高数(上)试题(A)
- 格式:doc
- 大小:314.50 KB
- 文档页数:7
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高数试题1(上)及答案一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dx x x ++⎰②()0a > ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2-2.33-3.24.arctan ln x c+5.2三.计算题1①2e②162.11xyx y'=+-3. ①11ln||23xCx+++②22ln||x a x C-++③()1xe x C--++四.应用题1.略2.18S=《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰②)0a > ③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xedx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解.八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinxB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分; 4、求不定积分⎰++11x dx ;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ;4、C x x +++-+)11ln(212;5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程.A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxeC e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略《高等数学》试卷1(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz=( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.xce y = B.xe y = C.xcxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程xe y y 23=-'在00==x y条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫⎝⎛31,1,求此曲线方程 .《高数》试卷2(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为( ).A.(){}10,22≤+≤y x y x B.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ). A.条件收敛 B.绝对收敛 C.发散 D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.xce y = C.xe y = D.xcxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dt x d -=22.当0=t 时,有0x x =,0v dtdx=)《高等数学》试卷3(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π)A 、R 2AB 、2R 2AC 、3R 2AD 、A R 2217、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
2009—2010学年第一学期《高等数学I(一)》课程考试试卷(A 卷)参考答案及评分标准注意:1、本试卷共 3 页; 2、考试时间120分钟3、姓名、学号必须写在指定地方 阅卷负责人签名:一、填空题(共5个小题,每小题2分,共10分).1.设,则 .()lim 1tt x f x t →+∞⎛⎫=+⎪⎝⎭()0x ≠=)3(ln f 2.设是的一个原函数,则= .x e xsin +()f x ()f 'x 3.曲线的拐点坐标是 .16623-+=x x y 4.若,则 .2121A dx x -∞=+⎰A =5. .21lim(2)cos2x x x →-=-二、单项选择题(共10个小题,每小题2分,共20分).将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知函数的定义域为,则函数的定义域为( ).()f x []12,-()()()22F x f x f x =++A .;B .;C .;D ..[]30,-[]31,-112,⎡⎤-⎢⎥⎣⎦102,⎡⎤-⎢⎥⎣⎦2.是函数的( ).3x =1()arctan 3f x x=-A .连续点;B .可去间断点;C .跳跃间断点;D .第二类间断点.3.当时,与等价,则( ).0→x 1ax e -x 2sin a = A .1 ;B .2 ;C . ;D ..2-214.函数 在处().()21sin,00,0x x f x xx ⎧≠⎪=⎨⎪=⎩0=x A .有定义但不连续; B .连续但不可导; C .连续且可导;D .不连续且不可导.5.下列等式中正确的是( ).A .; B .;()()ba d f x dx f x dx =⎰()()()x ad f x dx f x f a dx=-⎰C .;D . .()()df x dx f x dx=⎰()()f x dx f x '=⎰6.函数( ).()21xf x x =+ A .在内单调增加;B .在内单调减少;(),-∞+∞(),-∞+∞C .在内单调增加;D .在内单调减少.()11,-()11,-7.若可导,且,则().()f u ()x y f e = A .;B .;()x dy f e dx '=()x x dy f e e dx '= C .;D ..()xxdy f e e dx =()xxdy f e e dx '⎡⎤=⎣⎦8.( ).20|1|x dx -=⎰A .0 ;B .2 ;C .1 ;D ..1-9.方程的通解是( ).sin y x '''=A .; B .;21231cos 2y x C x C x C =+++21231sin 2y x C x C x C =+++C .; D ..1cos y x C =+2sin 2y x =10.曲线与该曲线过原点的切线及轴围成的图形的面积为( ).xe y =y A . ;B .;10()xe ex dx -⎰1(ln ln )ey y y dy -⎰C .; D ..1()ex x e xe dx -⎰10(ln ln )y y y dy -⎰题号一二三四五六七八总分得分阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………三、解下列各题(每小题6分,共12分).1.计算.)lim x xx →+∞-2.计算.xx x x 1022lim ⎪⎭⎫⎝⎛-+→四、解下列各题(每小题6分,共12分).1.已知,求.076333=--++y xy x y 2=x dxdy2. 设函数由参数方程所确定,求和.)(x y y =⎩⎨⎧+==tt t y t x sin cos sin ln dx dy22dx y d五、解下列各题(每小题6分,共18分).1. 计算.⎰++dx xx x 221)(arctan 2.计算.204ln(1)limx x t dt x→-⎰3. 计算.220cos x e xdx π⎰阅卷人阅卷人阅卷人得分阅卷人得分三峡大学 试卷纸 教学班号序号学号 姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、(本题10分).设曲线上任意一点处的切线斜率为,且该曲线经过点,)(x f y =),(y x 2x x y +11,2⎛⎫⎪⎝⎭(1)求函数;)(x f y =(2)求曲线,,所围成的图形绕轴旋转所形成的旋转体的体积.)(x f y =0y =1x =x七、(本题10分).由半径为的圆上,割去一个扇形,把剩下的部分围成一个圆锥,试求割去扇形的中R 心角,使圆锥的容积为最大.S阅卷人得分三峡大学 试卷纸 教学班号 序号 学号姓名……………….………….……答 题 不 要 超 过 密 封 线………….………………………………参考答案一、填空题1.3;2.sin x e x -3.()2,0-4.1π5. 0二、单项选择题题号12345678910答案DCBCCCBCAA三、解下列各题1. 解:)lim x xx →+∞3分limx =. 6分12=2.. 解:3分xx x x 1022lim ⎪⎭⎫⎝⎛-+→()222202lim 12x xx x x x x x -⋅-→⎛⎫=+ ⎪-⎝⎭.6分()02lim2x xx x e→-=1e e ==四、解下列各题1. 解:两边分别对求导,得x ,3分22333360dy dy dyy x y x dx dx dx+++-= 当时,,代入上式,得2x =1y =-. 6分23x dy dx==- 2..解: 3分dx dy dydt dx dt=sin sin cos cos sin t t t tt t-++=sin t t = . 6分22dxy d dy dtdx dt'=sin cos cos sin t t t t t +=2sin sin cos cos t t t tt+=五、解下列各题1..解:⎰++dx x x x 221)(arctan ()222arctan 11x xdx dx x x =+++⎰⎰ 3分()()()22211arctan arctan 21d x x d x x +=++⎰⎰. 6分()()3211ln 1arctan 23x x C =+++2..解: 3分204ln(1)limx x t dtx→-⎰()232ln 1lim4x x x x→-= .6分220lim 2x x x →-=12=-3..解:2分220cos xe xdx π⎰()22sin xe d x π=⎰222200sin 2sin xx e x e xdx ππ⎡⎤=-⎣⎦⎰()2202cos xe e d x ππ=+⎰2222002cos 4cos xx e e x e xdx πππ⎡⎤=+-⎣⎦⎰5分22024cos x e e xdx ππ=--⎰.6分∴22cos xe xdx π⎰()125e π=-三峡大学 试卷纸 教学班号序号学号姓名………………….………….……答 题 不 要 超 过 密 封 线………….………………………………六、解:(1),即,且当时,, 2分2y y x x '=+2y y x x '-=1x =12y =与之对应的齐次线性微分方程的通解为,y Cx = 令,将其代入非齐次线性方程得,所以,()y u x x =u x '=212u x C =+所以非齐次线性微分方程的通解为,代入初始条件得,312y Cx x =+0C =故所求函数为. 6分312y x =(2) .10分23102x V dx π⎛⎫= ⎪⎝⎭⎰28π=七、解:设留下的扇形的中心角为,圆锥的高为,底面半径为,则其容积为ϕh r V ,又,213V r h π=2rR πϕ=h =故 4分V =()02ϕπ<<6分3224RV π'=令 得,0V '=ϕ=当时,时,,0ϕ<<0V '>2ϕπ<<0V'<因此为极大值点,又驻点唯一,从而也是最大值点. 8分ϕ=ϕ=即当割去扇形的中心角为时,圆锥的容积最大,2π. 10分3R 八、证明:方程在区间内有唯一实根.4013101xx dt t --=+⎰)1,0( 证明:令,()401311x f x x dt t =--+⎰则,()010f =-< ,()1401121f dt t =-+⎰0>由零点定理知,至少存在一点,使. 4分()0,1ξ∈()0f ξ=由,,()41301f x x'=->+()0,1x ∈知在内单调增加,()f x )1,0(所以方程在区间内有唯一实根. 8分4013101xx dt t --=+⎰)1,0(。
高等数学上册试卷B一、单项选择题(下面每道题目中有且仅有一个答案正确,将所选答案填入题后括号内。
共24分) 1.(3分)设()x f 的定义域为[]1,0,()x f ln 的定义域为() A.[]1,0B.()2,0C.[]e ,1D.()1,02.(3分)设()xx x f =,()22x x =ϕ,则()[]x f ϕ是() A.xx 2B.22x C.x x 22D.xx23.(3分)在区间()+∞∞-,内,函数()()1lg 2++=x x x f 是()A.周期函数B.有界函数C.奇函数D.偶函数4.(3分)()⎪⎩⎪⎨⎧=≠=0,0,2tan x a x xxx f ,当a 为何值时,()x f 在0=x 处连续() A.1 B.2 C.0 D.4-5.(3分)设()()⎪⎩⎪⎨⎧=≠+=0,0,11x x x x f x α,要使()x f 在0=x 处连续,则=α() A.0 B.0 C.e D.e 16.(3分)函数1+=x y 在0=x 处满足条件() A.连续但不可导B.可导但不连续 C.不连续也不可导D.既连续已可导7.(3分)已知()()()()()d x c x b x a x x f ----=且()()()()d c b c a c k f ---=',则=k () A.a B.b C.c D.d8.(3分)下列函数中,是同一函数的原函数的函数对是()A.x 2sin 21与x 2cos 41-B.x ln ln 与x 2lnC.2xe 与xe 2D.2tanx 与x x 2sin 1cot +-二、填空题9.(3分)=→x x x x 2sin 1sinlim 22010.(3分)设()231ln e x y ++=,则='y11.(3分)设⎩⎨⎧==t y t x ln 2,则=dx dy12.(3分)曲线23bx ax y +=有拐点()3,1,则=a ,=b13.(3分)()x F 是()x f 的一个原函数,则()=⎰--dx e f e xx14.(3分)函数()⎰--x t tdte e2的驻点=x15.(3分)=-⎰π2sin 1dx x 16.(3分)=⎰-22cos 2xdx xe x1=-yxe 确定函数()x y y =,求()0y ' 18.(5分)求nx mxx sin ln sin ln lim0→19.(5分)求⎰dxex120.(5分)()⎰-321ln e e x x dx21.(5分)⎰--223cos cos ππdxx x22.(5分)讨论⎰-1121dx x 的收敛性。
一、高等数学试题 2006/1/10一、选择题(本大题24分,共有6小题,每小题4分) 1.下列结论中,正确的是[ ](A )有界数列必收敛; (B )单调数列必收敛;(C )收敛数列必有界;(D )收敛数列必单调。
2.设函数f (x )在U (x 0,δ)内有定义,对于下面三条性质:① f (x )在x 0点连续;② f (x )在x 0点可导;③f (x )在x 0点可微. 若用“P ⇒ Q ”表示由性质P 推出性质Q ,则应有[ ](A) ②⇒③⇒①;(B) ②⇒①⇒③;(C)③⇒①⇒②; (D) ①⇒②⇒③。
3.曲线xxy -=3[ ] (A)既有水平渐近线,又有垂直渐近线;(B)仅有水平渐近线;(C)仅有垂直渐近线;(D)无任何渐近线。
4.设函数 f (x )在[a ,b ]上有定义,则⎰badx x f )(存在的必要条件是[ ](A) f (x )在[a ,b ]上可导;(B) f (x )在[a ,b ]上连续;(C) f (x )在[a ,b ]上有界;(D) f (x )在[a ,b ]上单调。
5. y = y (x )是微分方程y " + 3y '=e 2x 的解,且y '(x 0) = 0,则必有[ ] (A) y (x )在x 0某邻域内单调增加; (B) y (x )在x 0某邻域内单调减少; (C) y (x )在x 0取极大值;(D) y (x )在x 0取极小值.6.若f (x )的导函数是sin x ,则f (x )有一个原函数是[ ](A) x sin 1+; (B) x sin 1-; (C) x cos 1-; (D) x cos 1+.二、填空题(将正确答案填在横线上,本大题共9小题, 每小题4分, 共36分)1..________)11(lim =-+∞→xx x x 2.=+=x xx f 的可去间断点是111)(__________.3.______________,1arctan ==dy xy 则设 . 4.的值是dx xe x ⎰-10_________. 5..________sin tan lim20=-→xx xx x6..________,~sin 02=α→α+则时,x x x x7..____________)3)(2(0=++⎰+∞x x dx8..____________,322232=⎩⎨⎧-=-=dxyd tt y t t x 则设9.._________________1)1(41==-=-y y y xdx dy 的特解是满足条件微分方程三、(8分)计算不定积分dx x xx ⎰+221arctan . 四、(8分)求曲线412623++-=x x x y 的升降区间, 凹凸区间及拐点. 五、(8分)求微分方程xxey y y -=+'+''323的通解.六、(10分)在[0,1]上给定函数2x y =,问t 为何值时,如图所示 阴影部分的面积1S 与2S 的和最小,何时最大?并求此时两图形 绕x 轴旋转一周所得的旋转体的体积。
中国农业大学2016~2017学年秋季学期(2017.01) 高等数学A (上)试题(A 卷)参考答案一、填空题(本题共有5道小题,每小题3分,满分15分),请将答案填在横线上 . 1. 0ln(1)lim1cos x x x x→+-= 2 .2. 设函数2()5x f x e =+,则函数()f x 的微分dy =22xe dx .3. 函数()f x 在区间(,)a b 内可导,则在(,)a b 内()0f x '>是函数()f x 在区间(,)a b 内单调增加的 充分 条件.4. 不定积分s sin co x x e dx ⎰= s co x e C -+.5. 广义积分220(1)xdxx +∞=+⎰12.二、单项选择题(本题共有5道小题,每小题3分,满分15分),请将答案填在括号内.1. 当0x →时,变量211sin x x是 ( D ).(A) 无穷小 (B) 有界但不是无穷小量 (C) 无穷大 (D) 无界但不是无穷大2. 若在(,)a b 内函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( D ).(A) 单调减少,曲线是凹的 (B) 单调减少,曲线是凸的 (C) 单调增加,曲线是凹的 (D) 单调增加,曲线是凸的 3. 设()F x 是连续函数()f x 的一个原函数,则必有 ( B ).(A) ()F x 是奇函数⇔()f x 是偶函数 (B) ()F x 是偶函数⇔()f x 是奇函数 (C) ()F x 是周期函数⇔()f x 是周期函数 (D) ()F x 是单调函数⇔()f x 是单调函数4. 设()f x 是[ 1 , 1]-上连续的偶函数,则[1(sin )]xf x dx ππ-+⎰= ( C ).(A)2π(B) π ( C) 2π ( D) 0 5. 设()f x 与()g x 在[0,1]上连续且()()f x g x ≤,则对任意(0,1)C ∈有 ( D ).(A) 1122()()CCf t dtg t dt ≥⎰⎰ (B)1122()()CCf t dtg t dt ≤⎰⎰(C)11()()CCf t dtg t dt ≥⎰⎰ (D)11()()CCf t dtg t dt ≤⎰⎰三、求解下列各题(本题共有3道小题,每小题6分,满分18分). 1. 求极限0(1)lim sin xt x e dt x x→-⎰解:02(1)(1)lim limsin xxt t x x e dt e dt x xx →→--=⎰⎰ 01lim 2x x e x →-= 01lim 22x x e →-==-.2. 设2cos 4sin x t y t =⎧⎨=-⎩,求22d ydx .解:4cos 2cot 2sin dy t t dx t -==-, 22232csc 12sin sin d y t dx t t -==-, 3. 求微分方程440y y y '''-+=的通解. 解:特征方程为2440r r -+=,解得1,22r =,所以微分方程的通解212()x Y C C x e =+. 四、(本题满分10分))求2 22 1()()x t f x x t e dt -=-⎰的单调区间与极值.解:22222222111()()x x x t t t f x x t edt xedt tedt ---=-=-⎰⎰⎰,221()2x t f x x e dt -'=⎰,令()0,10,1f x x x x '==-==得 , ,故在(, 1][0 , 1]-∞-上()0f x '<,所以()f x 在(, 1][0 , 1]-∞-上单调减少, 在[ 1 , 0][1, +)-∞上()0f x '>, 所以()f x 在[ 1 , 0][1, +)-∞上单调增加.所以,11x x =-=, 为()f x 的极小值点,极小值为 (1)0f ±=;0x =为()f x 的极大值点,极大值为11(0)(1)2f e -=-.五、(本题满分10分)已知sin xx是()f x 的一个原函数,求3()x f x dx '⎰. 解:根据条件,有2sin cos sin ()x x x xf x x x '-⎛⎫== ⎪⎝⎭, 所以,3()x f x dx '⎰333()()()x d f x x f x f x dx ==-⎰⎰32()3()x f x x f x dx =-⎰32sin ()3()xx f x x d x=-⎰ 22sin 2sin cos sin 3()x x xx x x x x dx x x=---⎰ 2cos 4sin 6cos x x x x x C =--+ 六、(本题满分10分)设连续函数()y f x =满足方程20()2()x f x f t dt x +=⎰,求()f x . 解: 方程两边同时求导得:()2()2f x f x x '+=,或x y y 22=+')2()(22C dx xe e x f dxdx +⎰⎰=⎰-)2(22C dx xe e x x +=⎰-))((22C e d x e x x +=⎰-)(222C dx e xe e x x x +-=⎰-))2(21(222C x d e xe e xx x +-=⎰- )21(222C e xe e x x x +-=-x Ce x 221-+-=,由题意知, (0)0f =,12C =,所求函数为x e x x f y 22121)(-+-==.七、(本题满分12分)求由22y x x =-,3x =与x 轴在03x ≤≤所围成的平面图形的面积,并求该图形绕y 轴旋转一周所得旋转体的体积.解:2222104(02)(2)3S x x dx x x dx =-+=-=⎰⎰. 32224(2)3S x x dx =-=⎰, 所以12448333S S S =+=+=.平面图形1S 绕y 轴旋转一周所得的体积为:221118(1(13V dy dy πππ--=-=⎰⎰,平面图形2S 绕y 轴旋转一周所得的体积为:232204333(16V dy πππ=⋅⋅-+=⎰, 旋转体的体积为1284359366V V V πππ=+=+=,或22210082()2(2)3V xf x dx x x x dx πππ==-=⎰⎰,332222432()2(2)6V xf x dx x x x dx πππ==-=⎰⎰, 旋转体的体积为1284359366V V V πππ=+=+=.八、 (本题满分10分)设函数()f x 在[,]a b 上连续,(,)a b 内可导,且|()|f x M '≤,()0f a =,求证2()()2b aMf x dx b a ≤-⎰. 解:设2()()()2x aMF x f t dt x a =--⎰, 则 ()()()F x f x M x a '=--,()()0F x f x M '''=-≤,又()0F a '=,所以,()0F x '≤,且()0F a =,推出,()0F x ≤,所以()0F b ≤, 即2()()2b aMf x dx b a ≤-⎰.。
考试题(A 卷)一、计算下列数列或函数的极限(请从三道题目中任选二道题,多选的话则按照前两道题目给分。
每题5分,合计10分)1. n211lim 1x n n →∞⎛⎫+- ⎪⎝⎭.解 (方法一)22n n22n(1)12111lim 1lim 11li 1.m x x n n n n x n n n n n e n →∞→∞--→∞-⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭⎡⎤-⎛⎫⎢⎥=+= ⎪⎢⎥⎝⎭⎢⎥⎣⎦(方法二)222n 1nln 1211limnln 1limn 111lim 1li .m x x n n x x n n n n e n n eee e →∞→∞-⎛⎫+ ⎪⎝⎭→∞→∞-⎛⎫-+⋅⎪⎝⎭⎛⎫+-= ⎪⎝⎭====2.2()()limxx x t f t dtx →-⎰,其中()f x 是一个连续函数.解220()()()()limlim()()()lim2()(0)lim 22.xx xx x x x x x t f t dtx f t dt tf t dtxxf t dt xf x xf x xf x f →→→→--=+-===⎰⎰⎰⎰3. 求二元函数()()()()44,0,0lim2ln x y x y x y →++的极限. 解(方法一) 平面极坐标为(),ρθ。
由于()(),0,0x y →,不妨设11,22x y ≤≤,于是()()44444444max ,,21,414ln lnln 2ln 24ln ,x y x y x y x y ρρρρ≥+≥+=≤=-+所以()()()4402ln 6ln 22ln 0x y x y ρρ≤++≤-→()()()()44,0,0lim2ln 0x y x y x y →++=解(方法二) 有界量与无穷小量之积是无穷小量,所以()()()()()()()()()()44,0,01444441,0,0444lim2ln 2lim ln 0x y x y x y x y x y x y x y x y →→++⎡⎤+⎢⎥=⋅++=⎢⎥⎢⎥+⎣⎦二、 (8分)过原点作抛物线()y f x ==D 是该切线与上述抛物线及x 轴围成的平面区域. 求区域D 绕x 轴旋转一周所得旋转体的体积.解 设切点为()00,x y ,则00y y x ⎧=⎪⎨=⎪⎩ 解方程组得()()00,2,1x y =。
第1 页共5页2010-2011学年第一学期考试卷 A课程:高等数学Ⅰ1(90学时)考试形式:闭卷考试一.填空题.填空题((每小题3分,本大题满分15分) 1.设函数îíì>£=1||01||1)(x x x f ,则)]([x f f = . 2.设函数ïîïíì³+<=0202sin )(x ax x xx x f ,当常数=a ____________时时,)(x f 在0x =处连续处连续. .3.曲线x e y 2=上点(0,1)处的切线方程为______ __. 4.曲线53523++-=x x x y 的凹区间为的凹区间为_______ _____. _______ _____. 5.若x e -是)(x f 的原函数,则dx x f x )(ln 2ò = . 二.选择题选择题((每小题3分,本大题满分15分)1. 1. 当当1x ®时,无穷小量x -1是x -1的( ).A. A. 高阶无穷小高阶无穷小; B. B. 低阶无穷小低阶无穷小;C. C. 等价无穷小等价无穷小;D. D. 同阶但不等价无穷小同阶但不等价无穷小. 2.若¥=®)(lim x f ax ,¥=®)(lim x g ax 则必有()A. ¥=+®)]()([lim x g x f a x ;B. ¥=-®)]()([limx g x f a x ;C. 0)()(1lim=+®x g x f ax ; D. ¥=®)(lim x kf ax ,(0¹k 为常数)3.3.函数函数xx x x f p sin )(3-=的可去间断点个数为().A .1; B. 2; C. 3; D. 1; B. 2; C. 3; D. 无穷多个无穷多个无穷多个. .4.设函数)(x f y =在点0x 处可导,且0)(0¹¢x f ,则xdy y xD -D ®D 0lim 等于().A. 0A. 0;;B. -1 B. -1;;C. 1 C. 1;;D. ¥ .5. 5. 设设)(x f 连续,且ò=24)(x x dt t f ,则)4(f = = (()A. 2A. 2;;B. 4 B. 4;;C. 8 C. 8;;D. 16 . 三.解答下列各题解答下列各题((每小题6分,本大题满分18分)1.)3ln(tan 2x x y ×=,求dy .2.求由方程0)cos(=-+xy e y x 所确定的隐函数()y f x =在0x =处的导数处的导数. .3.设îíì=+=ty tx cos 12,求dx dy 和22dx y d 。
实用文档文案大全《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是().(A)????2ln2lnfxxgxx??和(B)??||fxx?和??2gxx???2gxx?(D)??||xfxx?和??gx?1 (C)??fxx?和??2.函数????sin420ln10xxfxxax???????????在0x?处连续,则a?().(A)0 (B)14(C)1 (D)23.曲线lnyxx?的平行于直线10xy???的切线方程为().(A)1yx??(B)(1)yx???(C)????ln11yxx???(D)yx?4.设函数??||fxx?,则函数在点0x?处().(A)连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点0x?是函数4yx?的().(A)驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线1||yx?的渐近线情况是(). (A)只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线7.211fdxxx????????的结果是(). (A)1fCx????????(B)1fCx?????????(C)1fCx???????(D)1fCx?????????的结果是().8.xx dxee??(A)arctan x eC?(B)arctan x eC??(C)xx eeC???(D)ln()xx eeC???9.下列定积分为零的是().实用文档?(B)44arcsinxxdx????(C 文案大全(A)424arctan1xdxx????)112xx eedx????(D)??121sinxxxdx???10.设??fx为连续函数,则??102fxdx??等于(). (A)????20ff?(B)????11102ff?????(C)????1202ff?????(D)????10ff?二.填空题(每题4分,共20分)1.设函数??2100x exfxxax??????????在0x?处连续,则a?.2.已知曲线??yfx?在2x?处的切线的倾斜角为56?,则??2f??.??21lndxxx?? 321xyx??的垂直渐近线有条. 4.?.5.??422sincosxxxdx??????.三.计算(每小题5分,共30分)1.求极限lim xx xx?????????②?①21?20sin1lim xx xxxe???2.求曲线??lnyxy??所确定的隐函数的导数x y?. 3.求不定积分①????13dxxx???②??220dxaxa????③x xedx?四.应用题(每题10分,共20分)1.作出函数323yxx??的图像.2.求曲线22yx?和直线4yx??所围图形的面积.实用文档文案大全《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2?233?3.24.arctanlnxc?5.2三.计算题1①2e②16 2.11x yxy????3. ①11ln||23xCx???②22ln||xaxC???③??1x exC????四.应用题1.略2.18S?实用文档文案大全《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ??fxx?和??2gxx? (B) ??211xfxx???和1yx??(C) ??fxx?和??22(sincos)gxxxx??(D) ??2lnfxx?和??2lngxx?2.设函数????2sin21112111xxxfxxxx????????????????,则??1lim x fx??(). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数??yfx?在点0x处可导,且??fx?>0, 曲线则??yfx?在点????00,xfx处的切线的倾斜角为{ }. (A) 0 (B) 2? (C)锐角 (D) 钝角4.曲线lnyx?上某点的切线平行于直线23yx??,则该点坐标是( ). (A)12,ln2?????? (B) 12,ln2??????? (C) 1,ln22?????? (D)1,ln22???????5.函数2x yxe??及图象在??1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x为函数??yfx?的驻点,则0x必为函数??yfx?的极值点. (B) 函数??yfx?导数不存在的点,一定不是函数??yfx?的极值点. (C) 若函数??yfx?在??0fx?存在,则必有??0fx?=0. (D) 若函数??yfx?在0x处连0x处取得极值,且续,则??0fx?一定存在. 7.设函数??yfx?的一个原函数为12x xe,则??fx=( ).(A) ??121x xe? (B) 12x xe? (C) ??121x xe?(D) 12x xe8.若????fxdxFxc???,则??sincosxfxdx??( ).实用文档??sinFxc? (B) ??sinFxc?? (C) ??cosFxc? (D)文案大全(A)??cosFxc??9.设??Fx为连续函数,则102xfdx????????=( ). (A) ????10ff?(B)????210ff????? (C) ????220ff????? (D) ??1202ff?????????????10.定积分ba dx???ab?在几何上的表示( ).(A) 线段长ba?(B) 线段长ab?(C) 矩形面积??1ab??(D) 矩形面积??1ba??二.填空题(每题4分,共20分)1.设????2ln101cos0xxfxxax??????????, 在0x?连续,则a=________.2.设2sinyx?, 则dy?_________________sin dx.3.函数211xyx???的水平和垂直渐近线共有_______条.4.不定积分ln xxdx??______________________.5. 定积分2121sin11xxdxx?????___________. 三.计算题(每小题5分,共30分)1.求下列极限:①??10lim12xx x??②arctan2lim1x xx?????2.求由方程1y yxe??所确定的隐函数的导数x y?.3.求下列不定积分:?②??220dxaxa???③2x xedx?①3tansecxxdx四.应用题(每题10分,共20分) 1.作出函数313yxx??的图象.(要求列出表格)实用文档文案大全2.计算由两条抛物线:22,yxyx??所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sinx 3.3 4.2211ln24xxxc ?? 5.2?三.计算题:1. ①2e②1 2.2yx eyy???3.①3sec3xc?②??22ln xaxc???③??222x xxec???四.应用题:1.略 2.13S?《高数》试卷3(上)一、填空题(每小题3分, 共24分)1.函数y?的定义域为________________________.实用文档??sin4,0,0xxfxxax????????, 则当文案大全2.设函数a=_________时, ??fx在0x?处连续.3. 函数221()32xfxxx????的无穷型间断点为________________.4. 设()fx可导, ()x yfe?, 则____________.y??5. 221lim_________________.25x xxx??????6. 321421sin1xxdxxx????=______________.7._______________________.xt dedtdx???208. 30yyy??????是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1.01limsin xx ex??; 2. 233lim9x xx???; 3.1lim1.2xx x??????????三、求下列导数或微分(每小题5分, 共15分)1.2xyx??, 求(0)y?.2. cosx ye?, 求dy.3.设xy xye??, 求dydx.四、求下列积分 (每小题5分, 共15分)1.12sinxdxx????????.2.ln(1)xxdx??.3.120x edx?五、(8分)求曲线1cosxtyt??????在2t??处的切线与法线方程.六、(8分)求由曲线21,yx??直线0,0yx??和1x?所围成的平面图形的面积, 以及此图形绕y轴旋转所得旋转体的体积.七、(8分)求微分方程6130yyy??????的通解.实用文档??10y?的特《高文案大全八、(7分)求微分方程x yyex???满足初始条件数》试卷3参考答案一.13x? 2.4a? 3.2x? 4.'()xx efe5.126.07.22x xe?8.二阶二.1.原式=0lim1x xx??2.311lim36x x???3.原式=112221lim[(1)]2xx ex??????三.1.221','(0)(2)2yyx???2.cos sin x dyxedx??3.两边对x求写:'(1')xy yxyey????'xyxy eyxyyyxexxy?????????四.1.原式=lim2cosxxC??2.原式=2221lim(1)()lim(1)[lim(1)]22xxxdxxdxx???????=22111lim(1)lim(1)(1)221221xxxxdxxxdxxx??????????? =221lim(1)[lim(1)]222xxxxxC??????3.原式=1221200111(2)(1)222xx edxee????五.sin1,122dydytttydxdx???????且切线:1,1022yxyx?????????即法线:1(),1022yxyx??????????即六.12210013(1)()22Sxdxxx????????112242005210(1)(21)228()5315Vxdxxxdxxxx?????????????实用文档文案大全七.特征方程:2312613032(cos2sin2)x rrriyeCxCx??????????八.11()dxdxxxx yeeedxC??????1[(1)]x xeCx???由10,0yxC????1x xyex???《高数》试卷4(上)一、选择题(每小题3分)1、函数2)1ln(????xxy的定义域是().A ??1,2?B ??1,2?C ??1,2?D ??1,2?2、极限xx e??lim的值是().A、??B、0C、??D、不存在3、????211)1sin(limxx x().A、1B、0C、21?D、214、曲线23???xxy在点)0,1(处的切线方程是()A、)1(2??xyB、)1(4??xyC、14??xyD、)1(3??xy5、下列各微分式正确的是().A、)(2xdxdx?B、)2(sin2cosxdxdx?C、)5(xddx???D、22)()(dxxd?6、设???Cxdxxf2cos2)(,则?)(xf().实用文档文案大全A、2sinx B、2sinx? C 、Cx?2sin D 、2sin2x?7、???dxxxln2().A、Cxx???22ln212B、Cx??2)ln2(21C、Cx??ln2lnD、Cxx???2ln18、曲线2xy?,1?x,0?y所围成的图形绕y轴旋转所得旋转体体积?V(). A、?104dxx? B 、?10ydy?C、??10)1(dyy?D、??104)1(dxx?9、???101dxee xx(). A、21lne? B、22lne?C、31lne?D、221lne?10、微分方程x eyyy22??????的一个特解为().A、x ey273??B、x ey73??C、x xey272??D、x ey272??二、填空题(每小题4分)1、设函数x xey?,则???y;2、如果322sin3lim0??xmx x , 则?m.3、???113cosxdx x;4、微分方程044??????yyy的通解是.5、函数xxxf2)(??在区间??4,0上的最大值是,最小值是;三、计算题(每小题5分)1、求极限xxx x????11lim0;2、求xxysinlncot212??的导数;实用文档文案大全3、求函数1133???xxy的微分; 4、求不定积分???11xdx;5、求定积分?ee dxx1ln;6、解方程21xyxdxdy??;四、应用题(每小题10分)1、求抛物线2xy?与22xy??所围成的平面图形的面积.2、利用导数作出函数323xxy??的图象.参考答案一、1、C; 2、D; 3、C; 4、B; 5、C; 6、B; 7、B; 8、A; 9、A;10、D;二、1、x ex)2(?; 2、94; 3、0; 4、x exCCy221)(???; 5、8,0三、1、 1; 2、x3cot?; 3、dxxx232)1(6?; 4、Cxx?????)11ln(212;5、)12(2e?;6、Cxy???2212;四、1、38;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数)1lg(12????xxy的定义域是().A、????????,01,2?B、??),0(0,1????实用文档文案大全C、),0()0,1(??? D、),1(???2、下列各式中,极限存在的是().A、x x coslim0?B、x x arctanlim??C、x x sinlim??D、xx2lim???3、????xx xx)1(lim(). A、e B、2e C、1D、e14、曲线xxyln?的平行于直线01???yx的切线方程是(). A、xy?B、)1)(1(ln???xxyC、1??xyD、)1(???xy5、已知xxy3sin?,则?dy().A、dxxx)3sin33cos(??B、dxxxx)3cos33(sin?C、dxxx)3sin3(cos?D、dxxxx)3cos3(sin?6、下列等式成立的是().A、?????Cxdxx111???B、???Cxadxa xx lnC、???CxxdxsincosD、????Cxxdx211tan7、计算?xdxxe x cossin sin的结果中正确的是().A、Ce x?sinB、Cxe x?cos sinC、Cxe x?sin sinD、Cxe x??)1(sin sin8、曲线2xy?,1?x,0?y所围成的图形绕x轴旋转所得旋转体体积?V(). A、?104dxx? B 、?10ydy?C、??10)1(dyy?D、??104)1(dxx?9、设a﹥0,则???dxxa a022().A、2aB、22a?C、241a 0D、241a?10、方程()是一阶线性微分方程.实用文档文案大全A、0ln2???xyyx B、0???yey xC、0sin)1(2????yyyxD、0)6(2????dyxydxyx二、填空题(每小题4分)1、设???????0,0,1)( xbaxxexf x,则有???)(lim0xf x,???)(lim0xf x;2、设x xey?,则???y;3、函数)1ln()(2xxf??在区间??2,1?的最大值是,最小值是;4、???113cosxdx x;5、微分方程023??????yyy的通解是.三、计算题(每小题5分)1、求极限)2311(lim21?????xxx x;2、求xxyarccos12??的导数;3、求函数21xxy??的微分;4、求不定积分??dxxxln21;5、求定积分?ee dxx1ln;6、求方程yxyyx???2满足初始条件4)21(?y的特解.实用文档文案大全四、应用题(每小题10分)1、求由曲线22xy??和直线0??yx所围成的平面图形的面积.2、利用导数作出函数49623????xxxy的图象.参考答案(B 卷)一、1、B; 2、A; 3、D; 4、C; 5、B; 6、C; 7、D; 8、A; 9、D; 10、B.二、1、2,b; 2、x ex)2(?; 3、5ln,0; 4、0; 5、xx eCeC221?.三、1、31; 2、1arccos12???xxx; 3、dxxx221)1(1??;4、Cx??ln22;5、)12(2e?;6、x exy122??;四、1、29; 2、图略。
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是().(A)(B)和(C)和(D)和1 2.函数在处连续,则().(A)0(B)(C)1(D)23.曲线的平行于直线的切线方程为().(A)(B)(C)(D)4.设函数,则函数在点处().(A)连续且可导(B)连续且可微(C)连续不可导(D)不连续不可微5.点是函数的().(A)驻点但非极值点(B)拐点(C)驻点且是拐点(D)驻点且是极值点6.曲线的渐近线情况是().(A)只有水平渐近线(B)只有垂直渐近线(C)既有水平渐近线又有垂直渐近线(D)既无水平渐近线又无垂直渐近线7.的结果是().(A)(B)(C)(D)8.的结果是().(A)(B)(C)(D)9.下列定积分为零的是().(A)(B)(C)(D)10.设为连续函数,则等于().(A)(B)(C)(D)二.填空题(每题4分,共20分)1.设函数在处连续,则. 2.已知曲线在处的切线的倾斜角为,则. 3.的垂直渐近线有条.4..5..三.计算(每小题5分,共30分)1.求极限①②2.求曲线所确定的隐函数的导数.3.求不定积分①②③四.应用题(每题10分,共20分)1.作出函数的图像.2.求曲线和直线所围图形的面积.《高数》试卷1参考答案一.选择题1.B2.B3.A4.C5.D6.C7.D8.A9.A10.C 二.填空题1.2.3.24.5.2三.计算题1①②2.3.①②③四.应用题1.略2.《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是().(A)和(B)和(C)和(D)和2.设函数,则().(A)0(B)1(C)2(D)不存在3.设函数在点处可导,且>0,曲线则在点处的切线的倾斜角为{}.(A)0(B)(C)锐角(D)钝角4.曲线上某点的切线平行于直线,则该点坐标是().(A)(B)(C)(D)5.函数及图象在内是().(A)单调减少且是凸的(B)单调增加且是凸的(C)单调减少且是凹的(D)单调增加且是凹的6.以下结论正确的是().(A)若为函数的驻点,则必为函数的极值点.(B)函数导数不存在的点,一定不是函数的极值点.(C)若函数在处取得极值,且存在,则必有=0.(D)若函数在处连续,则一定存在.7.设函数的一个原函数为,则=().(A)(B)(C)(D)8.若,则().(A)(B)(C)(D)9.设为连续函数,则=().(A)(B)(C)(D)10.定积分在几何上的表示().(A)线段长(B)线段长(C)矩形面积(D)矩形面积二.填空题(每题4分,共20分)1.设,在连续,则=________.2.设,则_________________.3.函数的水平和垂直渐近线共有_______条.4.不定积分______________________.5.定积分___________.三.计算题(每小题5分,共30分)1.求下列极限:①②2.求由方程所确定的隐函数的导数.3.求下列不定积分:①②③四.应用题(每题10分,共20分)1.作出函数的图象.(要求列出表格)2.计算由两条抛物线:所围成的图形的面积《高数》试卷2参考答案一.选择题:C D C D B C A D D D二填空题:1.-22.3.34.5.三.计算题:1.①②12.3.①②③四.应用题:1.略2.《高数》试卷3(上)一、填空题(每小题3分,共24分)1.函数的定义域为________________________.2.设函数,则当a=_________时,在处连续.3.函数的无穷型间断点为________________.4.设可导,,则5.6.=______________.7.8.是_______阶微分方程.二、求下列极限(每小题5分,共15分)1.;2.;3.三、求下列导数或微分(每小题5分,共15分)1.,求.2.,求.3.设,求.四、求下列积分(每小题5分,共15分)1..2..3.五、(8分)求曲线在处的切线与法线方程.六、(8分)求由曲线直线和所围成的平面图形的面积,以及此图形绕y轴旋转所得旋转体的体积.七、(8分)求微分方程的通解.八、(7分)求微分方程满足初始条件的特解.《高数》试卷3参考答案一.1.2.3.4.5.6.07.8.二阶二.1.原式=2.3.原式=三.1.2.3.两边对x求写:四.1.原式=2.原式===3.原式=五.切线:法线:六.七.特征方程:八.由《高数》试卷4(上)一、选择题(每小题3分)1、函数的定义域是().A B C D2、极限的值是().A、B、C、D、不存在3、().A、B、C、D、4、曲线在点处的切线方程是()A、B、C、D、5、下列各微分式正确的是().A、B、C、D、6、设,则().A、B、C、D、7、().A、B、C、D、8、曲线,,所围成的图形绕轴旋转所得旋转体体积().A、B、C、D、9、().A、B、C、D、10、微分方程的一个特解为().A、B、C、D、二、填空题(每小题4分)1、设函数,则;2、如果,则.3、;4、微分方程的通解是.5、函数在区间上的最大值是,最小值是;三、计算题(每小题5分)1、求极限;2、求的导数;3、求函数的微分;4、求不定积分;5、求定积分;6、解方程;四、应用题(每小题10分)1、求抛物线与所围成的平面图形的面积.2、利用导数作出函数的图象.4)参考答案一、1、C;2、D;3、C;4、B;5、C;6、B;7、B;8、A;9、A;10、D;二、1、;2、;3、;4、;5、8,0三、1、1;2、;3、;4、;5、;6、;四、1、;2、图略《高数》试卷5(上)一、选择题(每小题3分)1、函数的定义域是().A、B、C、D、2、下列各式中,极限存在的是().A、B、C、D、3、().A、B、C、D、4、曲线的平行于直线的切线方程是().A、B、C、D、5、已知,则().A、B、C、D、6、下列等式成立的是().A、B、C、D、7、计算的结果中正确的是().A、B、C、D、8、曲线,,所围成的图形绕轴旋转所得旋转体体积().9、A、B、C、D、9、设﹥,则().A、B、C、0D、10、方程()是一阶线性微分方程.A、B、C、D、二、填空题(每小题4分)1、设,则有,;2、设,则;3、函数在区间的最大值是,最小值是;4、;5、微分方程的通解是.三、计算题(每小题5分)1、求极限;2、求的导数;3、求函数的微分;4、求不定积分;5、求定积分;6、求方程满足初始条件的特解.四、应用题(每小题10分)1、求由曲线和直线所围成的平面图形的面积.2、利用导数作出函数的图象.5)参考答案(B卷)一、1、B;2、A;3、D;4、C;5、B;6、C;7、D;8、A;9、D;10、B.二、1、,;2、;3、,;4、;5、.三、1、;2、;3、;4、;5、;6、;四、1、;2、图略。
一高等数学(上)数理系 全校本、专(答案写在答题纸上,写在试题纸上无效)一、 填空题:(每小题2分,共20分)1. 若_____________516lim21=-=-+-→a x ax x x ,则。
2. 设函数1(12)0()0_______0xx x f x x k k x ⎧⎪-≠===⎨⎪=⎩在点连续,则。
3. 设)(x f 在点0x 处可导,则___________)()(lim 000=∆∆--→∆xx x f x f x 。
4. 设由方程22=xy 所确定的隐函数为)(x y y =,则_______=dy 。
5. 函数x x y cos 2+=在区间⎥⎦⎤⎢⎣⎡20π,上的最大值为__________。
6. 设函数)(x f 的一个原函数是x1,则___________)('=x f 。
7. 若310=⎰∞-dx e kx ,则____________=k 。
8. 由102===x y x y ,,围成的平面图形绕x 轴旋转一周所得的几何体的体积为__________。
9. zox 坐标面上的圆122=+z x 绕oz 轴旋转一周所生成的旋转曲面的方程为__________。
课程考试试题 学期学年 拟题学院(系): 适 用 专 业:10. 过点)314(,,且平行于直线51122-==-z y x 的直线方程为________________。
二、 单项选择题:(每小题2分,共20分) 1、当0→x 时,与x 等价的无穷小量是( ))1l n (.s i n.s i n.)1(.23x D x C xx B x x A ++ 2、下列极限不正确的是( )0lim .lim .0lim .1lim.1010101=+∞===→→→∞→+-xx xx xx xx e D e C e B e A3、设)()(lim )0(0)0(0'==→x x f f f x 存在,则,且 )0(21.)0(.)0(.)(.''f D f C f B x f A 4、设)(x f 可微,则)()()(=x f e d)('')(')()(.)(.)(..x f x f x f dex f D dxx f B dxe xf B dx e A 5、设常数0>k ,函数k exx x f +-=ln )(在),∞+0(内零点的个数为( ) 1.2.0.3.D C B A6、)()()()(=+=⎰⎰--dx e f e C x F dx x f x x ,则若Cxe F D Ce F C Ce F B C e F A x x x x +++-+---)(.)(.)(.)(. 7、若)(x f 的导函数是x sin ,则)(x f 有一个原函数为( )xx D x x C xx B x x A cos .sin .cos .sin .++--8、下列积分中其值为0的是( )⎰⎰⎰⎰---112111211cos ..sin .sin .xdxD xdxC xdx x B xdx x A 9、220sin(1)()x d t dt dx+=⎰)1sin(2.)1sin(.)1sin(.)1sin(2.4444++++t t D t C x B x x A 10、若两个非零向量→→b a 与满足→→→→-=+b a b a ,则( )3),(.4),(...ππ==∧→→∧→→→→→→b a D b a C b a B b a A 平行与垂直与三、 计算题(7个小题,共44分)1、(6分)求)11ln 1(lim 1--→x x x 2、(6分)设函数)(0cos )1ln(0arctan )('2x f x xx x x x x f ,求⎩⎨⎧≥-+<=. 3、(6分)求xdx xx arctan 122⎰+ 4、(6分)求⎰+41dx xx5、(6分)求⎰202cos πxdx e x 6、(8分)设24x x y += , 求(1)函数的增减区间及极值;(2)函数的凹凸区间及拐点。
7、(6分)求过点)1,2,1(而与两直线 ⎩⎨⎧=+-=+-⎩⎨⎧=-+-=+-+0201012z y x z y x z y x z y x 和 平行的平面的方程。
四、 应用题(10分)求由直线0=y 与曲线2x y =及它在)1,1(点处的法线所围图形的面积。
五、 证明题(6分)设函数)(x f 在[]b a ,上连续,在()b a ,内可导,且0)('≠x f ,试证存在),(,b a ∈ηξ,使得ηηξ-⋅--=e a b e e f f a b )()(''一、填空题:(每小题2分,共20分)20023222121.72. 3.2cos 4. 5. 6.26417.38.9.110.2215y x x dx xe x x yz x y z ππ-+--++===二、单项选择题:(每小题2分,共20分)1. D2. D3. B4. B5. C6. A7. A8. B9. A 10. A 三、计算题(7个小题,共44分)2111ln 1lim 1ln 1lim 1ln 11lim ln )1(ln 1lim 6.(11111=++=-+-=-+-=---=→→→→x x x x x xx x x x x x x x x x x 原式分)2.(6分) (0)(0)0f f -+''==4'201()1cos sin 0x x x f x x x x x ⎧<⎪⎪+=⎨⎪-+≥Cx x x x x dx xx x x x xd xdx xdx x+-+-=-+-=-=+-=⎰⎰⎰⎰22222)(arctan 21)1ln(21arctan )(arctan 211arctan )(arctan arctan arctan arctan )111(6.3原式分)(3ln 2]1ln 2[2)111(2122112)0(6.4222020220402=++-=++-=+=+=+==≥=⎰⎰⎰⎰t t t dt t t dt t t tdt t t dx x xtdtdx t x t t x ,,从而令分)( )(故原积分原式分)(251cos 422cos 2cos 2cos 22sin sin sin 6.520220220220220222202-=⋅--=⋅-+=+=⋅-==⎰⎰⎰⎰⎰πππππππππππe dxx e e dxe x xe e x d e e dxe x xe x d e x x x x x xx6.(8分) (1) 函数的定义域为(,0)(0,)-∞⋃+∞(2) 381,y x '=-驻点为2,x =不可导点为0;x = -------------------------------2分 (3) 424;y x''=----------------------------3分(4)列表如下:------6分单调增加区间为(-,0)∞,(2,)+∞; 单调减少区间为(0,2);(2)3f =为极小值;---------------7分凹区间为(-,0)∞,(0,)+∞;无拐点。
--------------8分 7.(6分)直线1l 的方向向量为(1,-2,-3);-------------1分 直线2l 的方向向量为(0,-1,-1); ------------2分 所求平面的法线向量为(1,-1,1). ------------4分 所求平面的方程为 0x y z -+=.-----------6分四、应用题(1个小题,10分)2y x =在(1,1)处法线斜率为12-,法线方程为1322y x =-+--------------4分 法线与x 轴交点为(3,0),-------------5分所求面积为-------------------------------------8分-------------------------------------10分五、证明题(6分)设()xg x e =,则()()()()()()f b f a f g b g a g ηη'-='-,即()()()b a f b f a f e e eηη'-=-.-----------------------------------3分1320113()22S x dx x dx=+-+⎰⎰又因为存在(,)a b ξ∈,使得()()()(),f b f a b a f ξ'-=- -----------------------------------4分所以()()()b ab a f f e e eηξη''-=-,即结论成立. -----------------------------------6分。