高数试卷
- 格式:doc
- 大小:138.50 KB
- 文档页数:5
大学高数期中考试试卷一、选择题(每题2分,共20分)1. 函数f(x)=\(\frac{1}{x}\)在x=0处:A. 连续B. 可导C. 不连续D. 可积2. 若函数f(x)在闭区间[a,b]上连续,则:A. 必存在最大值B. 必存在最小值C. 必存在零点D. 以上都不对3. 微分方程\(\frac{dy}{dx} + y = e^x\)的解是:A. \(y = e^x - xe^x\)B. \(y = e^x + ce^{-x}\)C. \(y = e^x - ce^x\)D. \(y = e^x\)4. 曲线y=x^3在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. 无法确定5. 函数\(\sin(x)\)的原函数是:A. \(x\)B. \(\cos(x)\)C. \(-\cos(x)\)D. \(\sin(x)\)6. 若f(x)在区间(a,b)内可导,则f(x)在该区间内:A. 必定单调递增B. 必定单调递减C. 必定连续D. 以上都不对7. 曲线y=\(\sqrt{x}\)与直线x=4所围成的面积是:A. \(\frac{16}{3}\)B. \(\frac{32}{3}\)C. \(\frac{64}{3}\)D. \(\frac{128}{3}\)8. 函数\(\ln(x)\)的泰勒展开式是:A. \(x - 1 + \frac{1}{2}x^2 - \frac{1}{3}x^3 + \cdots\)B. \(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \cdots\)C. \(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \cdots\)D. \(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} -\cdots\)9. 若\(\int_{0}^{1} f(x)dx = 2\),则\(\int_{0}^{1} x f(x)dx\)的值是:A. 0B. 1C. 2D. 无法确定10. 函数\(\frac{1}{1+x^2}\)的不定积分是:A. \(\ln(1+x^2)\)B. \(\arctan(x)\)C. \(\ln|x|\)D. \(\ln|x+1|\)二、填空题(每空1分,共10分)1. 若\(\frac{dy}{dx} = 3x^2\),则\(dy\) = __________。
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
《大一高等数学》试卷(十份)《高等数学试卷》一.选择题(3分10)1.点M12,3,1到点M22,7,4的距离M1M2().A.3B.4C.5D.62.向量ai2jk,b2ij,则有().A.a∥bB.a⊥bC.a,bD.a,b343.函数y2某2y21某y122的定义域是().某,y1某C.2222A.某,y1某y2B.某,y1某y22y2某,y1某2D2y224.两个向量a与b垂直的充要条件是().A.ab0B.ab0C.ab0D.ab05.函数z某3y33某y的极小值是().A.2B.2C.1D.16.设z某iny,则zy1,4=().A.22B.C.2D.2221收敛,则().pnn17.若p级数A.p1B.p1C.p1D.p1某n8.幂级数的收敛域为().n1nA.1,1B1,1C.1,1D.1,1某9.幂级数在收敛域内的和函数是().n02nA.1221B.C.D.1某2某1某2某10.微分方程某yylny0的通解为().A.yce某B.ye某C.yc某e某D.yec某二.填空题(4分5)1.一平面过点A0,0,3且垂直于直线AB,其中点B2,1,1,则此平面方程为______________________.2.函数zin某y的全微分是______________________________.2z3.设z某y3某y某y1,则_____________________________.某y3234.1的麦克劳林级数是___________________________.2某5.微分方程y4y4y0的通解为_________________________________.三.计算题(5分6)u1.设zeinv,而u某y,v某y,求zz,.某yzz,.某y2.已知隐函数zz某,y由方程某22y2z24某2z50确定,求3.计算inD某2y2d,其中D:2某2y242.4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R为半径).5.求微分方程y3ye2某在y四.应用题(10分2)某00条件下的特解.1.要用铁板做一个体积为2m的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线yf某上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点1,,求此曲线方程.313试卷3参考答案一.选择题CBCADACCBD二.填空题1.2某y2z60.2.co某yyd某某dy.3.6某2y9y21.4.n01n某n.2n12某5.yC1C2某e三.计算题1..zze某yyin某yco某y,e某y某in某yco某y.某y2.z2某z2y,.某z1yz13.4.20dind62.2163R.33某5.yee2某.四.应用题1.长、宽、高均为32m时,用料最省.2.y12某.3《高数》试卷4(下)一.选择题(3分10)1.点M14,3,1,M27,1,2的距离M1M2().A.12B.13C.14D.152.设两平面方程分别为某2y2z10和某y50,则两平面的夹角为(A.6B.4C.3D.23.函数zarcin某2y2的定义域为().A.某,y0某2y21B.某,y0某2y21C.某,y0某2y22D.某,y0某2y224.点P1,2,1到平面某2y2z50的距离为().A.3B.4C.5D.65.函数z2某y3某22y2的极大值为().A.0B.1C.1D.126.设z某23某yy2,则z某1,2().A.6B.7C.8D.97.若几何级数arn是收敛的,则().n0A.r1B.r1C.r1D.r18.幂级数n1某n的收敛域为().n0A.1,1B.1,1C.1,1D.1,19.级数inna是(n1n4)..)A.条件收敛B.绝对收敛C.发散D.不能确定10.微分方程某yylny0的通解为().A.yec某B.yce某C.ye某D.yc某e某二.填空题(4分5)某3t1.直线l过点A2,2,1且与直线yt平行,则直线l的方程为z12t__________________________.2.函数ze的全微分为___________________________.3.曲面某yz2某24y2在点2,1,4处的切平面方程为_____________________________________.4.1的麦克劳林级数是______________________.21某某15.微分方程某dy3yd某0在y三.计算题(5分6)1条件下的特解为______________________________.1.设ai2jk,b2j3k,求ab.2.设zuvuv,而u某coy,v某iny,求22zz,.某yzz,.某y3.已知隐函数zz某,y由某33某yz2确定,求2222224.如图,求球面某yz4a与圆柱面某y2a某(a0)所围的几何体的体积.5.求微分方程y3y2y0的通解.四.应用题(10分2)1.试用二重积分计算由y某,y2某和某4所围图形的面积.2.如图,以初速度v0将质点铅直上抛,不计阻力,求质点的运动规律某某t.(提示:d某d2某t0v0)g.当时,有,某某02dtdt试卷4参考答案一.选择题CBABACCDBA.二.填空题1.某2y2z1.112某y2.eyd某某dy.3.8某8yz4.n2n1某.n04.5.y某.三.计算题1.8i3j2k.2.zz3某2inycoycoyiny,2某3inycoyinycoy某3in3yco3y某y.3.zyzz某z.,22某某yzy某yz3232a.3234.5.yC1e2某C2e某.四.应用题1.16.32.某12gtv0t某0.2《高数》试卷5(上)一、填空题(每小题3分,共24分)1.函数y19某2的定义域为________________________.in4某,某02.设函数f某某,则当a=_________时,f某在某0处连续.某0a,某213.函数f(某)2的无穷型间断点为________________.某3某2某4.设f(某)可导,yf(e),则y____________.某21_________________.5.lim2某2某某5某3in2某d某=______________.6.41某某211d某2tedt_______________________.7.d某08.yyy30是_______阶微分方程.二、求下列极限(每小题5分,共15分)某31e某11.lim;2.;lim23.lim1.某3某9某0in某某2某三、求下列导数或微分(每小题5分,共15分)某co某,求y(0).2.ye,求dy.某2dy3.设某ye某y,求.d某某1.y四、求下列积分(每小题5分,共15分)11.2in某d某.2.某ln(1某)d某.某3.10e2某d某某t五、(8分)求曲线在t处的切线与法线方程.2y1cot六、(8分)求由曲线y某21,直线y0,某0和某1所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积.七、(8分)求微分方程y6y13y0的通解.八、(7分)求微分方程yye某满足初始条件y10的特解.某《高数》试卷5参考答案某某一.1.(3,3)2.a43.某24.ef(e)1某25.6.07.2某e8.二阶21二.1.原式=lim某0某某2.lim11某3某36112某1)]2e23.原式=lim[(1某2某三.1.y2,(某2)2y(0)122.dyin某eco某d某3.两边对某求写:y某ye某y(1y)e某yy某yyy'某e某y某某y四.1.原式=ln某2co某C某某2122.原式=ln(1某)d()ln(1某)某d[ln(1某)]222某1某2某211d某ln(1某)(某1)d某=ln(1某)221某221某22某21某2=ln(1某)[某ln(1某)]C222112某12某ed(2某)e3.原式=022dydyint,五.d某d某2101(e21)2t1.且当t2时,某2,y1切线:y1某2,即某y120法线:y1(某),即某y121132S(某1)d某(某某)六.03102043V某2dy(y1)dy11221(y2y)22112r32i七.特征方程:八.yer26r130ye3某(C1co2某C2in2某)某d某1(e某e某d某1d某C)[(某1)e某C]由y某11某0,C0某1某e某y《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分)1、二阶行列式2-3的值为(d)45A、10B、20C、24D、222、设a=i+2j-k,b=2j+3k,则a与b的向量积为(c)A、i-j+2kB、8i-j+2kC、8i-3j+2kD、8i-3i+k3、点P(-1、-2、1)到平面某+2y-2z-5=0的距离为(c)A、2B、3C、4D、54、函数z=某iny在点(1,)处的两个偏导数分别为(a)4A、22222222,,B、,,C、D、22222222zz,分别为()某yD、5、设某2+y2+z2=2R某,则A、某Ry某Ry某Ry,B、,C、,zzzzzz22某Ry,zz26、设圆心在原点,半径为R,面密度为某y的薄板的质量为()(面积A=R)A、R2AB、2R2AC、3R2AD、n12RA2某n7、级数(1)的收敛半径为()nn1A、2B、1C、1D、328、co某的麦克劳林级数为()2n2n某2n某2n1n某n某nA、(1)B、(1)C、(1)D、(1)(2n)!(2n)!(2n)!(2n1)!n0n1n0n0n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是()A、一阶B、二阶C、三阶D、四阶10、微分方程y``+3y`+2y=0的特征根为()A、-2,-1B、2,1C、-2,1D、1,-2二、填空题(本题共5小题,每题4分,共20分)1、直线L1:某=y=z与直线L2:直线L3:某1y3z的夹角为___________。
高等数学试卷及参考答案一、选择题:本大题共10小题,每小题4分,共40分。
1.当0→x 下列变量中为无穷大量的是A .xe 1B .xe1-C .()21ln 2x x+-D. 21cosx 2.设()xxkx x x x 3sin lim1lim 02→→=-,则常数k 的值为A .2ln 31B .-2ln 31C .3ln 21D .-3ln 213.设函数)(x f 在区间),0[+∞上存在二阶导数,且)()(x f x f ''<',则xx f e )('在区间),0[+∞ 上A .单调减少B .单调增加C .是常数D .既不单调增加也不单调减少4.设曲线)(x f y =过原点,且该曲线在点()()x f x ,处的切线斜率为x 2-,则()=-→22limx x f x A .-4 B .-2 C .0D .45.设函数()x f 在区间],[b a 上可导,且方程()x f =0在区间()b a ,内有两个不同的实根,则方程()x f '=0在()b a ,内 A .没有根B .只有一个根C .有两个根D .根的个数不能确定6.已知xx e 为()x f 的一个原函数,则()⎰='10d x x f xA .e 1-B .e 2C .eD .-e7.直线10221-=-=+zy x 与平面0524=++-z y x 的位置关系为 A .平行B .直线在平面内C .垂直D .相交但不垂直8.广义积分=+⎰∞+-1xx ee dxA .e arctan π-B .e arctan π21- C .0D .∞+9.在空间直角坐标系中,方程z y x =+2222表示的图形为A .椭球面B .抛物面C .锥面D .柱面10.设函数()x f y = 是方程042=+'-''y y y 的一个解,若()00>x f ,且()00='x f ,则函数()x f 在点0xA .取得极大值B .取得极小值C .某个邻域内单调增加D .某个邻域内单调减少二、填空题:本大题共5小题,每小题4分,共20分,把答案填在题中横线上.11.设常数0>a ,()⎪⎪⎩⎪⎪⎨⎧<--≥+=0,0,2cos x x x a a x x x x f 在0=x 连续,则=a12.已知()21='f ,则()()=--+→hh f h f h 22131lim 0 13.由曲线4=xy 与直线0,4,1===y x x 所围平面图形绕x 轴旋转一周而成的旋转体体积为14.设函数()y x z z ,=由方程02=++ze x yz 确定,则全微分=dz15.设向量→→+b a 3 垂直于向量→→-b a 57,且向量→→-b a 4 垂直于向量→→-b a 27,则向量→a 与→b 的夹角为16 .交换积分次序:()⎰⎰4020d ,d x y y x f x =三、解答题:本大题共8小题,共86分.解答应写出文字说明,证明过程或演算步骤。
范文范例参考《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题 3 分,共 30 分).1.下列各组函数中,是相同的函数的是().(A )f x ln x2和 g x2ln x( B)(C )f x x 和g x2x(D )f x| x | 和g x x2f x| x |g x1和xsin x 4 2x02.函数f x ln 1x在 x 0 处连续,则a() .a x0(A )0( B)1(D)2(C)143.曲线y x ln x 的平行于直线 x y 1 0 的切线方程为() .(A )y x 1( B)y( x 1)(C )y ln x 1x 1(D)y x 4.设函数f x| x |,则函数在点x0 处() .(A )连续且可导( B)连续且可微( C )连续不可导( D)不连续不可微5.点x0 是函数y x4的().(A )驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线y1) .的渐近线情况是(| x |(A )只有水平渐近线( B)只有垂直渐近线( C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线7.f11). x x2dx 的结果是((A )1C1C1C (D) f1f( B)f( C )f C x x x x8.dxxe e x的结果是().(A )arctane xC()arctan exC(C)xexC(D)xex)CB e ln( e9.下列定积分为零的是() .(A )4arctanx dx(B)4x arcsin x dx (C) 1e x e x1x2x sin x dx 1x212dx (D)44110 .设f x为连续函数,则1f 2x dx 等于() . 0(A )f 2f0(B)1f 11 f 0 (C)1f 2 f 0 (D) f 1 f 0 22二.填空题(每题 4 分,共 20 分)f x e 2x1x0在 x 0处连续,则 a1.设函数x.a x02.已知曲线 y f x在 x 2 处的切线的倾斜角为5,则 f2. 6x3. y的垂直渐近线有条.x 2 14.dx. x 1ln2 x5.2x4 sin x cosx dx.2WORD 格式整理范文范例参考三.计算(每小题 5 分,共 30分)1.求极限12 xx sin x① lim x② limx x e x2x x 012.求曲线y ln x y 所确定的隐函数的导数y x.3.求不定积分①dx②dx a0③ xe x dxx1x 3x2a2四.应用题(每题10 分,共 20 分)1.作出函数y x33x2的图像.2.求曲线y22x 和直线 y x 4 所围图形的面积.WORD 格式整理范文范例参考《高数》试卷 1 参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7. D 8.A 9.A 10. C二.填空题1. 22 .3 24. arctanln x c5.23.3三.计算题1① e 2② 12. y x16 xy 13. ① 1 ln |x 1| C ② ln | x 2a 2x | C③ e x x 1 C2x 3四.应用题1.略2.S 18《高数》试卷2(上)一. 选择题 ( 将答案代号填入括号内 ,每题 3 分,共 30 分 )1.下列各组函数中 ,是相同函数的是 ().(A)f xx 和 g xx 2(B)f xx 2 1 和 y x 1x 1(C)f xx 和 g xx(sin 2 x cos 2 x)(D)f xln x 2 和 g x2ln xsin 2 x 1x1 x12.设函数 fx2x 1,则 limf x().x 2x11x1(A) 0(B)1(C)2(D) 不存在3.设函数 y f x 在点 x 0 处可导,且 fx >0, 曲线则 yf x 在点 x 0 , f x 0处的切线的倾斜角为 {}.(A)0 (B)2(C)锐角(D)钝角4.曲线 y ln x 上某点的切线平行于直线 y 2x 3 ,则该点坐标是 ().(A)2,ln1(B)2, ln1(C)1,ln 2(D)1 , ln 222225.函数y x2e x及图象在1,2 内是().(A) 单调减少且是凸的(B)单调增加且是凸的(C) 单调减少且是凹的(D) 单调增加且是凹的6.以下结论正确的是 ().(A)若 x0为函数y f x的驻点 ,则x0必为函数y f x的极值点 .(B)函数 y f x 导数不存在的点,一定不是函数 y f x的极值点 .(C)若函数 y f x在 x0处取得极值,且f x0存在,则必有 f x0=0.(D)若函数 y f x在 x0处连续,则f x0一定存在 .WORD 格式整理范文范例参考17.设函数 y f x的一个原函数为x2e x,则f x=().1111(A) 2 x 1 e x(B)2x e x(C)2x 1 e x(D)2xe x8.若 f x dx F x c ,则 sin xf cosx dx().(A) F sin x c(B)F sin x c(C)F cos x c(D)F cos x c9.设 F x1f xdx =().为连续函数 , 则2(A) f1f0(B) 2f1f0(C)2 f 2f0 (D) 2 f1f0210. 定积分ba b 在几何上的表示(). dxa(A) 线段长b a(B)线段长 a b (C)矩形面积a b 1 (D)矩形面积b a1二.填空题 (每题 4 分,共 20 分)ln1x2x 0, 在x01.设 f x1cos x连续 ,则a =________.a x02.设 y sin 2x ,则 dy_________________ d sin x .3.函数 yx1的水平和垂直渐近线共有_______条 . x214.不定积分x ln xdx______________________.5.定积分1x2 sin x1___________. 11x2dx三.计算题 (每小题 5 分,共 30分 )1.求下列极限 :① lim12x 1② lim2arctanxx1x 0xx2.求由方程 y1xe y所确定的隐函数的导数y x.3.求下列不定积分 :① tan x sec3xdx②dx a0③x2e x dxx2a2四.应用题 (每题 10 分,共 20 分)1.作出函数 y1x3x 的图象.(要求列出表格)32.计算由两条抛物线:y2x, y x2所围成的图形的面积.WORD 格式整理范文范例参考《高数》试卷 2 参考答案一.选择题: CDCDB CADDD二填空题: 1. -2 2. 2sin x 3.3 4.1x2 ln x1x2c 5.242三. 计算题: 1.2②1 2.y e y① ex y23.① sec3 x c② ln x2a2x c③ x22x 2 e x c3四.应用题: 1.略 2.S 13《高数》试卷3(上)一、填空题 (每小题 3分,共 24分)1.函数 y1的定义域为 ________________________.9x22.设函数 f x sin 4x , x0则当 a =_________时, f x 在 x0处连续 .x,a,x03.函数 f (x)x2x21的无穷型间断点为 ________________. 3x24.设 f ( x) 可导,y f (e x ) ,则 y____________.5.limx21_________________. 2x2x5x6.1x3 sin 2 x dx =______________.1 x4x217.d x2e t dt_______________________.dx 08.y y y30 是_______阶微分方程.二、求下列极限 ( 每小题 5 分,共15分)xx 1x311.lim e;2.lim;3.lim12.x 0sin x x 3x9x2x 三、求下列导数或微分 (每小题 5分, 共15分)1.yx x,求 y (0) . 2.y e cos x ,求 dy . 2求dy.3.设 xy e x y ,dx四、求下列积分(每小题 5分, 共15分)1.12sin x dx . 2.x ln(1x)dx . x3.1e2x dx五、 (8 分 )求曲线xtcost在 t处的切线与法线方程 . y12WORD 格式整理范文范例参考六、 (8 分 )求由曲线 yx 21, 直线 y 0, x 0 和 x 1所围成的平面图形的面积 , 以及此图形绕 y 轴旋转所得旋转体的体积 .七、 (8 分 )求微分方程 y 6 y13 y 0 的通解 .八、 (7 分 )求微分方程 yy e x 满足初始条件 y 10的特解.x《高数》试卷 3 参考答案一. 1. x 32. a 43. x 24. e x f '(e x )5.16.07. 2 xe x 28. 二阶2二 .1.原式 = lim x1x 0x2. lim11 x 3 x3 63.原式 = lim[(11 11)2 x ] 2 e 2x2x三 .1.2.y'212)2, y '(0)(x2dysin xe cos x dx3.两边对 x 求写: yxy ' e x y (1 y ')e x yyxy yy 'e x yx xyx四.1.原式 = lim x2cos x Cx2212.原式 = lim(1)xx)2x)]x)d (lim(1 2x d [lim(12x= x22lim(1 x)1 1 x dx x lim(1 x) 1 ( x 11 ) dx22 x 2 21 x=x22lim(1 x) 1 [ xx lim(1 x)]C22 23.原式 =11 2 x2 x 1 1 20 e d (2 x) 1 e 0( e 1)222五.dysin tdy t1 且 t2 , y 1dxdx2切线: y1 x,即 y x 122法线: y1( x),即 y x 122六. S11 21320 ( x1)dx ( xx) 022V11)2dx12x21)dx(x2( x4( x 52 x 2 x) 10 285 315七.特征方程 : r 2 6r 13 0r 3 2iye 3 x (C 1 cos2 x C 2 sin 2 x)11dxxdx八. y e xdx C )( e e x1 xC ][ (x 1e)x由 y x 1 0,C0y x 1 e xx《高数》试卷4(上)WORD 格式整理范文范例参考一、选择题(每小题 3 分)1、函数 y ln(1 x) x 2 的定义域是() . A2,1B2,1C 2,1D2,12、极限 lim e x的值是() .xA 、B 、C 、D 、 不存在3、 limsin(x 1) ( ) .x 1 1 x 2 1 1A 、 1B 、 0C 、2D 、24、曲线 y x 3x 2 在点 (1,0) 处的切线方程是()A 、 y2( x1)B 、 y 4( x 1)C 、 y 4x 1D 、 y 3( x 1)5、下列各微分式正确的是( ) .A 、 xdx d (x 2 )B 、 cos 2xdx d(sin 2x)C 、 dx d (5 x)D 、 d (x 2 ) (dx) 26、设f (x)dx2 cosxC ,则f ( x) () .2A 、 sin xB 、22 ln x ) .7、dx (xxxxsinC 、 sinC D 、 2 sin222A 、2 1ln 2x CB 、 1( 2 ln x) 2Cx 2 22C 、 ln 2 ln xC1 ln xCD 、x 28、曲线 y x 2 , x 1 , y0 所围成的图形绕y 轴旋转所得旋转体体积 V() .1 x 4dx1ydyA 、B 、1(1y) dy1(1 x 4)dxC 、D 、1e xdx9、e x() .11 e2 e1 e1 2eA 、 ln2B 、 lnC 、 lnD 、 ln23210 、微分方程 yy y2e 2 x 的一个特解为() .A 、 y3 e 2x B 、 y3 e x C 、 y2 xe 2 x D 、 y2 e 2 x7777二、填空题(每小题4 分)1、设函数 y xe x ,则 y;2 、如果 lim3sin mx2 , 则 m .x 0 2x313cos xdx3、 x;14、微分方程 y 4 y 4 y0 的通解是.5、函数 f ( x) x 2 x在区间0,4上的最大值是,最小值是;三、计算题(每小题 5 分)1、求极限lim 1 x 1 x ; 2 、求y 1cot 2 x ln sin x 的导数;x 0x2 WORD 格式整理范文范例参考x314 、求不定积分dx;3、求函数y的微分;xx3111eln x dx ;dy x5、求定积分6、解方程1;e dx y 1 x2四、应用题(每小题10 分)1、求抛物线y x 2与y 2 x 2所围成的平面图形的面积.2、利用导数作出函数y 3x2x3的图象.参考答案一、 1、C;2、D;3、C ;4、B;5、C ;6、B;7、B;8、A ;9、A ;10、D;二、 1、(x2)e x; 2 、4;3、0; 4 、y(C1 C 2 x)e 2 x;5、8,0 9三、1、 1 ; 2 、cot 3 x ; 3 、 6 x2dx ; 4 、2 x 1 2 ln(1x 1) C ;5、2(21) ;6、y2 2 1 x2 C ;( x31) 2e四、1、8;32、图略《高数》试卷5(上)一、选择题(每小题 3 分)1、函数 y2x1的定义域是() . lg( x 1)A 、2,10,B、1,0( 0,)C 、(1,0)(0,)D、( 1,)2、下列各式中,极限存在的是() .A 、x B、lim arctan x C 、lim sin x D 、lim 2x l i mc o sx0x x x3、 lim (x) x() .x 1 xA 、e B、e2 C 、1 D 、1e4、曲线 y x ln x 的平行于直线x y 1 0 的切线方程是() .A 、y x B、y(ln x1)( x1)C 、y x1D、y(x1)5、已知 y xsin 3x,则 dy() .A 、( cos3x3sin 3x)dx B、(sin 3x3x cos3x)dxC 、(cos 3x sin 3x)dxD 、(sin 3x x cos3x)dx6、下列等式成立的是() .WORD 格式整理范文范例参考A 、x dx1x 1 CB 、 a x dx a x ln x C11C 、cosxdxsin x CD 、 tan xdxCx 217、计算e sin x sin xcos xdx 的结果中正确的是() .A 、 e sin x CB 、 e sin x cos x CC 、 e sin x sin x CD 、 e sin x (sin x 1) C8、曲线 yx 2 , x1 , y0 所围成的图形绕 x 轴旋转所得旋转体体积 V().1x 4dx1A 、B 、ydy1 (1 y) dy1 (1 x 4)dxC 、D 、a a 2x 2dx () . 9、设 a ﹥ 0 ,则A 、 a2B 、 a2C 、 1a2D 、 1a 224410 、方程()是一阶线性微分方程 .A 、 x 2ylnyB 、 y e x y 0xC 、 (1x 2 ) yy sin yD 、 xy dx ( y 2 6x)dy 0二、填空题(每小题 4 分)1、设 f ( x)e x 1, x, lim f ( x);,则有 lim f (x)ax b, xx 0 x 02、设 y xe x ,则 y;3、函数 f ( x)ln(1x 2 ) 在区间1,2 的最大值是,最小值是;14、 x 3cos xdx;15、微分方程y 3 y 2 y 0 的通解是.三、计算题(每小题 5 分)1、求极限 lim (11 x23 ) ; x 1x x 22、求y1 x2 arccosx 的导数;3、求函数 yx 的微分;1 x 24、求不定积分1dx ;x 2ln x5、求定积分eln x dx ;1e6、求方程x2y xy y 满足初始条件y( 1 ) 4 的特解.2WORD 格式整理范文范例参考四、应用题(每小题10 分)1、求由曲线y 2 x2和直线x y 0 所围成的平面图形的面积.2、利用导数作出函数y x 36x 29x 4的图象.参考答案( B 卷)一、 1、B;2、A;3、D;4、C ;5、B;6、C ;7、 D;8、 A;9、D;10、B.二、 1、 2 , b ; 2 、( x2)e x; 3 、ln 5 , 0 ;4、 0 ;5、C1e x C 2 e2x.三、1、1; 2 、arccos1; 3 、1dx;x x3 1 x2(1 x2 ) 1 x 24、2 2 ln x C ;1);2215、2(2 6 、y e x;e x四、 1、92、图略;2WORD 格式整理。
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
高等数学试卷(一)﹍一.填空题:1. 设 f(x)=()⎩⎨⎧=≠+0,0,sin 1x A x x ctgx ,在x=0处连续,则A=--2.()=+∞→1!sin .lim 32n n n n ---------- 3.≈32.8---------(精确到小数点后三位)4.若函数f(x)=x 2在x 0处的自变量的增量为2.0=∆x ,对应函数增量y ∆的线性主部dy=﹣1,则x 的始值x 0=---------------5.已知y=f(2x),则y x =--------------------6.函数y=x 3-3x 2-9x+4的单调增区间是--------------,单调减区间是--------------- 7.y=()0,11lim≥+∞→x x nn ,则y=---------------,x=-----------------是间断点。
8. 设f(x)=cosx,g(x)=⎩⎨⎧>+≤-0,0,x x x x ππ,则f ()[]x g =--------------------,其连续区间为-------------9.若f(x)=xx e ⎪⎪⎭⎫⎝⎛+11,则()x f x ∞→lim =-------------,()x f x +→0lim =------------,()x f x -→0lim =------------10.已知y=a bx,则y()n =-----------------二.计算题1. 试给出函数f(x)=1+sinx+cosx 在[]π2,0内的单调情况及单调区间. 2. 求()()0ln 1ln lim0>-+→a xax x3. 计算数列极限⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∂∞→22211311211lim n n 4. 已知函数y=()()0sin cos >x x x,求dy5. 求曲线族⎪⎭⎫⎝⎛-=n x ey (其中a 为大于0的参数)各条曲线上拐点的公共纵坐标6. 求函数()x e x y -+=101的极值7. 求()()x x x f -=1ln 的n 阶马克劳林展开式。
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.- 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }.(A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫ ⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e - (B)12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '.3.求下列不定积分: ①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x td e dt dx -=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==--四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x- C 、 C x +2sin D 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→B 、x x arctan lim ∞→C 、x x sin lim ∞→D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略。
高等数学(1)一、单项选择题(每小题4分,共16分) 1.设函数()y y x =由方程ò+-=yx t xdt e 12确定,则==0x dxdy(C) .e 2(D) ; 1-e (C) ; e -1(B) ;1)(+e A2.曲线41ln 2+-+=x x x y 的渐近线的条数为(D ) . 0 (D) ; 3 (C) ; 2 (B) ; 1 )(A3.设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示, 则导函数)(x f y ¢=的图形为( C)4.微分方程x y y 2cos 34=+¢¢的特解形式为(C ).2sin y )( ;2sin 2cos y )(;2cos y )( ;2cos y )(****x A D x Bx x Ax C x Ax B x A A =+===二、填空题(每小题3分,共18分)1._____________________)(lim 21=-®x xx x e 2.若)(cos 21arctan x f exy +=,其中f 可导,则_______________=dxdy 3.设,0,00,1sin )(ïîïíì=¹=a x x xx x f 若导函数)(x f ¢在0=x 处连续,则a 的取值范围是__________。
4.若dt t t x f x ò+-=20324)(,则)(x f 的单增区间为__________,单减区间为__________. 5.曲线xxey -=的拐点是__________6.微分方程044=¢+¢¢+¢¢¢y y y 的通解为__________________________=y三、计算下列各题(每小题6分,共36分)1.计算积分dx x x ò+232)1(arctan 2.计算积分dx x x x ò5cos sin3. 计算积分dx e x x ò-2324. 计算积分òp+0cos 2xdx5.设)(x f 连续,在0=x 处可导,且4)0(,0)0(=¢=f f ,求xx dtdu u f tx tx sin ))((lim 3000òò®6.求微分方程0)2(222=+-dx y x xydy 的通解四.(8分)求微分方程x xe y y y 223-=+¢-¢¢满足条件,00=¢===x x y y 的特解五.(8分)分)设平面图形设平面图形D 由x y x 222£+与x y ³所确定,所确定,试求试求D 绕直线2=x 旋转一周所生成的旋转体的体积。
一. 单项选择题(在每个小题四个备选答案中选出一个正确答案, 本大题分10小题, 每小题2分, 共20分)1.下列区间中,函数f (x)= ln (5x+1)为有界的区间是( )A.(-1, )B.(- ,5)C.(0,51) D.(51,+∞)2.设函数g (x)在x = a 连续而f (x) = (x-a)g(x),则'f (a) =( )A.0B.g '(a)C.f (a)D.g (a)3.设函数f (x)定义在开区间I上, I,且点(x0, f (x0) )是曲线y= f (x)的拐点,则必有( )A.在点(x 0,f (x 0))两侧,曲线y=f (x)均为凹弧或均为凸弧.B.当x<x 0时,曲线y=f (x)是凹弧(或凸弧),则x>x 0时,曲线y=f (x)是凸弧(或凹弧).C.x<x 0时,f (x)<f(x 0) 而x>x 0时,f(x)>f(x 0).D.x<x 0时,f (x)>f(x 0) 而x>x 0时,f(x)<f(x 0).4.设某商品的需求函数为D(P)=475-10P-P 2,则当P = 5时的需求价格弹性为()A.0.25B.-0.25C.100D.-1005.无穷限积分⎰+∞0xe -x dx =( )A.-1B.1C.-21D.216.函数f(x)=arcsin(2x-1)的定义域是( )A.(-1,1)B.[-1,1]C.[-1,0]D.[0,1]7.设f(x)=⎩⎨⎧<≥+0x ,x 0x ),x 1ln(, 则=')0(f ( )A.0B.1C.-1D.不存在8.设函数f(x)满足)x (f 0'=0, )x (f 1'不存在, 则( )A.x=x 0及x=x 1都是极值点B.只有x=x 0是极值点C.只有x=x 1是极值点D.x=x 0与x=x 1都有可能不是极值点 9.设f(x)在[-a,a](a>0)上连续, 则⎰-=a a dx )x (f ( ) A.0B.2⎰a 0dx )x (fC.D.10.设供给函数S=S(p)(其中p 为商品价格), 则供给价格弹性是( )A.B. C.D.二. 计算题(本题50分)1.(本题5分)求函数 的定义域2.(本题5分)设f(x-1)=x2-x, 求f(x).3.(本题15分)求下列函数的极限 (1) 20cos 1lim xx x -→ (2)xx x In x )sin 1(lim 0+→ (3)设 , 求k 的值4. (本题5分)设y=ln(arctan(1-x)), 求5. (本题20分)求下列函数的导数(1) )21ln(x y -= (2) x xee y +-=11 (3))arccos(2x x y +=.(4)xx y cos 1sin += 6. (本题5分)求极限三、(本题10分)设函数 , 讨论函数在 处的连续性四、(本题15分)计算下列行列式1.2.设A=...B=求:1.2AB.... 2.高等数学(参考答案)一. 单项选择题(每小题2分, 共20分)1.C2.D3.B4.A5.B6.D7.B8.D9.C 10.B二. 计算题(本题55分)2.x2+x3.(1.1/. P3. (2..P8. (3.I.24.5 (1)(2)(3)(4)1/2sec2x/26. 1三、(本题10分)在x=0处是间断的。
一、单项选择题
1.设有直线
:327
x y z L ==- 及平面:3273x y z π-+=,则直线L ( ).
A .平行于平面π;
B .在平面π上;
C .垂直于平面π;
D .与平面π斜交.
2.二元函数222,(,)(0,0)(,)0, (,)(0,0)x y x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩
在点(0,0)处( ).
A .偏导数存在,但不可微;
B .连续、偏导数不存在;
C .不连续、偏导数不存在;
D .偏导数不存在.
3
在圆环22:14D x y ≤+≤上的二重积分( ) A .不存在; B .存在,且为正值;
C .存在,且为负值;
D .存在,且为零.
4. 设C 是右半圆周222,0,0x y a x a +=≥>,则曲线积分
()d C x y s +=⎰( ) A .0; B .22a ; C .2a ; D .4a .
5. 微分方程1sin x y y x x '+
=的通解为( ) A .()1cos y x C x
=-+; B .()cos y x x C =-+; C .()1sin y x C x =-+; D .()1cos y x C x
=+; 二、填空题
1. 函数222z x y =+在点(1,1)沿该点的梯度方向的方向导数为 ; 2. 将积分⎰⎰x y y x f x ln 0e 1d ),(d 改变积分顺序为 ;
3.
二元函数的极限00
x y →→= ; 4. 设L 是由原点O 沿抛物线2y x =,到点(1,1)A ,再由点A 沿直线y x =到原点的封闭曲线,则曲线积分arctan d d L y y x x
-=⎰ ;
5. 设2()(01)f x x x =≤<,而1()s i n π()n n S x b
n x x ∞==-∞<<+∞∑,其中
1
02()s i n πd n b f x n x =⎰(n =1,2…)则1()2
S -= 。
三、计算题
1. 求幂级数
0(21)n n n x ∞=+∑的收敛域及和函数。
2.求微分方程2''6'9e (1)x y y y x -+=+的通解。
3. 计算二重积分22d d D
x I x y x y =
+⎰⎰,其中D 为区域221,0,0x y x y +≤≥≥。
4. 设22,,y z xf x x ⎛⎫= ⎪⎝
⎭其中f 具有二阶连续偏导数,求2z x y ∂∂∂。
5.
求曲面积分S I =⎰⎰ 其中S 是球面2222
x y z a ++=的外侧。
四、证明题
证明:级数
1sin(n ∞=∑是交错级数, 并证明该级数条件收敛.
五、应用题
将长为a 的线段截成两段,一段围成一个正方形,另一段围成一个圆。
问:这两段的长分别为多少时,它们所围成的正方形和圆的面积之和最小?。