。
9.⾮同源染⾊体(non-homologous chromosome):形态、结构和功能彼此不同的染⾊体互称为⾮同源染⾊体。
10.授粉(pollination):当精细胞形成以后,花粉从花药中释放出来传递到雌蕊柱头上的过程叫授粉。
11.双受精(double fertilization):被⼦⾷物授粉后,花粉在柱头上萌发,长出花粉管并到达胚囊。
2个精⼦从花粉管中释放出来,其中⼀个与卵细胞结合产⽣合⼦,以后发育为种⼦胚,另⼀个与2个极核结合产⽣胚乳原细胞,以后发育为胚乳,这⼀过程称为双受精。
107. 常染⾊体(autosome):在⼆倍体⽣物的体细胞中,染⾊体是成对存在的,绝⼤部分同源染⾊体的形态结构是同型的,称为常染⾊体。
99. 等位基因(alleies):位于同源染⾊体相等的位置上,决定⼀个单位性状的遗传及其相对差异的⼀对基因。
116. 核型(karyotype):每⼀⽣物的染⾊体数⽬、⼤⼩及其形态特征都是特异的,这种特定的染⾊体组成称为染⾊体组型或核型。
117. 核型分析(karyotype analysis):按照染⾊体的数⽬、⼤⼩和着丝粒位置、臂⽐、次缢痕、随体等形态特征,对⽣物河内的染⾊体进⾏配对、分组、归类、编号和进⾏分析的过程称为染⾊体组型分析或核型分析。
1、遗传学的发展时期(1)经典遗传学时期(1900 ~ 1940 )——遗传学的诞生和细胞遗传学时期标志:孟德尔定律的二次发现成就:确立遗传的染色体学说,创立连锁定律(Morgan,1910),提出“基因”概念(2)微生物遗传和生化遗传学时期(1941 ~ 1960)标志:“一基因一酶”学说(Beadle&Totum)成就:“一基因一酶”学说(1941,Beadle&Totum) ,遗传物质为DNA(1944,A very,Hershey&Chase),双螺旋模型:(1953,Watson&Crick),转座子:(1951,McClintock),顺反子:(1956, Benzer)(3)分子遗传学时期和基因工程时期(1961~1989)标志:操纵子模型的建立成就:操纵子模型的建立(1961,Monod&Jacob),深入了解基因(破译遗传密码、重组技术、反转录酶、合成酶、内切酶、核糖酶、转座子、内含子、DNA测序、PCR等)(4)基因组-蛋白质组时期(1990 ~ 至今)标志:人类基因组测序工作启动成就:2003年4月14日美、英、日、德、法、中六国科学家完成人类基因组图谱(物理图),从基因组角度研究遗传学2、遗传学形成多个分支学科:细胞遗传学,生化遗传学,分子遗传学,群体遗传学,数学遗传学,生统遗传学发育遗传学,进化遗传学,微生物遗传学医学遗传学,辐射遗传学,行为遗传学遗传工程,生物信息学,基因组学。
3、染色体在细胞分裂中的行为(1)细胞周期:由细胞分裂结束到下一次细胞分裂结束所经历的过程,分四个阶段:①G1期:指从有丝分裂完成到DNA复制之前的间隙时间;②S期:DNA复制时期;③G2期:DNA复制完成到有丝分裂开始前的一段时间;④M期(D期):细胞分裂开始到结束。
(2)有丝分裂中的染色体行为①前期:染色体开始逐渐缩短变粗,形成螺旋状。
当染色体变得明显可见时,每条染色体已含有两条染色单体,互称为姐妹染色单体,通过着丝粒把它们连接在一起。
第一章绪论一、名词解释:1、遗传病(genetic disease):是指遗传物质改变(基因突变或染色体畸变)所引起的疾病。
2、先天性疾病:是指个体出生后即表现出来的疾病。
3、家族性疾病:是指某些表现出家族性聚集现象的疾病,即在一个家族中有多人患同一种疾病。
二、简答(1)遗传病的主要特征:①垂直传递:遗传病是在上、下代之间垂直传递。
②基因突变或染色体畸变是发生遗传病的根本原因,也是遗传病不同于其他疾病的主要特征。
③生殖细胞或受精卵发生的遗传物质改变才能遗传,而体细胞中遗传物质的改变,并不能向后代传递。
④遗传病常有家族性聚集现象。
遗传病患者家系中,亲缘关系越近,发病机率越高,随着亲缘关系疏远,发病率降低。
(2)遗传病的分类:分类依据:根据遗传物质改变的不同和遗传的特点不同。
㈠单基因病1.常染色体显性遗传病(AD);2.常染色体隐性遗传病(AR);3.X连锁隐性遗传病; 4.X连锁显性遗传病;5.Y连锁遗传病6.线粒体遗传病㈡多基因病㈢染色体病㈣体细胞遗传病第二章基因第一节基因的结构与功能一、名词解释:1、基因(gene):是合成一种有功能的多肽链或者RNA分子所必需的一段完整的DNA序列。
2、断裂基因:真核生物结构基因的DNA顺序包括编码顺序和非编码顺序两部分。
编码顺序在DNA分子中是不连续的,被非编码顺序分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因。
3、外显子(exon):真核生物结构基因的DNA编码顺序称为外显子。
4、内含子(intron):真核生物结构基因的DNA非编码顺序称为内子。
5、多基因家族(multigene family):是指由某一共同祖先基因经过重复和变异所产生的一组基因。
根据基因在染色体的分布,可分为基因簇和基因超家族两种类型。
6、假基因(pseudogene):其基因序列与具有编码功能的基因序列类似,因为不能编码蛋白质,所以称为假基因。
2简答二、问答1、人类DNA的存在形式有哪几种?(1)高度重复顺序(卫星DNA,反向重复顺序)(2)中度重复顺序(短分散元件,长分散元件)(3)单一顺序第三节基因突变一、名词解释1、基因突变(gene mutation):是指DNA分子中的核苷酸顺序发生改变,使遗传密码编码产生相应的改变,导致组成蛋白质的氨基酸发生变化,以致引起表型的改变。
第一章绪论1.“遗传因子”是孟德尔提出来的2.“基因”是约翰森提出来的3.摩尔根创立基因学说4.瓦特森和克里克提出DNA双螺旋第二章遗传的细胞学基础名词解释:同源染色体:形态大小相同的一对染色体称为同源染色体联会:各同源染色体在细胞分裂前期配对着丝粒:着丝粒是真核生物细胞在有丝分裂和减数分裂,染色体分离的一种“装置”一,核型分析二,根据染色体着丝点位置不同,染色体可分为四类:m中着丝点染色体sm近中着丝点染色体t端着丝点染色体st近端着丝点染色体三,染色体四级结构四,有丝分裂过程及意义1,过程①间期:主要进行染色体的复制(即DNA的复制和有关蛋白质的合成,它包括(G1、S、G2三个时期),动物细胞此时中心粒也进复制,一组中心粒变成两组中心粒。
②前期最大特点是:核膜逐渐解体、核仁逐渐消失,植物细胞由两极发出纺锤丝,动物细胞两组中心粒分别移到细胞两极,由中心粒发出星射线。
③中期:着丝点排列在赤道板上,此时染色体的形态、数目最清楚,我们常找有丝分裂中期细胞来观察染色体的形态、数目。
④后期:着丝点分开,姐妹染色单体分开,在纺锤丝牵引下移到细胞两极,此时染色体加倍。
⑤末期:核膜、核仁重现,染色体变成染色丝,植物细胞中央形成细胞板,一个细胞分裂形成两个子细胞。
动物细胞膜从中间内陷,一个细胞分裂形成两个子细胞。
这样就完成一次细胞分裂,此时形成的子细胞,有的细胞停止分裂,然后分化,有的细胞暂停分裂;有的细胞继续分裂进入下一个细胞周期。
2,意义生物学意义:(1)多细胞生物生长是通过细胞数目增加或者体积增加实现的(2)均等式分裂维持了个体的生长发育,也保证了物种的连续性和稳定性遗传学意义:保证了亲代与子代遗传的稳定性和基因的完整性,提高子代的环境竞争力和生存率五,减数分裂最重要的时期?再细分1.减数第一次分裂前期2.前期根据染色体的形态,可分为5个阶段(细偶粗双终):细线期:细胞核内出现细长、线状染色体,细胞核和核仁体积增大.每条染色体含有两条姐妹染色单体.偶线期:又称配对期.细胞内的同源染色体两两侧面紧密相进行配对,这一现象称作联会.由于配对的一对同源染色体中有4条染色单体,称四分体.粗线期:染色体连续缩短变粗,同时,四分体中的非姐妹染色单体之间发生了DNA的片断交换,从而导致了父母基因的互换,产生了基因重组,但每个染色单体上仍都具有完全相同的基因.双线期:发生交叉的染色单体开始分开.由于交叉常常不止发生在一个位点,因此,染色体呈现V、X、8、O等各种形状.终变期:染色体变成紧密凝集状态并向核的周围靠近.以后,核膜、核仁消失,最后形成纺锤体. 生活周期研究材料:果蝇,红色面包酶,细菌与病毒遗传---研究优点第四章孟德尔遗传一,名词解释侧交:为了确定F1纯合或者杂合,让F1与隐性纯合子杂交回交:子一代与亲本中任意一个杂交二,分离定律与自由组合定律的实质?1.分离定律的实质是:在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代.2.自由组合定律的实质是:位于非同源染色体上的非等位基因的分离或组合是互不干扰的;在减数分裂过程中,同源染色体上的等位基因彼此分离的同时,非同源染色体上的非等位基因自由组合三,显隐致死基因?1.隐性致死基因:只有在隐性纯合是才使个体死亡2.显性致死基因:在杂合状态是就可以导致个体死亡四,卡方测验(可能计算题)五,基因之间概率,显隐性概率六,ABO血型(可能大题)七,非等位基因之间互作比例第五章连锁遗传和性遗传连锁遗传(概念,生物学基础,相关概念)联合遗传三点测验(交换值计算,遗传作图,十分可能考大题)性染色体有哪几种类型同配性别,异配性别真君连锁遗传的交换值计算性联锁:根据表型判断基因型性别决定第六章染色体变异思考:紫外线照射后,基因突变来源于π二联体本身吗?其他原因?修复过程中的差错是突变的主要原因基因突变是染色体上的点突变,是基因内部化学性质的变化,可遗传基因突变的6大特点1稀有性2可逆性3多方向性4重演性平行性6有害,有利基因突变的鉴定:1.二倍体植物2.果蝇突变的检测(CIB和致死平衡系)3.生化突变的检测(微生物)诱变途径1.物理因素及修复机制2.化学因素(转换和颠倒)第七章细菌与病毒的遗传细菌影印法研究F+, hfr,F’菌株特点掌握细菌四种遗传方式:接合,性导,转导,转化掌握中断杂交和重组作图的原理噬菌体类型,特点第十章基因突变第十一章细胞质遗传第十三章数量遗传质量性状与数量性状的区别多基因假说遗传率的估算,广义,侠义(可能十分大题)近亲繁殖,回交,杂种优势复习题一,名词解释二,三大定律的实质,区别,对象,配子的描述遗传学三大基本定律:分离定律、自由组合定律、连锁与交换定律。
第一章绪论二、填空题1、①(拉马克)提出用进废退与获得性遗传假说;②(魏斯曼)提出种质论,支持选择理论但否定后天获得性遗传;③(孟德尔)提出分离规律和独立分配规律;④(摩尔根)提出遗传的染色体学说;⑤(贝特森)用“Genetics”一词命名遗传学;⑥(约翰森)提出“Gene”一词,代替遗传因子概念,首先提出了基因型和表现型概念;⑦(摩尔根)提出了连锁交换规律及伴性遗传规律;⑧(比德尔、泰特姆)提出了“一个基因一种酶”的学说;⑨(沃森、克里克)提出了DNA双螺旋结构模型;2、(1900)年由(狄·弗里斯)、(科伦斯)、(冯·切尔迈克)三个人重新发现了孟德尔规律,该年被定为遗传学诞生之年。
3、1910年,摩尔根用(果蝇)作为实验材料,创立了基因理论,证明基因位于(染色体)上,而成为第一个因在遗传学领域的突出贡献获得诺贝尔奖金的科学家。
4、(沃森)和(克里克)于1953年提出了DNA分子结构模型。
5、(遗传)与(变异)是生物界最普遍和最根本的两个特征。
6、(遗传)、(变异)和(选择)是生物进化和新品种选育的三大因素。
三、选择题1、1900年(B)规律的重新发现标志着遗传学的诞生。
A.达尔文B.孟德尔C.拉马克D.克里克2、遗传学这一学科名称是由英国遗传学家(A)于1906年首先提出的。
A.贝特森B.孟德尔 C、魏斯曼 D、摩尔根3、遗传学中将细胞学研究和孟德尔遗传规律结合,提出了遗传的染色体学说,这是(C)的特征。
A.分子遗传学B.个体遗传学C.细胞遗传学D.微生物遗传学4、遗传学中以微生物为研究对象,采用生化方法探索遗传物质的本质及其功能,这是(D)的特征。
A.分子遗传学B.个体遗传学C.细胞遗传学D.微生物遗传学5、荻.弗里斯(de Vris, H.)、柴马克(Tschermak, E.)和柯伦斯(Correns, C.)三人分别重新发现孟德尔(Mendel, G. L.)遗传规律,标志着遗传学学科建立的年份是(B)年。
遗传学复习整理资料绪论遗传学:是研究生物遗传和变异的科学。
遗传学经历了两个阶段;经典遗传学,现代遗传学遗传学经历了三个水平;个体遗传学、细胞遗传学,分子遗传学1866孟德尔,豌豆,发表“植物杂交试验”论文1910.摩尔根。
果蝇,创办了基因论,证明了基因就是在染色体上而且呈圆形线性排序1953,沃森(美)和克里克(英),提出了著名的dna双螺旋结构,三大定律:分离定律,独立分配定律,连锁遗传定律遗产研习和林木遗传改进在林业生产上的促进作用答:1.直接指导作用,如杂交引种,种子园的建立,加速育种的进程。
2.引发世界森林增加的两大因素。
不合理的砍伐制度;不合理的唐日制3.林木遗传的改进促进作用。
导致成活率低,产量提升,品质提升。
1.什么是遗传,什么是变异,有何区别与联系?答遗传――是指亲代与子代之间相似的现象。
变异――就是指亲代与子代之间、子代个体之间存有差异的现象。
遗传与与变异的辩证关系:既对立又统一,在一定条件下相互转化。
一方面,遗传使生物的性状得到继承和积累,这种继承和积累相对稳定;另一方面,变异产生新的性状,是物种不断发展演化,适应不断变化的环境。
因此,遗传不单是消极、保守的,同时也是积极的、创新的。
变异不单是负面的、消失的,也是进取的,创造的。
孟德尔遗传理论的精髓就是什么?遗传因子是独立的,呈颗粒状,互不融合,互补影响,独立分离,自由组合2.遗传学有几个主要分支,研究内容及手段?请问:经典遗传学、细胞遗传学、分子遗传学、生物统计数据遗传学3.遗传学在社会生产生活中的促进作用?答:1.在生产实践上,遗传学对农林业科学有着直接的指导作用。
2.遗传学在医学中同样起至着关键的指导作用。
人类疾病的产生及其遗传机制都须要遗传学科学知识做为指导。
3.遗传学就是人类计划生育,优生优育的理论基石。
4.遗传学在社会法制问题化解中也起著不可忽视的促进作用。
第一章形成染色体的结构单位:核小体原核细胞:只有拟核,没有细胞核和细胞器,结构较简单。
遗传学复习提纲刘庆昌绪言1、遗传学研究的对象,遗传、变异、选择2、遗传学的发展,遗传学的发展阶段,主要遗传学家的主要贡献3、遗传学在科学和生产发展中的作用第一章遗传的细胞学基础1、细胞的结构和功能:原核细胞、真核细胞、染色质、染色体2、染色体的形态和数目:染色体的形态特征、大小、类别,染色质的基本结构、染色体的结构模型,染色体的数目,核型分析3、细胞的有丝分裂:细胞周期、有丝分裂过程及遗传学意义4、细胞的减数分裂:减数分裂过程及遗传学意义5、配子的形成和受精:生殖方式、雌雄配子的形成、受精、直感现象、无融合生殖6、生活周期:生活周期、世代交替、低等植物的生活周期、高等植物的生活周期、高等动物的生活周期第二章遗传物质的分子基础1、DNA作为主要遗传物质的证据:间接证据、直接证据(细菌的转化、噬菌体的侵染与繁殖、烟草花叶病毒的感染与繁殖)2、核酸的化学结构:DNA和RNA及其分布、DNA和RNA的分子结构3、DNA的复制:DNA复制的一般特点、原核生物DNA合成、真核生物DNA合成的特点以及与原核生物DNA合成的主要区别4、RNA的转录及加工:三种RNA分子、RNA合成的一般特点、原核生物RNA的合成、真核生物RNA的转录及加工5、遗传密码与蛋白质翻译:遗传密码及其特征、蛋白质的合成过程、中心法则及其发展第三章孟德尔遗传1、分离规律:孟德尔的豌豆杂交试验、性状分离、分离现象的解释、表现型和基因型、分离规律的验证(测交法、自交法、F1花粉鉴定法)、分离比例实现的条件、分离规律的应用2、独立分配规律:两对相对性状的遗传及其分离比、独立分配现象的解释、独立分配规律的验证(测交法、自交法)、多对基因的遗传、独立分配规律的应用,某2测验3、孟德尔规律的补充和发展:显隐性关系的相对性、复等位基因、致死基因、非等位基因间的相互作用、多因一效和一因多效第四章连锁遗传和性连锁1、连锁和交换:连锁遗传的发现及解释、完全连锁和不完全连锁、交换及其发生机制2、交换值及其测定:交换值、交换值的测定(测交法、自交法)3、基因定位与连锁遗传图:基因定位(两点测验、三点测验、干扰与符合)、连锁遗传图4、真菌类的连锁与交换:着丝点作图5、连锁遗传规律的应用6、性别决定与性连锁:性染色体、性别决定、性连锁、限性遗传、从性遗传第五章基因突变1、基因突变的时期和特征:基因突变的时期、基因突变的一般特征2、基因突变与性状表现:显性突变和隐性突变的表现、大突变和微突变的表现3、基因突变的鉴定:植物基因突变的鉴定(真实性、显隐性、突变频率)、生化突变的鉴定(营养缺陷型及其鉴定)、人类基因突变的鉴定24、基因突变的分子基础:突变的分子机制(碱基替换、缺失、插入)、突变的修复(光修复、暗修复、重组修复、SOS修复),转换与颠换,DNA防护机制(简并性、回复突变、抑制突变、多倍体、致死突变)5、基因突变的诱发:物理因素诱变(电离辐射与非电离辐射)、化学因素诱变(碱基类似物、DNA诱变剂)第六章染色体结构变异1、缺失:类型、细胞学鉴定、遗传效应2、重复:类型、细胞学鉴定、遗传效应3、倒位:类型、细胞学鉴定、遗传效应4、易位:类型、细胞学鉴定、遗传效应5、染色体结构变异的应用:基因定位、果蝇的CIB测定法、利用易位制造玉米核不育系的双杂合保持系、易位在家蚕生产上的利用、利用易位疏花疏果防治害虫第七章染色体数目变异1、染色体的倍数性变异:染色体组及其整倍性、整倍体与非整倍体(名称、染色体组成、联会方式)2、同源多倍体的形态特征、同源多倍体的联会和分离(染色体随机分离、染色单体随机分离)3、异源多倍体、多倍体的形成与应用、同源联会与异员源联会(烟草、小麦)、单倍体4、非整倍体:亚倍体(单体、缺体)、超倍体(三体、四体),三体的基因分离5、非整倍体的应用:单体测验、三体测验、染色体替换第八章数量遗传1、数量性状的特征:数量性状的特征、多基因假说、超亲遗传2、数量性状遗传研究的基本统计方法:均值、方差、标准差3、遗传模型:加性-显性-上位性效应及其与环境的互作,显性3表现形式4、遗传率的估算及其应用(广义遗传力和狭义遗传力)5、数量性状基因定位,单标记分析法,区间定位法,复合区间定位法,应用(3方面)第九章近亲繁殖和杂种优势1、近交与杂交的概念、自交和回交的遗传效应,纯合率2、纯系学说3、杂种优势的表现和遗传理论(显性假说、超显性假说、上位性假说)4、杂种优势利用与固定第十章细菌和病毒的遗传1、细菌和病毒遗传研究的意义:细菌、病毒、细菌和病毒在遗传研究中的优越性2、噬菌体的遗传分析:噬菌体的结构(烈性噬菌体、温和性噬菌体)、噬菌体的基因重组与作图3、细菌的遗传分析转化:转化的概念与过程、转化和基因重组作图接合:接合的概念与过程、U型管实验、F因子及其存在状态、中断杂交试验及染色体作图性导:性导的概念与过程、性导的作用转导:转导的概念与过程、利用普遍性转导进行染色体作图第十一章细胞质遗传1、细胞质遗传的概念和特点:细胞质遗传的概念、细胞质遗传的特点2、母性影响:母性影响的概念及其与母性遗传的区别3、叶绿体遗传:叶绿体遗传的表现、叶绿体遗传的分子基础4、线粒体遗传:线粒体遗传的表现、线粒体遗传的分子基础5、共生体和质粒决定的染色体外遗传:共生体的遗传(卡巴粒)、4质粒的遗传6、植物雄性不育的遗传:雄性不育的类别及其遗传特点(核不育型和质核不育型、孢子体不育和配子体不育、单基因不育和多基因不育、不育基因的多样性)、雄性不育的发生机理、雄性不育的利用(三系法、二系法)第十二章基因工程1、基因工程概述4、重组DNA分子5、将目的基因导入受体细胞(常用导入方法)、转基因生物的鉴定、基因工程的应用、转基因生物(食品)的安全问题第十三章基因组学1、基因组学的概念与概述、C值、N值2、基因组学的研究内容:结构基因组学、功能基因组学、蛋白质组学3、基因组图谱的构建(遗传图谱与标记种类、物理图谱)4、基因组测序策略:鸟枪法、重叠克隆群法5、基因组图谱的应用(5个方面)6、生物信息学与蛋白质组学第十四章基因表达的调控1、基因的概念及其发展、基因的微细结构、顺反测验、基因的作用与性状的表达2、原核生物的基因调控:转录水平的调控,乳糖操纵元、色氨酸操纵元;翻译水平的调控3、真核生物的基因调控:DNA水平、染色质水平(组蛋白、非组蛋白)、转录水平(顺式作用元件、反式作用因子)、翻译水平的调5控、蛋白质加工4、原核生物与真核生物在基因调控上的区别第十五章遗传与发育1、细胞核和细胞质在个体发育中的作用:细胞质在细胞生长分化中的作用、细胞核在细胞生长分化中的作用、细胞核与细胞质在个体发育中的相互依存、环境条件的影响2、基因对个体发育的控制:个体发育的阶段性、基因与发育模式、基因与发育过程3、细胞的全能性第十六章群体遗传与进化1、群体的遗传平衡:等位基因频率和基因型频率、哈迪-魏伯格定律及其应用2、改变基因平衡的因素:突变、选择、遗传漂变、迁移3、达尔文的进化学说及其发展:生物进化的概念、达尔文的进化学说及其发展、分子水平的进化4、物种的形成:物种概念、物种形成的方式(渐变式、爆发式)6。
遗传学复习题及个人答案遗传学复习题一、名词解释遗传:遗传通常就是指亲子之间以及子代个体之间性状存有相似性,说明性状可以从亲代传达给子代遗传学:自然科学领域中探究生物遗传和变异规律的的科学染色体:细胞内具备遗传性质的dna深度放大构成的聚合体,极易被碱性染料涂成深色,所以叫做染色体同源染色体:有丝分裂中期看到的长度和着丝点位置相同的两个染色体,或减数分裂时看到的两两配对的染色体非同源染色体:一对染色体与另一对形态结构相同的染色体,则互称作非同源染色体联会:亦称接合,就是所指在减数第一次对立前期,同源染色体在四纵的方向上两两接合的现象染色体组型分析:对生物某一个体或某一分类单位(亚种、种等)的体细胞的染色体按一定特征排序出来的图象(染色体组型)的分析复等位基因:同源染色体的相同位点上,可以存在两个以上的等位基因,遗传学上把这种等位基因称为复等位基因冈崎片段:就是dna激活过程中,一段属不已连续制备的延后股,即为相对来说长度较短的dna片段简并:是指遗传密码子的简并性,即同一种氨基酸具有两个或更多个密码子的现象中心法则:遗传信息在细胞内的生物大分子间转移的基本法则,包括由dna到dna的复制、由dna到rna的转录和由rna到蛋白质的翻译等过程单位性状:孟德尔在研究豌豆等植物的性状遗传时,把植株所整体表现的性状总体区分为各个单位做为研究对象,这样区分开去的性状称作单位性状显性性状:显性性状指具有相对性状的亲本杂交所产生的子一代中能显现出的亲本性状隐形性状:隐性性状指具有相对性状的亲本杂交所产生的子一代中未能显现出的亲本性状基因型:基因型又称遗传型,是某一生物个体全部基因组合的总称表现型:指生物个体表现出来的性状测交:为测量显性个体的基因型而将未明基因型显性个体与有关隐性纯合个体之间的交配近音:亲缘关系相似个体间杂交,亦称近亲交配共显性:如果双亲的性状同时在f1个体上表现出来,这种显性表现称为共显性上位性促进作用:两对基因共同掌控性状的整体表现,但其中一对基因能够遮挡另一对基因的整体表现,这种促进作用表示上位促进作用连锁遗传:原来亲本所具有的两个或多个性状,在f2常有连锁遗传联系在一起遗传的倾向交换值:指染色单体上两个基因间发生交换的平均次数.即重组型配子在总配子中所占的百分数伴性遗传:由性染色体上的基因所掌控性状的遗传方式就称作伴性遗传限性遗传:常染色体上的基因只在一种性别中抒发,而在另一种性别全然不抒发转化:某一基因型的细胞从周围介质中吸收来自另一基因型的细胞的dna而使它的基因型和表现型发生相应变化的现象同化作用:由噬菌体将一个细胞的基因传达给另一细胞的过程结构基因:编码任何蛋白质或非调控因子的rna的基因,是操纵子的一部分调控基因:指其产物参与调控其他结构基因表达的基因非整倍体:个体染色体数目不是成倍增加或者增加,而是成单个或几个的平添或增加多倍体:体细胞中所含三个或三个以上染色体组的个体超倍体:非整倍体中染色体数多于2n者称作超倍体亚倍体:非整倍体中染色体数多于2n者称作超倍体单体:在遗传学上指控制相同性状的某对染色体缺失一条染色体的个体单倍体:仅由原生物体染色体组一半的染色体组数所构成的个体称为单倍体单价体:在减数分裂中期没有配对的单个染色体基因突变:染色体上某一基因位点内部出现了化学性质的变化,与原来基因构成对性关系重组子:出现性状的重组时,可以互换的最轻的单位突变子:性状变异时,产生变异的最轻单位广义遗传率为:遗传方差占到表现型方差的比率狭义遗传率:累加性遗传主效应的方差占表现型方差的比率细胞质遗传:细胞质基因所控制的遗传现象和遗传规律母性影响:子代某一性状的表现型由母体的染色体基因型同意,而受本身基因型的支配细胞全能性:指细胞经对立和分化后仍具备构成完备有机体的创造力或特性群体遗传学:研究群体的遗传结构及其变化规律的遗传学分支学科物种:有一定的形态和生理特征以及一定的自然分布区的生物类群,是生物分类的基本单位基因组:一个细胞或者生物体所携带的全部遗传信息二、填空题1.水稻体细胞染色体数目为2n=24,玉米体细胞染色体数目为2n=20,普通小麦体细胞染色体数目2n=42,无籽西瓜体细胞染色体数目2n=33,蚕豆根尖细胞染色体数目2n=12,人类缺体患者体细胞染色体数目2n-2=44。
遗传学部分整理复习提纲遗传学部分整理复习提纲第⼀章:绪论1. 最重要⼈物的贡献、年份、论著1900年,孟德尔规律的重新发现标志遗传学的诞⽣,贝特⽣发现了连锁现象,但做出了错误的解释,发现连锁与交换规律的科学家是摩尔根。
约翰⽣最先提出“基因”⼀词。
斯特蒂⽂特绘制出第⼀张遗传连锁图。
1953年,⽡特森和克⾥克提出DNA分⼦结构模式理论。
第⼆章:遗传的细胞学基础1. 重要概念:染⾊体:间期细胞核内由DNA、组蛋⽩、⾮组蛋⽩及少量RNA 组成的线性复合结构。
异染⾊质:染⾊质上染⾊深,通常不含有功能基因,在细胞周期中变化较⼩的区域,具有这种固缩特性的染⾊体。
A染⾊体:真核细胞染⾊体组的任何正常染⾊体,包括常染⾊体和性染⾊体(A染⾊体在遗传上是重要的,对个体的正常⽣活和繁殖是必需的。
其数⽬的增减和结构的变化对机体会造成严重的后果);B染⾊体:在⼀组基本染⾊体外,所含的多余染⾊体或染⾊体断⽚称为B染⾊体,它们的数⽬和⼤⼩变化很多。
⼀般在顶端都具有着丝粒,⼤多含有较多的异染⾊质。
随体:位于染⾊体次缢痕末端的、圆形或圆柱形的染⾊体⽚段。
胚乳直感(花粉直感):在3n胚乳的性状上由于精核的影响⽽直接表现⽗本的某些性状。
果实直感:种⽪或果⽪组织在发育过程中由于花粉影响⽽表现⽗本的某些性状。
⽆融合⽣殖:雌雄配⼦不发⽣核融合的⼀种⽆性⽣殖⽅式。
巨型染⾊体:⽐普通染⾊体显著巨⼤的染⾊体的总称。
有丝分裂⼀般没有同源染⾊体联会,果蝇唾腺中的多线染⾊体,染⾊质线不断复制,但是染⾊体着丝粒不分裂。
联会:在减数分裂前期过程中,同源染⾊体彼此配对的过程。
⼆价体:减数分裂前期Ι的偶线期,同源染⾊体联会形成联会复合体的⼀对染⾊体。
单价体:在特殊情况,减数分裂前期Ι的偶线期联会时,存在不能配对的染⾊体。
同源染⾊体:形态、结构和功能相似的⼀对染⾊体,⼀条来⾃⽗本,⼀条来⾃母本。
组型分析:利⽤染⾊体分带技术等,在染⾊体长度、着丝粒位置、长短臂⽐、随体有⽆特点基础上,进⼀步根据染⾊的显带表现区分出各对同源染⾊体。
遗传学名词解释1.等位基因:位于同源染色体对等部位上的基因叫等位基因。
2.数量性状:表现型变异是连续的一类遗传性状。
3.转导:以噬菌体为媒介将供体菌部分DNA转移到受体菌内的细菌遗传物质重组的过程。
4.遗传力;可遗传变异占变异总量的百分比。
5.F’因子:F因子因为不正确环出而携带有细菌染色体一些基因,这种携带有细菌染色体片段的F因子称为F’因子。
6.胚乳直感:如果在3n胚乳的性状上由于精核的影响而直接表现父本的某些性状,这种现象称为胚乳直感或花粉直感。
7.广义遗传力:通常定义为遗传方差占表现型方差的比率。
8.孟德尔群体:通过个体间的交配结果孟德尔的遗传因子以各种不同方式从一代传递到下一代。
9.杂种优势:是生物界的普遍现象,它是指杂合体在一种或多种性状上表现优于两个亲本的现象。
10.复等位基因:是指在同源染色体的相同位点上,存在三个或三个以上的等位基因,这种等位基因在遗传学上称为复等位基因。
11.基因突变:是指染色体上某一基因位点内部发生了化学性质的变化,与原来基因形成对性关系。
12.交换值:是指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率。
13.母性影响:由于母本基因型的影响,使子代表现母本性状的现象叫做母性影响14.性导;是指接合时由F’因子所携带的外源DNA转移到细菌染色体的过程。
15.狭义遗传力:通常定义为加性遗传方差占表现型方差的比率。
16.同源染色体;形态结构彼此相同,遗传性质相似的一对染色体,其中一条来自母本,一条来自父本。
17.基因:在DNA分子链上,具有遗传效应的特定的核苷酸序列。
18.质量性状:表现型和基因型具有不连续的变异。
19.细菌的接合:是指供体细胞的遗传物质通过细胞质桥单向地转移到受体细胞中,并通过交换而发生重组的过程。
20.雄性不育:即雄蕊或雄花发育不正常,不能产生花粉,但雌蕊和雌花发育正常,能接受外来花粉受精结实的现象。
21.保持系:雄蕊,雌蕊发育正常,将它的花粉授给不育系,使不育性得到保持。
遗传学(genetics):研究生物遗传和变异规律的科学。
遗传(heredity):指生物亲代与子代和子代之间相似的现象,即生物在世代传递过程中可以保持物种和生物个体各种特性不变。
变异(variation):指生物在亲代与子代之间,以及在不同子代个体之间表现出一定差异的现象。
遗传与变异是矛盾的两个方面。
遗传是相对的、保守的,而变异是绝对的、发展的;没有遗传就没有物种的相对稳定,也就不存在变异的问题,没有变异特征物种将是简单的重复。
遗传、变异和选择是生物进化和新品种选育的要素。
生物进化指环境条件(选择条件)对生物变异进行自然选择,其中得以保存的变异传递给子代(遗传),变异逐代积累导致物种进化、产生新物种的过程。
动、植物和微生物新品种选育(育种)实际上是人工进化过程,只是以选择强度更大的人工选择代替了自然选择,选择的条件是育种者的要求。
变异可分为两大类:遗传的变异和不遗传的变异。
这里要强调指出,这两类变异的划分是相对的。
因为在一定的环境条件下通过长期定向的影响和选择,由量变的积累可以转化为质变,不遗传的变异就有可能形成为遗传的变异。
可遗传变异是遗传物质引起的。
而不可遗传变异是外界环境引起的拉马克(1809):物种是可变的;遗传变异遵循“用进废退和获得性状遗传”规律 拉马克主要研究生物物种进化,对生物进化的解释必然涉及对性状的遗传与变异现象的解释器官用进废退和获得性状遗传假说用进废退:生物变异的根本原因是环境条件的改变获得性状遗传:所有生物变异(获得性状)都是可遗传的,并在生物世代间积累融合遗传认为:双亲的遗传成分在子代中发生融合后表现出来。
其根据是子女的许多特性表现为双亲的中间类型。
因此高尔顿及其学生致力于用数学和统计学方法研究亲代与子代间性状表现的关系。
虽然融合遗传的基本观点并不正确,但在此基础上创立的一系列生物数学分析方法,为数量遗传、群体遗传的产生和发展奠定了基础。
遗传因子假说认为:生物性状受细胞内遗传因子(hereditary factor)控制遗传因子在生物世代间传递遵循分离和独立分配两个基本规律 分离和独立分配遗传基本规律是近现代遗传学最主要的基础生物体或其组成部分所表现的形态特征和生理特征称为性状(character/trait)。
起初在研究生物遗传时把所观察到的生物所有特征或某一类特征作为整体看待。
孟德尔把植株性状区分为各个单位,称为单位性状(unit character),即生物某一方面的特征特性。
不同生物个体在单位性状上存在不同表现,同一单位性状的相对差异称为相对性状(contrasting character)。
P:亲本(parent),杂交亲本;♀:母本(female parent) ,提供胚囊的亲本;♂:父本(male parent),提供花粉粒的杂交亲本。
×:表示人工杂交过程;F (filial generation) :表示杂种后代F1 (first filial generation) :表示杂种第一代;⊗:表示自交,采用自花授粉方式传粉受精产生后代。
F2:F1代自交得到的种子及其发育形成的生物个体称为杂种二代,即F2 。
F2是由F1自交得到的,在类似过程中⊗符号可省略。
用白花亲本作为母本、红花亲本作为父本进行杂交试验,即:白花(♀)×红花(♂)。
将这两种杂交组合方式之一称为正交,另一种则是反交(reciprocalcross)。
反交试验结果:F1植株的花色仍全部为红色;F2红花植株与白花植株的比例也接近3:1。
反交试验结果与正交完全一致,表明:F1、F2的性状表现不受亲本组合方式的影响,与哪一个亲本作母本无关。
F1代个体(植株)只表现亲本之一的性状,而另一个亲本的性状隐藏不表现。
相对性状中在F1代表现出来的相对性状称为显性性状(dominant character),而在F1中未表现出的相对性状称为隐性性状(recessivecharacter)。
F2有两种性状表现类型的植株,一种表现为显性性状,另一种表现为隐性性状;表现显性性状的植株数与隐性性状植株数之比接近3:1。
隐性性状在F1中没有消失而是被掩盖了,在F2代显性性状和隐性性状都表现出来,称性状分离(character segregation)现象。
遗传因子假说孟德尔在试验结果分析基础上提出了遗传因子(inherited factor /determinant, hereditary determinant/factor)的概念,认为:生物性状由遗传因子决定,且每对相对性状由一对遗传因子控制;显性性状受显性因子(dominant factor)控制,而隐性性状由隐性因子(recessive factor)控制;只要成对遗传因子中有一个显性因子,生物个体就表现显性性状;遗传因子在体细胞内成对存在,而在配子中成单存在。
体细胞中成对遗传因子分别来自父本和母本。
遗传因子在世代间的传递遵循分离规律(the law of segregation):(性母细胞中)成对遗传因子在形成配子时彼此分离,分配到配子中,配子含成对因子中的一个。
杂种体细胞中,分别来自父母本的成对遗传因子各自独立,互不混杂;在形成配子时彼此分离、互不影响。
杂种产生数目相等的含两种不同因子(分别来自父母本)的配子;各种雌雄配子受精结合是随机的,两种遗传因子随机结合到子代中 根据遗传因子假说,生物世代间传递的是遗传因子,不是性状本身;生物个体的性状由细胞内遗传因子组成决定。
因此对生物个体而言存在遗传因子组成和性状表现两方面特征。
1909年约翰生提出用基因(gene)代替遗传因子,成对遗传因子互为等位基因(allele)。
在此基础上形成基因型和表现型两个概念基因型(genotype)指生物个体基因组合,表示生物个体的遗传组成,又称遗传型。
表现型(phenotype)指生物个体的性状表现,简称表型。
基因型是生物性状表现的内在决定因素,基因型决定表现型。
如一株豌豆的基因型是CC或Cc,该植株会开红花,而基因型为cc的植株才会开白花。
表现型是基因型与环境条件共同作用下的外在表现,可直接观察、测定; 而基因型只能根据杂交实验结果和生物性状表现来进行推断。
具有一对相同基因的基因型称纯合基因型(homozygous genotype),如CC和cc;这类生物个体称纯合体(homozygote)。
显性纯合体(dominant homozygote), 如:CC.隐性纯合体(recessive homozygote), 如:cc.具有一对不同基因的基因型称为杂合基因型(heterozygous genotype),如Cc;这类生物个体称为杂合体(heterozygote)。
纯合体与杂合体的基因组成不同,所以产生的配子及自交后代的遗传稳定性均有所不同:(1) 产生配子上的差异;(2) 自交后代的遗传稳定性不同。
基因型和表现型的概念建立在单位性状上,谈到生物个体的基因型或表现型时,往往针对所研究的一个或几个单位性状,而不考虑其它性状和基因的差异。
可根据生物的表现型来对一个生物基因型作推断和必要的杂交验证实验。
例:有一株豌豆A开红花,如何判断它的基因型?红花植株基因型推断因为表现型为红花,所以至少含一个显性基因C;判断A植株是纯合体(CC)还是杂合体(Cc),要看它产生配子的类型、比例或者自交后代是否出现性状分离现象。
用A植株进行自交,如果自交后代都开红花,则A植株是纯合体,其基因型是CC;如果自交后代有红花和白花两种:且两种个体的比例为3:1,则A植株是杂合体Cc。
遗传因子是一个理论的、抽象的概念。
孟德尔不知道遗传因子的物质实体是什么,如何实现分离。
遗传因子分离行为是孟德尔基于豌豆7对相对性状杂交试验中所观察到的F1 、F2个体表现型及F2性状分离现象作出的一种假设。
从杂交试验到遗传因子假说是一个高度理论抽象过程。
当时几乎没有人能够理解。
如何对这一假说进行验证?用F1与隐性纯合体杂交,后代的表现型类型和比例能反映杂种F1配子的种类和比例,事实上也反映(测验)了F1的基因型。
为测验个体的基因型,用被测个体与隐性个体交配的杂交方式称为测交(test cross),其后代称测交后代(Ft)。
被测个体可以是F1,也可以是任一需要确定基因型的生物个体杂种F1的基因型及其测交结果的推测杂种F1的表现型虽与红花亲本(CC)一致,但根据孟德尔的解释,基因型是杂合的,即Cc, 因此杂种F1减数分裂应产生两类配子,分别含C和c,并且比例为1:1。
白花植株的基因型是cc,只产生含c的一种配子。
推测:如果用杂种F1与白花植株(cc)杂交,后代应该有两种基因型(Cc和cc),分别表现为红花和白花,且比例为1:1。
纯合体(如CC)只产生一种类型的配子,其自交后代也都是纯合体,不会发生性状分离;杂合体(如Cc)产生两种配子,其自交后代会产生3:1的显性:隐性性状分离。
F2基因型及其表现型推测(1/4)表现隐性性状的F2个体基因型为隐性纯合,如白花F2为cc;(3/4)表现显性性状的F2个体中:1/3是纯合体(CC)、2/3是杂合体(Cc);推测:在显性(红花)F2中:1)1/3自交后代不发生性状分离,其F3均开红花;2)2/3自交后代将发生性状分离。
2)研究的生物是二倍体(体内染色体成对存在),并且所研究的相对性状差异明显。
3)减数分裂形成的各种配子数目相等或接近相等;不同类型的配子具有同等的生活力;受精时各种雌雄配子能以均等机会相互自由结合。
4)受精后不同基因型的合子及由合子发育的个体具有同样或大致相同的存活率。
5)杂种后代都处于相对一致的条件下,试验分析的群体比较大。
6)基因分离规律建立在遗传因子假说基础之上,遗传因子假说及基因分离规律对遗传和生物进化研究有非常重要的理论意义。
1. 形成了颗粒式遗传(particulate inheritance)的正确遗传观念,否定了融合(混合)遗传(blending inheritance)2. 指出了区分基因型与表现型的重要性3. 解释了生物变异产生的部分原因4. 建立了遗传研究的基本方法曾经,人们认为两个亲本杂交后,双亲的遗传物质会在子代体内发生混合,使子代表现出介于双亲之间的性状,就想把一瓶蓝墨水和一瓶红墨水倒在一起,混合液是另外一种颜色,再也无法分出蓝色和红色,该观点称做“融合遗传”。
后来,随着人们观察研究,又提出了一种截然不同的观点:决定不相对应的性状的遗传物质在遗传传递上具有相对独立性,不想沾染,不想混合,可以完全拆开,就像将篮球和红球混在一起,然后再从中取出一个球,不是蓝色就是红色,而绝不会出现混合色,将此观点称为“颗粒式遗传”。
如果两对相对性状独立遗传,则两独立事件同时发生的概率等于各事件单独发生概率的乘积(概率乘法定律);独立分配规律的要点:控制不同相对性状的等位基因在配子形成过程中的分离与组合互不干扰,各自独立分配到配子中。