黑龙江省鹤岗一中2017-2018学年高二上学期期中考试试题 数学(理) Word版含答案
- 格式:doc
- 大小:587.45 KB
- 文档页数:7
鹤岗一中2018—2018学年度上学期期中高二数学试卷(理科)命题:姜广千 审核:冯春明 2018.11.2一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把正确答案填在答题卡上)1. 双曲线221102x y -=的焦距为( )2.已知抛物线()220x py p =>的准线经过点()11--,,则抛物线的焦点坐标为( ) A .()0,1 B .()02, C .()10, D .()20,3.已知椭圆的一个焦点为F (1,0),离心率e =12,则椭圆的标准方程为 ( )A .2212x y +=B .2212y x += C .22143x y += D .22143y x += 4.某公司为确定明年投入某产品的广告支出,对近5年的广告支出m 与销售额t (单位:百经测算,年广告支出m 与年销售额t 满足线性回归方程 6.517.5t m =+,则p 的值为 A .45 B .50 C .55 D .605.已知圆04:22=-+y y x M ,圆1)1()1(:22=-+-y x N ,则圆M 与圆N 的公切线条数是( )A .1B .2C .3D .46.甲、乙两名同学八次数学测试成绩如茎叶图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为( )A .85,86B .85,85,C .86,85D .86,867.如图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为16,28,则输出的a=( ) A .0 B .2C .4D .148.焦点是()02±,,且与双曲线22133x y -=有相同的渐近线的双曲线的方程是( )A .2213y x -= B .2213x y -=C .222x y -=D .222y x -=9.已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0) B .1362022=+y x (x ≠0) C .120622=+y x (x ≠0) D .162022=+y x (x ≠0) 10.设抛物线24x y =的焦点为F ,经过点()1,5P 的直线l 与抛物线相交于A B ,两点,且点P 恰为线段AB 的中点,则AF BF +=( )A. 13B. 12C. 11D. 1011.椭圆1422=+y x 的两个焦点为21,F F ,过1F 作垂直于x 轴的直线于椭圆相交,一个交点为P ,2PF = A .27 B .4 C .3 D .23 12、已知过双曲线()2222:10,0x y C a b a b-=>>的中心的直线交双曲线于点,A B .在双曲线上任取与点,A B 不重合点P ,记直线,,PA PB AB 的斜率分别为12,,k k k ,若12k k k >恒成立,则离心率的取值范围是( )A. (B.(C.)+∞ D. )+∞二、填空题(本大题共4小题,每小题5分,共20分,把正确答案写在答题卡上) 13.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.14.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = 15.已知点P(2,1),若抛物线24y x =的一条弦AB 恰好是以P 为中点,则弦AB 所在直线方程是____________.16.以下三个关于圆锥曲线的命题中:①A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。
2017-2018学年高二学年第一次月考数学试题(理)第I 卷(选择题)一、选择题1.直线x=1的倾斜角和斜率是 ( ) A 45°,1 B错误!未找到引用源。
,不存在C 135°, -1D 错误!未找到引用源。
,不存在 2.求过点P (2,3),并且在两轴上的截距互为相反数的直线方程 ( ) A .10x y -+= B .10x y -+=或320x y -= C .50x y +-= D .50x y +-=或320x y -=3.若直线1:310l ax y ++=与2:2(1)10l x a y +++=互相平行,则a 的值是( ) A 3- 错误!未找到引用源。
B 2 C 32-或 错误!未找到引用源。
D 32或-4.平行线0943=-+y x 和620x my ++=的距离是( )A .58B .2C .511D .575.原点和点(2,1)-在直线0=-+a y x 的两侧,则实数a 的取值范围是( ) A. 01a ≤≤ B. 01a << C. 0a =或1a = D. 0a <或1a >6.设,P Q 分别为直线0x y -=和圆22(6)2x y +-=上的点,则||PQ 的最小值为( )AC 47.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x8.已知圆心()2,3-,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是( ) A .224680x y x y +-++= B .224680x y x y +-+-= C .22460x y x y +--= D .22460x y x y +-+=9.点M (00,y x )在圆222R y x =+外,则直线200R y y x x =+与圆的位置关系是( )A .相切B . 相交C .相离D .不确定10.已知P (x,y )为区域 2200y x x a⎧-≤⎨≤≤⎩内的任意一点,当该区域的面积为4时,z=2x-y 的最大值是( )A.6B.0C.2D.11.若圆221:1O x y +=与圆2222:(3)(0)O x y r r -+=>相交,则r 的范围为( ) A .(1,2) B . (2,3) C .(2,4) D .(3,4) 12.设1F 、2F 是椭圆)10(1222<<=+b b y x 的左、右焦点,过1F 的直线l 交椭圆于B A ,两点,若||3||11B F AF =,且x AF ⊥2轴,则=2b ( ) A .41 B .31 C .32 D .43第II 卷(非选择题)二、填空题13.若三点A(-2,3) , B(3,-2) ,C(12,m)共线,则m 的值为______; 14.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为 。
2015-2016学年黑龙江省鹤岗一中高二(上)期中数学试卷(理科)一、选择题1.直线x+3y+1=0的倾斜角是()A.B.C.D.2.若直线ax+2y+1=0与直线x+y﹣2=0互相垂直,那么a的值等于()A.1 B.﹣C.﹣D.﹣23.抛物线y=﹣8x2的准线方程是()A.y=B.y=2 C.x=D.y=﹣24.二圆C1:x2+y2=1和C2:x2+y2﹣4x﹣5=0的位置关系是()A.相交 B.外切 C.内切 D.外离5.已知直线l的方程为x﹣y﹣a2=0(a≠0),则下列叙述正确的是()A.直线不经过第一象限B.直线不经过第二象限C.直线不经过第三象限D.直线不经过第四象限6.(2009•惠州模拟)若直线=1与图x2+y2=1有公共点,则()A.a2+b2≤1B.a2+b2≥1C.D.7.已知圆x2+y2=9的弦过点P(1,2),当弦长最短时,该弦所在直线方程为()A.x+2y﹣5=0 B.y﹣2=0 C.2x﹣y=0 D.x﹣1=08.若直线l1:y﹣2=(k﹣1)x和直线l2关于直线y=x+1对称,那么直线l2恒过定点()A.(2,0) B.(1,﹣1)C.(﹣2,0)D.(1,1)9.在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)的曲线大致是()A.B.C.D.10.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣9=0的距离的最小值为()A.B.C.2 D.111.已知点P是双曲线右支上一点,F1、F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若成立,则双曲线的离心率为()A.4 B.C.2 D.12.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为()A.[2,+∞)B.(,+∞) C.[,+∞)D.(,+∞)二、填空题13.已知双曲线(a>0,b>0)的离心率为,则C的渐近线方程为.14.直线(2+λ)x+(λ﹣1)y﹣2λ﹣1=0经过的定点坐标为.15.若实数x,y满足,则的取值范围是.16.方程+=1表示曲线C,给出以下命题:①曲线C不可能为圆;②若曲线C为双曲线,则t<1或t>4;③若1<t<4,则曲线C为椭圆;④若曲线C为焦点在x轴上的椭圆,则1<t<.其中真命题的序号是(写出所有正确命题的序号).三、解答题17.根据下列条件求直线方程(1)过点(2,1)且倾斜角为的直线方程;(2)过点(﹣3,2)且在两坐标轴截距相等的直线方程.18.已知方程x2+y2﹣2mx﹣4y+5m=0的曲线是圆C(1)求m的取值范围;(2)当m=﹣2时,求圆C截直线l:2x﹣y+1=0所得弦长.19.实数x,y满足圆的标准方程(x+1)2+(y﹣2)2=4(Ⅰ)求的最小值;(Ⅱ)求定点(1,0)到圆上点的最大值.20.已知椭圆的焦点是F1(﹣1,0)和F2(1,0),又过点(1,).(1)求椭圆的离心率;(2)又设点P在这个椭圆上,且|PF1|﹣|PF2|=1,求∠F1PF2的余弦的大小.21.已知抛物线y2=2px(p>0)焦点为F,抛物线上横坐标为的点到抛物线顶点的距离与其到准线的距离相等.(Ⅰ)求抛物线的方程;(Ⅱ)设过点P(6,0)的直线l与抛物线交于A,B两点,若以AB为直径的圆过点F,求直线l的方程.22.如图,在平面直角坐标系xOy中,椭圆=1(a>b>0)的离心率为,过椭圆右焦点F作两条互相垂直的弦AB与CD.当直线AB斜率为0时,|AB|+|CD|=3.(Ⅰ)求椭圆的方程;(Ⅱ)求由A,B,C,D四点构成的四边形的面积的取值范围.2015-2016学年黑龙江省鹤岗一中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题1.直线x+3y+1=0的倾斜角是()A.B.C.D.【考点】直线的倾斜角.【专题】计算题;直线与圆.【分析】求出直线的斜率,即可求出直线的倾斜角.【解答】解:直线x+3y+1=0的斜率是﹣,倾斜角是,故选:D.【点评】本题考查了直线的倾斜角与斜率的关系,属于基础题.2.若直线ax+2y+1=0与直线x+y﹣2=0互相垂直,那么a的值等于()A.1 B.﹣C.﹣D.﹣2【考点】直线的一般式方程与直线的垂直关系.【专题】直线与圆.【分析】利用相互垂直的直线斜率之间的关系即可得出.【解答】解:直线ax+2y+1=0的斜率k1=﹣,直线x+y﹣2=0的斜率k2=﹣1.∵直线ax+2y+1=0与直线x+y﹣2=0互相垂直,∴k1•k2=﹣1.∴,解得a=﹣2.故选:D.【点评】本题考查了相互垂直的直线斜率之间的关系,属于基础题.3.抛物线y=﹣8x2的准线方程是()A.y=B.y=2 C.x=D.y=﹣2【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程.【解答】解:整理抛物线方程得x2=﹣y,∴p=∵抛物线方程开口向下,∴准线方程是y=,故选:A.【点评】本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.4.二圆C1:x2+y2=1和C2:x2+y2﹣4x﹣5=0的位置关系是()A.相交 B.外切 C.内切 D.外离【考点】圆与圆的位置关系及其判定.【专题】直线与圆.【分析】先求出两圆的圆心和半径,根据两圆的圆心距等于两圆的半径之和,得出两圆相外切.【解答】解:圆x2+y2﹣4x﹣5=0 即(x﹣2)2+y2=9,表示以(2,0)为圆心,以3为半径的圆,两圆的圆心距为2,正好等于两圆的半径之差,故两圆相内切,故选C.【点评】本题考查两圆的位置关系,由两圆的圆心距等于两圆的半径之和与差,得出两圆的位置关系.5.已知直线l的方程为x﹣y﹣a2=0(a≠0),则下列叙述正确的是()A.直线不经过第一象限B.直线不经过第二象限C.直线不经过第三象限D.直线不经过第四象限【考点】直线的图象特征与倾斜角、斜率的关系.【专题】阅读型;直线与圆.【分析】化直线的一般方程为斜截式,求出直线的斜率及在y轴上的截距,由此可得正确答案.【解答】解:由x﹣y﹣a2=0(a≠0),得y=x﹣a2,所以直线l的斜率大于0,在y轴上的截距小于0,所以直线不经过第二象限.故选B.【点评】本题考查了直线的一般方程化斜截式方程,考查了直线的图象特征和斜率及截距间的关系,是基础题.6.(2009•惠州模拟)若直线=1与图x2+y2=1有公共点,则()A.a2+b2≤1B.a2+b2≥1C.D.【考点】直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r故选D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.7.已知圆x2+y2=9的弦过点P(1,2),当弦长最短时,该弦所在直线方程为()A.x+2y﹣5=0 B.y﹣2=0 C.2x﹣y=0 D.x﹣1=0【考点】直线与圆的位置关系.【专题】直线与圆.【分析】求出圆的圆心与P的斜率,然后求出弦长的斜率,利用点斜式方程求解即可.【解答】解:因为弦长最短,∴该直线与直线OP垂直,又k OP=2,所以直线的斜率为,由点斜式可求得直线方程为x+2y﹣5=0,故选A.【点评】本题考查圆的方程的应用,直线与圆的位置关系的应用,基本知识的考查.8.若直线l1:y﹣2=(k﹣1)x和直线l2关于直线y=x+1对称,那么直线l2恒过定点()A.(2,0) B.(1,﹣1)C.(﹣2,0)D.(1,1)【考点】与直线关于点、直线对称的直线方程.【专题】计算题.【分析】由题意求出直线y﹣2=(k﹣1)x过的定点,关于直线y=x+1对称点,即可得到对称直线l2恒过定点.【解答】解:直线l1:y﹣2=(k﹣1)x,恒过定点(0,2),(0,2)关于直线y=x+1的对称点为(a,b),所以,解得a=1,b=1,所以直线l2恒过定点(1,1).故选D.【点评】本题是基础题,考查直线关于直线对称问题的求法,注意对称直线恒过定点,就是对称前直线过定点关于对称轴的对称点的坐标,注意垂直、平分求对称问题的方法.9.在同一坐标系中,方程a2x2+b2y2=1与ax+by2=0(a>b>0)的曲线大致是()A.B.C.D.【考点】椭圆的定义;抛物线的定义.【专题】数形结合.【分析】根据题意,a>b>0,可以整理椭圆a2x2+b2y2=1与抛物线ax+by2=0变形为标准形式,可以判断其焦点所在的位置,进而分析选项可得答案.【解答】解:由a>b>0,椭圆a2x2+b2y2=1,即+=1,焦点在y轴上;抛物线ax+by2=0,即y2=﹣x,焦点在x轴的负半轴上;分析可得,D符合,故选D.【点评】本题考查由椭圆、抛物线的方程判断图象的方法,注意先判断曲线的形状,再分析焦点等位置.10.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣9=0的距离的最小值为()A.B.C.2 D.1【考点】简单线性规划.【专题】计算题.【分析】结合约束条件的可行域,由于y=x的斜率为1,3x﹣4y﹣9=0的斜率为,故可解.【解答】解:由题意,可结合约束条件的可行域,由于y=x的斜率为1,3x﹣4y﹣9=0的斜率为,故可知(1,1)到直线3x﹣4y﹣9=0的距离最小为2,故选C.【点评】利用线性规划解平面上任意两点的距离的最值,关键是要根据已知的约束条件,确定满足约束约束条件的可行域,再去分析图形,根据图形的性质、对称的性质等找出满足条件的点的坐标,代入计算,即可求解.11.已知点P是双曲线右支上一点,F1、F2分别是双曲线的左、右焦点,I为△PF1F2的内心,若成立,则双曲线的离心率为()A.4 B.C.2 D.【考点】双曲线的简单性质.【专题】计算题.【分析】设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,可得△IF1F2,△IPF1,△IPF2可看作三个高相等且均为圆I半径r的三角形.利用三角形面积公式,代入已知式,化简可得|PF1|﹣|PF2|=,再结合双曲线的定义与离心率的公式,可求出此双曲线的离心率.【解答】解:如图,设圆I与△PF1F2的三边F1F2、PF1、PF2分别相切于点E、F、G,连接IE、IF、IG,则IE⊥F1F2,IF⊥PF1,IG⊥PF2,它们分别是△IF1F2,△IPF1,△IPF2的高,∴,,其中r是△PF1F2的内切圆的半径.∵∴=+两边约去得:|PF1|=|PF2|+∴|PF1|﹣|PF2|=根据双曲线定义,得|PF1|﹣|PF2|=2a, =c∴2a=c⇒离心率为e=故选C【点评】本题将三角形的内切圆放入到双曲线当中,用来求双曲线的离心率,着重考查了双曲线的基本性质、三角形内切圆的性质和面积计算公式等知识点,属于中档题.12.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为()A.[2,+∞)B.(,+∞) C.[,+∞)D.(,+∞)【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=可表示出e1,同样表示出椭圆中的c'和a'表示出e2的关系式,然后利用换元法求出e1+e2的取值范围即可.【解答】解:BD==,∴a1=,c1=1,a2=,c2=x,∴e1=,e2=,e1e2=1但e1+e2中不能取“=”,∴e1+e2=+=+,令t=﹣1∈(0,﹣1),则e1+e2=(t+),t∈(0,﹣1),∴e1+e2∈(,+∞)∴e1+e2的取值范围为(,+∞).故选B.【点评】本小题主要考查椭圆的简单性质、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.二、填空题13.已知双曲线(a>0,b>0)的离心率为,则C的渐近线方程为y=.【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由双曲线的离心率,利用题设条件,结合离心率的变形公式能求出的值,由此能求出双曲线的渐近线的方程.【解答】解:∵双曲线(a>0,b>0)的离心率为,∴===,∴1+=,∴=,解得,∴C的渐近线方程为y==.故答案为:y=.【点评】本题考查双曲线的渐近线方程的求法,是基础题,解题时要熟练掌握双曲线的简单性质.14.直线(2+λ)x+(λ﹣1)y﹣2λ﹣1=0经过的定点坐标为(1,1).【考点】过两条直线交点的直线系方程.【专题】直线与圆.【分析】由条件利用利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,可得结论.【解答】解:直线(2+λ)x+(λ﹣1)y﹣2λ﹣1=0,即直线(2x﹣y﹣1)+λ(x+y﹣2)=0,它一定经过2x﹣y﹣1=0 和x+y﹣2=0 的交点.由,求得,可得直线(2+λ)x+(λ﹣1)y﹣2λ﹣1=0经过的定点坐标为(1,1),故答案为:(1,1).【点评】本题主要考查直线过定点问题,利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,属于基础题.15.若实数x,y满足,则的取值范围是(,3).【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,设z=,利用z的几何意义,利用数形结合即可得到结论.【解答】解:不等式组对应的平面区域如图:设z=,则z的几何意义是区域内的点与原点的斜率,则由图象可知,OA的斜率最大,OB的斜率最小,由,解得,即A(,),此时OA的斜率k=,由,解得,即B(,12),此时OB的斜率k=,则<z<3,即的取值范围是(,3),故答案为:(,3)【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z 的几何意义是解决本题的关键.16.方程+=1表示曲线C,给出以下命题:①曲线C不可能为圆;②若曲线C为双曲线,则t<1或t>4;③若1<t<4,则曲线C为椭圆;④若曲线C为焦点在x轴上的椭圆,则1<t<.其中真命题的序号是②④(写出所有正确命题的序号).【考点】圆锥曲线的共同特征.【专题】圆锥曲线的定义、性质与方程.【分析】①当4﹣t=t﹣1>0,即t=时,曲线C表示圆;②若曲线C为双曲线,则(4﹣t)(t﹣1)<0,解出即可判断出;③若4﹣t>0,t﹣1>0且4﹣t≠t﹣1,解出即可得出曲线C为椭圆;④若曲线C为焦点在x轴上的椭圆,则4﹣t>t﹣1>0.【解答】解:方程+=1表示曲线C,以下命题:①当4﹣t=t﹣1>0,即t=时,曲线C表示圆,因此不正确;②若曲线C为双曲线,则(4﹣t)(t﹣1)<0,解得t<1或t>4,正确;③若4﹣t>0,t﹣1>0且4﹣t≠t﹣1,解得1<t<4且,则曲线C为椭圆,因此不正确;④若曲线C为焦点在x轴上的椭圆,则4﹣t>t﹣1>0,解得1<t<,正确.综上可得真命题为:②④.故答案为:②④.【点评】本题考查了分类讨论的思想方法,考查了椭圆双曲线圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.三、解答题17.根据下列条件求直线方程(1)过点(2,1)且倾斜角为的直线方程;(2)过点(﹣3,2)且在两坐标轴截距相等的直线方程.【考点】直线的点斜式方程;直线的截距式方程.【专题】计算题.【分析】(1)由题意可得直线的斜率为,由点斜式可写方程,化为一般式即可;(2)注意分直线过原点和不过原点两类,由截距的概念分别求解,即得答案.【解答】解:(1)由题意可得直线的斜率为tan=,由点斜式方程可得:y﹣1=(x﹣2),化为一般式可得:(2)若直线过原点,则可设方程为y=kx,代入点(﹣3,2),可得k=,故直线为,化为一般式可得:2x+3y=0;若直线不过原点,可设方程为,代入点(﹣3,2),可得a=﹣1,故所求直线的方程为:x+y+1=0,故所求直线的方程为:2x+3y=0或x+y+1=0【点评】本题考查直线方程的求解,注意最终化为一般式,属基础题.18.已知方程x2+y2﹣2mx﹣4y+5m=0的曲线是圆C(1)求m的取值范围;(2)当m=﹣2时,求圆C截直线l:2x﹣y+1=0所得弦长.【考点】直线与圆相交的性质;二元二次方程表示圆的条件.【专题】函数的性质及应用.【分析】(1)化简方程为圆的标准形式,然后求解m的取值范围;(2)当m=﹣2时,求出圆的圆心与半径利用圆心到直线的距离,半径,半弦长满足的勾股定理,求圆C截直线l:2x﹣y+1=0所得弦长.【解答】解:(1)(x﹣m)2+(y﹣2)2=m2﹣5m+4,方程x2+y2﹣2mx﹣4y+5m=0的曲线是圆,∴m2﹣5m+4>0.m<1或m>4.(2)设m=﹣2时,圆心C(﹣2,2),半径,圆心到直线的距离为,圆C截直线l:2x﹣y+1=0所得弦长为:.【点评】本题考查圆的标准方程的应用,仔细与圆的位置关系,考查计算能力.19.实数x,y满足圆的标准方程(x+1)2+(y﹣2)2=4(Ⅰ)求的最小值;(Ⅱ)求定点(1,0)到圆上点的最大值.【考点】圆的标准方程.【专题】综合题;数形结合;数形结合法;直线与圆.【分析】(Ⅰ)表示的意义是圆上的点到E(4,0)这个点的连线的斜率,作出图形结合数形结合法能求出的最小值.(Ⅱ)求出圆的参数方程,利用两点间距离公式和三角函数性质能求出定点(1,0)到圆上点(﹣1+2cosθ,2+2sinθ)的距离的最大值.【解答】解:(Ⅰ)∵实数x,y满足圆的标准方程(x+1)2+(y﹣2)2=4,∴,∴,∴表示的意义是圆上的点到E(4,0)这个点的连线的斜率,那么看图可以知道圆上任何点和E的连线都落在BE和DE两条切线之间,那么其中斜率最小的就是DE这条切线了,设DE方程为y=k ( x﹣4),即kx﹣4k﹣y=0,则O到DE的距离即等于半径,即=2,解得k=0或k=﹣,即其最小值为﹣.∴的最小值为﹣.(Ⅱ)定点(1,0)到圆上点(﹣1+2cosθ,2+2sinθ)的距离:d===≤=2,∴定点(1,0)到圆上点的最大值为2+2.【点评】本题考查代数式的最小值的求法,考查两点间距离的最大值的求法,是中档题,解题时要认真审题,注意数形结合思想、圆的参数方程、两点间距离公式的合理运用.20.已知椭圆的焦点是F1(﹣1,0)和F2(1,0),又过点(1,).(1)求椭圆的离心率;(2)又设点P在这个椭圆上,且|PF1|﹣|PF2|=1,求∠F1PF2的余弦的大小.【考点】椭圆的简单性质.【专题】计算题;方程思想;转化思想;圆锥曲线的定义、性质与方程.【分析】(1)由已知结合椭圆定义求得2a,则椭圆离心率可求;(2)联立|PF1|+|PF2|=4,|PF1|﹣|PF2|=1,求出|PF1|、|PF2|的值,在三角形F1PF2中,利用余弦定理求得∠F1PF2的余弦的大小.【解答】解:(1)由题意知,c=1,2a==4,即a=2,∴;(2)由|PF1|+|PF2|=2a=4,|PF1|﹣|PF2|=1,联立可得:|PF1|=,|PF2|=,又|F1F2|=2c=2,∴cos∠F1PF2 ==.【点评】本题考查椭圆的简单性质,考查了椭圆的定义,涉及椭圆焦点三角形问题,常用椭圆定义和余弦定理解决,是中档题.21.已知抛物线y2=2px(p>0)焦点为F,抛物线上横坐标为的点到抛物线顶点的距离与其到准线的距离相等.(Ⅰ)求抛物线的方程;(Ⅱ)设过点P(6,0)的直线l与抛物线交于A,B两点,若以AB为直径的圆过点F,求直线l的方程.【考点】抛物线的简单性质.【专题】综合题;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)确定抛物线上横坐标为的点的坐标为(,),利用抛物线上横坐标为的点到抛物线顶点的距离与其到准线的距离相等,求出p,即可求抛物线的方程;(Ⅱ)设直线l:x=my+6,代入y2=4x得,y2﹣4my﹣24=0,利用以AB为直径的圆过点F,可得FA⊥FB,即=0,可得:(x1﹣1)(x2﹣1)+y1y2=0,即可求直线l的方程.【解答】解:(Ⅰ)抛物线上横坐标为的点的坐标为(,),到抛物线顶点的距离的平方为,∵抛物线上横坐标为的点到抛物线顶点的距离与其到准线的距离相等,∴=(+)2,∴p=2抛物线的方程为:y2=4x.…(Ⅱ)由题意可知,直线l不垂直于y轴可设直线l:x=my+6,代入y2=4x得,y2﹣4my﹣24=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣24,∵以AB为直径的圆过点F,∴FA⊥FB,即=0可得:(x1﹣1)(x2﹣1)+y1y2=0∴(1+m2)y1y2+5m(y1+y2)+25=0∴﹣24(1+m2)+20m2+25=0,解得:m=±,∴直线l:x=±y+6,即l:2x±y﹣12=0.…【点评】本题考查抛物线的方程,考查直线与抛物线的位置关系,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.22.如图,在平面直角坐标系xOy中,椭圆=1(a>b>0)的离心率为,过椭圆右焦点F作两条互相垂直的弦AB与CD.当直线AB斜率为0时,|AB|+|CD|=3.(Ⅰ)求椭圆的方程;(Ⅱ)求由A,B,C,D四点构成的四边形的面积的取值范围.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)利用椭圆的离心率,以及,|AB|+|CD|=3.求出a、b,即可求椭圆的方程;(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在,直接求出面积.②当两弦斜率均存在且不为0时,设A(x1,y1),B(x2,y2),且设直线AB的方程为y=k(x ﹣1),与椭圆方程联立,利用韦达定理以及弦长公式,求出AB,CD即可求解面积的表达式,通过基本不等式求出面积的最值.【解答】解:(Ⅰ)由题意知,,则,∴,所以c=1.所以椭圆的方程为.(Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在,由题意知;②当两弦斜率均存在且不为0时,设A(x1,y1),B(x2,y2),且设直线AB的方程为y=k(x﹣1),则直线CD的方程为.将直线AB的方程代入椭圆方程中,并整理得(1+2k2)x2﹣4k2x+2k2﹣2=0,所以.同理,.所以=,∵当且仅当k=±1时取等号∴综合①与②可知,【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的应用,弦长公式的求法以及基本不等式的应用,是综合性比较强的题目.。
黑龙江省鹤岗市高二上学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)以椭圆的顶点为顶点,离心率为2的双曲线方程()A .B .C . 或D . 以上都不对2. (2分) (2017高一下·钦州港期末) 已知圆O的方程为x2+y2=4,P是圆O上的一个动点,若线段OP的垂直平分线总是被平面区域|x|+|y|≥a覆盖,则实数a的取值范围是()A . 0≤a≤2B .C . 0≤a≤1D . a≤13. (2分)命题“若a,b都是奇数,则a+b是偶数”的逆否命题是()A . 若a,b都不是奇数,则a+b是偶数B . 若a+b是偶数,则a,b都是奇数C . 若a+b不是偶数,则a,b都不是奇数D . 若a+b不是偶数,则a,b不都是奇数4. (2分)已知点 F 是抛物线 y2=4x的焦点,M、N 是该抛物线上两点,|MF|+|NF|=6,则 MN中点的横坐标为()A .B . 2C .D . 35. (2分)两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为()A . x+y+3=0B . 2x-y-5=0C . 3x-y-9=0D . 4x-3y+7=06. (2分)已知命题P;,在上为增函数,命题Q;使,则下列结论成立的是()A .B .C .D .7. (2分) (2016高一上·广东期末) 已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A . 17B .C .D . 188. (2分)“函数在区间上存在零点”是“”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件9. (2分) (2017高一上·长宁期中) 若a、b、c∈R,则下列四个命题中,正确的是()A . 若a>b,则ac2>bc2B . 若a>b,c>d,则a﹣c>b﹣dC . 若a>b,则D . 若a>|b|,则a2>b210. (2分) (2016高一上·永兴期中) 空间三个平面能把空间分成的部分为()A . 6或4B . 7或8C . 5或6或7D . 4或6或7或811. (2分) (2016高二上·葫芦岛期中) 已知F1、F2是椭圆的两个焦点,满足 =0的点M总在椭圆内部,则椭圆离心率的取值范围是()A . (0,1)B . (0, ]C . (0,)D . [ ,1)12. (2分) (2019高二下·上海月考) 设复数,(是虚数单位),若复数满足,则的最小值是()A . 1B . 2C .D .二、填空题 (共4题;共6分)13. (3分)圆柱、圆锥、圆台的轴截面分别是________、________、________.14. (1分)设命题p:,命题q:x2﹣(2a+1)x+a(a+1)≤0,若p是q的充分不必要条件,则实数a的取值范围是________15. (1分)平面上若一个三角形的周长为L,其内切圆的半径为R,则该三角形的面积S= ,类比到空间,若一个四面体的表面积为S,其内切球的半径为R,则该四面体的体积V=________.16. (1分)已知动圆P过点A(﹣3,0),且与圆B:(x﹣3)2+y2=64相内切,则动圆P的圆心的轨迹方程为________.三、解答题 (共6题;共50分)17. (10分)已知点M(,)在椭圆G: + =1(a>b>0)上,且椭圆的离心率为.(1)求椭圆G的方程;(2)若斜率为1的直线l与椭圆G交于A、B两点,以AB为底做等腰三角形,顶点为P(﹣3,2),求△PAB 的面积.18. (10分) (2016高二上·右玉期中) 一个几何体的三视图如图所示(单位长度为:cm):(1)求该几何体的体积;(2)求该几何体的表面积.19. (10分)已知,(1)求命题的否定;命题的否定;(2)若为真命题,求实数的取值范围.20. (5分)已知双曲线的两个焦点为,,P是此双曲线上的一点,且,|PF1|·|PF2|=2,求该双曲线的方程.21. (5分) (2018高二下·辽宁期中) 给定命题:对任意实数都有成立;:关于的方程有实数根.如果为真命题,为假命题,求实数的取值范围.22. (10分) (2019高三上·洛阳期中) 已知椭圆C:(a>b>0)的离心率为,且经过点P(2,2).(1)求椭圆C的方程;(2)过点Q(1,-1)的直线与椭圆C相交于M,N两点(与点P不重合),试判断点P与以MN为直径的圆的位置关系,并说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共6分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、22-1、22-2、。
黑龙江省鹤岗市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017高一上·长春期中) 函数f(x)= 的定义域为()A . [﹣2,2]B . (﹣2,3)C . [﹣2,1)∪(1,2]D . (﹣2,1)∪(1,2)2. (2分)海上有两个小岛相距,从岛望岛和岛,成的视角,从岛望岛和岛,成的视角,则间的距离为()A .B .C .D .3. (2分)已知a>b>0,则下列不等关系式中正确的是()A . sina>sinbB . log2a<log2bC . a<bD . ()a<() b4. (2分) (2016高二下·南阳开学考) 等比数列{an}共有奇数项,所有奇数项和S奇=255,所有偶数项和S 偶=﹣126,末项是192,则首项a1=()A . 1B . 2C . 3D . 45. (2分)设△ABC的内角A,B,C的对边分别为a,b,c若,则△ABC的形状是()A . 等腰三角形B . 等边三角形C . 直角三角形D . 锐角三角形6. (2分)(2017·齐河模拟) 已知x、y满足则4x﹣y的最小值为()A . 4B . 6C . 12D . 167. (2分) (2017高三·银川月考) 在中,内角A,B,C所对的边分别是,若,则角A为()A .B .C .D .8. (2分)设集合M={a,a+1},N={x∈R|x2≤4},若M∪N=N,则实数a的取值范围为()A . [﹣1,2]B . [﹣2,1]C . [﹣2,2]D . (﹣∞,﹣2]∪[2,+∞)9. (2分)表示的平面区域是一个三角形,则a的范围是()A . a<5B . a≥8C . 2≤a<5D . 5<5或a≥810. (2分)如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,则tan∠BPD等于()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)在等差数列{an}中,a2=10,a4=18,则此等差数列的公差d=________12. (1分) (2016高一下·赣榆期中) 当0≤x≤2π时,则不等式:sinx﹣cosx≥0的解集是________.13. (1分) (2016高二上·扬州开学考) 若实数x,y满足且z=2x+y的最小值为3,则实数b 的值为________.14. (1分)当x>1时,关于函数f(x)=x+ ,则函数f(x)有最小值________.15. (1分)一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°,行驶2小时后,船到达C处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为________ km.三、解答题 (共6题;共55分)16. (10分) (2017高三上·惠州开学考) 设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB= .(1)求a,c的值;(2)求sin(A﹣B)的值.17. (10分)某冷饮店只出售一种饮品,该饮品每一杯的成本价为3元,售价为8元,每天售出的第20杯及之后的饮品半价出售.该店统计了近10天的饮品销量,如图所示:设x为每天饮品的销量,y为该店每天的利润.(1)求y关于x的表达式;(2)从日利润不少于96元的几天里任选2天,求选出的这2天日利润都是97元的概率.18. (10分) (2019高三上·长治月考) 已知数列满足: .(1)求证:为等差数列,并求出数列的通项公式;(2)设,数列的前项和为,若不等式成立,求正整数的最小值.19. (5分) (2016高二下·江门期中) 已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a= ,求△ABC的面积.20. (10分) (2017高二下·鞍山期中) 中山已知数列{an}的前n项和为Sn , a1=﹣,满足Sn+ +2=an (n≥2).(1)计算S1,S2,S3,S4;(2)由(1)猜想Sn的表达式.21. (10分) (2019高一上·都匀期中) 设, .(其中为常数)(1)若为奇函数,求的值;(2)若不等式恒成立,求实数的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共6题;共55分)16-1、16-2、17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、。
A 2017-2018学年高二上学期期中考试数学(理)科试卷1、考试时间:120分钟2、满分:150分3、考试范围:命题,圆锥曲线,空间几何一,选择题(本大题共12小题,每小题5分,共60分. 在每小题所给的四个答案中有且只有一个答案是正确的)1.命题:“0x R ∃∈,020x≤”的否定是( )A .0x R ∃∈,020x >B .不存在0x R ∈,020x> C .x R ∀∈,20x >D . x R ∀∈,20x ≤2.抛物线22x y =的焦点坐标是( ) A.)0,1(B. )0,21(C. )81,0(D. 41,0(3.x y 2=,则该双曲线的离心率为( )AB .2CD 4.如图,在平行六面体1111D C B A ABCD -中,点M 为AC 与BD 的交点, 若B A =11,,,111c A A b D A ==则下列向量中与M B 1相等的是( )A .+--2121B .++2121C .+-2121D .++-21215.平面内有两定点A 、B 及动点P ,设命题甲:“|PA|+|PB|是定值”, 命题乙:“点P 的轨迹是以A 、B 为焦点的椭圆”,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.“|x|<2”是“x 2-x-6<0”的 ( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件7.在平行六面体ABCD-A 1B 1C 1D 1中,底面是边长为1的正方形,若∠A 1AB=∠A 1AD =60º,且A 1A=3,则A 1C 的长为( )A B .8.空间四边形OABC 中,OA=6,AB=4,AC=3,BC=6,∠OAC =∠OAB =π3,则cos 〈OA →,BC →〉等于( ) A.21B.22C .121D .619.已知椭圆)20(14222<<=+b b y x 的左,右焦点分别为21,F F ,过1F 的直线交椭圆于B A ,两点,若22AF BF +的最大值为5,则b 的值是( ) A. 1 B.2 C.23D.310.已知命题:p 椭圆2241+=x y 上存在点M 到直线:20+-=l x y 的距离为1,命题:q 椭圆2222754+=x y 与双曲线22916144-=x y 有相同的焦点,则下列命题为真命题的是( )A . ()∧⌝p qB .()⌝∧p q C. ()()⌝∧⌝p q D .∧p q 11. 如图,过抛物线x y 42=焦点的直线依次交抛物线和圆1)1(22=+-y x 于A 、B 、C 、D 四点,则|AB |·|CD |=( )A .4B .2C .1 D.1212.已知A,B,P 是双曲线12222=-by a x 上的不同三点,且AB 连线经过原点,若直线PA ,PB 的斜率乘积32=∙PB PA K K ,则该双曲线的离心率为( ) A.315B.25C. 210D.2二、填空题(每小题5分,共25分)13. 若双曲线22116y x m-=的离心率e=2,则m= 。
黑龙江省鹤岗市高二上学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·益阳模拟) 已知命题“ ,”,则命题为()A .B .C .D .2. (2分)已知命题p:∀x∈(0,),x>sinx;命题q:∃x∈(0,),sinx+cosx= ,下列命题为真命题的是()A . p∧qB . p∧(¬q)C . (¬p)∧qD . (¬p)∧(¬q)3. (2分)(2019·枣庄模拟) 波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足 =2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A .B .C .D .4. (2分) (2018高二上·湘西月考) 四棱柱的底面为矩形,AB=1,AD=2,,,则的长为()A .B . 23C .D . 325. (2分)下列命题为真命题的是()A .B .C .D .6. (2分) (2017高二上·右玉期末) 椭圆 =1与双曲线 =1有相同的焦点,则实数a的值是()A .B . 1或﹣2C . 1或D . 17. (2分) (2017高二下·安徽期中) 设,都是非零向量,命题P:,命题Q:的夹角为钝角.则P是Q的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件8. (2分)(2016·襄阳模拟) 已知等差数列{an}的前n项和为Sn ,且S2=11,S5=50,则过点P(n,an)和Q(n+2,an+2)(n∈N*)的直线的一个方向向量的坐标可以是()A . (﹣1,﹣3)B . (1,﹣3)C . (1,1)D . (1,﹣1)9. (2分)已知分别是双曲线的两个焦点,A和B是以O(O为坐标原点)为圆心,为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A .B .C .D .10. (2分)已知点P是△ABC所在平面上一点,AB边的中点为D,若2=3+,则△ABC与△ABP 的面积比为()A . 3B . 2C . 1D .11. (2分) (2015高二下·乐安期中) 已知抛物线y2=﹣4 x的焦点到双曲线 =l(a>0,b>0)的一条渐近线的距离为,则该双曲线的离心率为()A .B .C .D .12. (2分)(2017·石家庄模拟) 已知双曲线(a>0,b>0)的左、右焦点分别为F1、F2 ,过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为()A .B .C . 2D .二、填空题 (共4题;共4分)13. (1分) (2018高二上·宁夏期末) 已知命题,命题,若是的必要不充分条件,则实数的取值范围是________ .14. (1分)直线l的一个方向向量=(1,2),则l与直线x﹣y+2=0的夹角为________ .(结果用反三角函数值表示)15. (1分) (2018高二下·河池月考) 在平面中,,,,若,且为平面的法向量,则 ________.16. (1分)(2017·枣庄模拟) 已知双曲线C的中心为坐标原点,它的焦点F(2,0)到它的一条渐近线的距离为,则C的离心率为________.三、解答题 (共6题;共55分)17. (10分) (2018高二上·浙江月考) (6’+9’)已知双曲线,为上的任意点。
2017-2018学年高二上学期期中数学试卷一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.103.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=04.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=16.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.2017-2018学年高二上学期期中数学试卷参考答案与试题解析一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α考点:空间中直线与平面之间的位置关系.专题:阅读型.分析:根据空间中直线与平面的位置关系可得答案.解答:解:根据空间中直线与平面的位置关系可得:b可能与平面α相交,也可能b与平面相交α,故选D.点评:解决此类问题的关键是熟练掌握空间中点、直线以及平面之间的位置关系.2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2, m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选 B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.3.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=0考点:圆的切线方程.专题:直线与圆.分析:首先讨论斜率不存在的情况,直线方程为x=﹣1满足条件.当斜率存在时,设直线方程为:y﹣5=k (x+1).利用圆心到直线的距离等于半径解得k的值,从而确定圆的切线方程.解答:解:①斜率不存在时,过点M(﹣1,5)的直线方程为x=﹣1.此时,圆心(1,2)到直线x=﹣1的距离d=2=r.∴x=﹣1是圆的切线方程.②斜率存在时,设直线斜率为k,则直线方程为:y﹣5=k(x+1).即kx﹣y+k+5=0.∵直线与圆相切,∴圆心到直线的距离.解得,.∴直线方程为5x+12y﹣55=0.∴过点M(﹣1,5)且与圆相切的直线方程为x=﹣1或5x+12y﹣55=0.故选:C.点评:本题考查直线与圆相切的性质,点到直线的距离公式等知识的运用.做题时容易忽略斜率不存在的情况.属于中档题.4.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用线面平行和线面垂直的性质和判定定理对四个选项逐一解答.A选项用垂直于同一条直线的两个平面平行判断即可;B选项用两个平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;C选项用线面垂直的性质定理判断即可;D选项由线面平行的性质定理判断即可.解答:解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.点评:本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1考点:轨迹方程.专题:直线与圆.分析:设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.解答:解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.点评:本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.6.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:使△ABC绕直线BC旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.解答:解:将△ABC绕直线BC旋转一周,得到一个底面半径为4,高为3的一个圆锥,故所形成的几何体的体积V=×π×42×3=16π,故选:D点评:本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键.7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:利用三视图的数据,直接求解三棱柱的表面积.解答:解:因为正三棱柱的三视图,其中正(主)视图是边长为2的正方形,棱柱的侧棱长为2,底面三角形的边长为2,所以表面积为:2×+2×3×2=12+2.故选C.点评:本题考查几何体的三视图的应用,几何体的表面积的求法,考查计算能力.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1考点:抛物线的应用.专题:函数的性质及应用.分析:本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.解答:解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A点评:本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为11cm.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:利用面积之比是相似比的平方,求出截取棱锥的高,然后求出截面与底面的距离.解答:解:设截取棱锥的高为:h,则,∴h=5,所以截面与底面的距离:16﹣5=11cm故答案为:11cm点评:本题是基础题,考查面积之比是选上比的平方,考查计算能力,空间想象能力.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为12π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.解答:解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球O的表面积为4π×3=12π.故答案为:12π.点评:本题考查球的表面积的求法,考查空间想象能力、计算能力.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.考点:平面与平面垂直的性质.专题:计算题;空间位置关系与距离.分析:由题意,两个矩形的对角线长分别为5,=2,利用余弦函数,即可求出cosα:cosβ.解答:解:由题意,两个矩形的对角线长分别为5,=2,∴cosα==,cosβ=,∴cosα:cosβ=,故答案为:.点评:本题考查平面与平面垂直的性质,考查学生的计算能力,比较基础.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=±.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解答:解:圆心C(2,2),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d==,解得a=±,故答案为:±.点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.考点:圆的标准方程;直线与圆的位置关系.专题:计算题;直线与圆.分析:(I)设圆E的方程为x2+y2+Dx+Ey+F=0,将A、B、C的坐标代入,建立关于D、E、F的方程组,解之即可得到△ABC的外接圆E的方程;(II)化圆E为标准方程,得圆心为E(1,2),半径r=1.设直线l方程为y=kx,由点到直线的距离公式和垂径定理建立关于k的方程,解之得到k=1或7,由此即可得到直线l的方程.解答:解:(I)设圆E的方程为x2+y2+Dx+Ey+F=0∵A(2,2)、B(1,3)、C(1,1)都在圆E上∴,解之得因此,圆E的方程为x2+y2﹣2x﹣4y+4=0;(II)将圆E化成标准方程,可得(x﹣1)2+(y﹣2)2=1∴圆心为E(1,2),半径r=1设直线l方程为y=kx,则圆心E到直线l的距离为d=∵直线l与圆E相交所得弦的长为,∴由垂径定理,得d2+()2=r2=1可得d2=,即=,解之得k=1或7∴直线l的方程是y=x或y=7x.点评:本题给出三角形ABC三个顶点,求它的外接圆E的方程,并求截圆所得弦长为的直线方程.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:计算题;证明题;空间位置关系与距离.分析:(I)根据三角形中位线定理,证出DE∥BC,再由线面平行判定定理即可证出DE∥面PBC;(II)连结PD,由等腰三角形“三线合一”,证出PD⊥AB,结合DE⊥AB证出AB⊥平面PDE,由此可得AB ⊥PE;(III)由面面垂直性质定理,证出PD⊥平面ABC,得PD是三棱锥P﹣BEC的高.结合题中数据算出PD=且S△BEC=,利用锥体体积公式求出三棱锥P﹣BEC的体积,即得三棱锥B﹣PEC的体积.解答:解:(I)∵△ABC中,D、E分别为AB、AC中点,∴DE∥BC∵DE⊄面PBC且BC⊂面PBC,∴DE∥面PBC;(II)连结PD∵PA=PB,D为AB中点,∴PD⊥AB∵DE∥BC,BC⊥AB,∴DE⊥AB,又∵PD、DE是平面PDE内的相交直线,∴AB⊥平面PDE∵PE⊂平面PDE,∴AB⊥PE;(III)∵PD⊥AB,平面PAB⊥平面ABC,平面PAB∩平面ABC=AB∴PD⊥平面ABC,可得PD是三棱锥P﹣BEC的高又∵PD=,S△BEC=S△ABC=∴三棱锥B﹣PEC的体积V=V P﹣BEC=S△BEC×PD=点评:本题在三棱锥中求证线面平行、线线垂直,并求锥体的体积.着重考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.考点:直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离.分析:(Ⅰ)先根据线面垂直的性质证明出BB1⊥A1C1.进而根据菱形的性质证明出A1C1⊥B1D1.最后根据线面垂直的判定定理证明出A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.先证明OC1∥AE和OC1=AE,推断出AOC1E为平行四边形,进而推断AO∥C1E,最后利用线面平行的判定定理证明出AO∥平面BC1D.(Ⅲ)先由E为BD中点,推断出BD⊥C1E,进而根据C1D=C1B,推断出ME⊥BD,进而根据OM⊥BD,推断出BD∥B1D1.直角三角形OC1E中利用射影定理求得OM.解答:解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.点评:本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生基础知识的综合运用.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是1.考点:二项式系数的性质.专题:计算题;二项式定理.分析:在展开式的通项公式,令x的指数为3,利用(ax+1)5的展开式中x3的系数是10,即可实数a的值.解答:解:(ax+1)5的展开式的通项公式为T r+1=,则∵(ax+1)5的展开式中x3的系数是10,∴=10,∴a=1.故答案为:1.点评:二项展开式的通项公式解决二项展开式的特定项问题的重要方法.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为4.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据侧面展开图求解得出,再利用直角三角形求解.解答:解:∵正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,∴侧面展开为下图连接AA得:RT△中,长度为4,∴△AEF的周长的最小值为4,故答案为:4,点评:本题考查了空间几何体中的最小距离问题,属于中档题.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是(0,].考点:棱锥的结构特征.专题:空间位置关系与距离.分析:运用图形得||=||,再根据向量求解.解答:解:0为BD中点,∵AB=BC=CD=DA=BD=1,∴|OA|=|OB|=,||=||==,θ∈(0°,180°]∴AC的取值范围是(0,]故答案为:(0,]点评:本题考查了向量的运用求解距离,属于中档题.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.考点:直线与平面垂直的判定.专题:空间位置关系与距离.分析:(I)由线面垂直得A1A⊥AB,再由AB⊥AC,能证明AB⊥面A1CC1.(II)由AB∥DE,在△ABC中,E是棱BC的中点,推导出D是线段AC的中点.(III)由已知条件推导出A1C⊥AC1,AB⊥A1C,从而得到A1C⊥面ABC1,由此能证明EF⊥AC1.解答:(I)证明:∵AA1⊥底面ABC,∴A1A⊥AB,(2分)∵AB⊥AC,A1A∩AC=A,∴AB⊥面A1CC1.(4分)(II)解:∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(7分)∵在△ABC中,E是棱BC的中点,∴D是线段AC的中点.(8分)(III)证明:∵三棱柱ABC﹣A1B1C1中,A1A=AC,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(9分)由(Ⅰ)得AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(11分)∴A1C⊥BC1.(12分)又∵E,F分别为棱BC,CC1的中点,∴EF∥BC1,(13分)∴EF⊥AC1.(14分)点评:本题考查直线与平面垂直的证明,考查点的位置的确定,考查异面直线垂直的证明,解题时要认真审题,注意空间思维能力的培养.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线与圆的位置关系.专题:综合题.分析:(Ⅰ)分两种情况:当直线l的斜率存在时,设出直线l的斜率为k,由P的坐标和设出的k写出直线l的方程,利用点到直线的距离公式表示出P到直线l的距离d,让d等于1列出关于k的方程,求出方程的解即可得到k的值,利用求出的k和P写出直线l的方程即可;当直线l的斜率不存在时,得到在线l的方程,经过验证符合题意;(Ⅱ)由利用两点间的距离公式求出圆心C到P的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d,发现|CP|与d相等,所以得到P为MN的中点,所以以MN为直径的圆的圆心坐标即为P的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(Ⅲ)把已知直线的方程代入到圆的方程中消去y得到关于x的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,利用反证法证明:假设符合条件的a存在,由直线l2垂直平分弦AB得到圆心必在直线l2上,根据P与C的坐标即可求出l2的斜率,然后根据两直线垂直时斜率的乘积为﹣1,即可求出直线ax﹣y+1=0的斜率,进而求出a的值,经过判断求出a的值不在求出的范围中,所以假设错误,故这样的a不存在.解答:解:(Ⅰ)设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2).又圆C的圆心为(3,﹣2),半径r=3,由,解得.所以直线方程为,即3x+4y﹣6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;(Ⅱ)由于,而弦心距,所以d=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(Ⅲ)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,而,所以.由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.点评:此题考查学生掌握直线与圆的位置关系,灵活运用点到直线的距离公式及两点间的距离公式化简求值,考查了分类讨论的数学思想,以及会利用反证法进行证明,是一道综合题.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(Ⅰ)由圆的方程找出圆心坐标,设出圆心关于直线l的对称点的坐标,由直线l的斜率,根据两直线垂直时斜率的乘积为﹣1求出直线C1C2的斜率,由圆心及对称点的坐标表示出斜率,等于求出的斜率列出一个关系式,然后利用中点坐标公式,求出两圆心的中点坐标,代入直线l的方程,得到另一个关系式,两关系式联立即可用m表示出a与b,把表示出的a与b代入圆C2的方程即可;(Ⅱ)由表示出的a与b消去m,得到a与b的关系式,进而得到圆C2的圆心在定直线上;分公切线的斜率不存在和存在两种情况考虑,当公切线斜率不存在时,容易得到公切线方程为x=0;当公切线斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,根据点到直线的距离公式表示出圆心(a,b)到直线y=kx+b的距离d,当d等于圆的半径2|m|,化简后根据多项式为0时各项的系数为0,即可求出k与b的值,从而确定出C2所表示的一系列圆的公切线方程,这样得到所有C2所表示的一系列圆的公切线方程.解答:解:(Ⅰ)∵圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,∴圆心为(2,3m),设它关于直线l:y=x+m﹣1的对称点为(a,b),则,解得a=2m+1,b=m+1,∴圆C2的圆心为(2m+1,m+1),∴圆C2的方程为:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2,∴C1关于l对称的圆C2的方程:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2.(Ⅱ)根据(Ⅰ)得圆C2的圆心为(2m+1,m+1),令,消去m得x﹣2y+1=0,它表示一条直线,故C2的圆心在一条定直线上,①当公切线的斜率不存在时,易求公切线的方程为x=0;②当公切线的斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,∴=2|m|,即:(1﹣4k)m2+2(2k﹣1)(k+b﹣1)m+(k+b﹣1)2=0∵直线y=kx+b与圆系中的所有圆都相切,所以上述方程对所有的m值都成立,∴所以有:,解得,∴C2所表示的一系列圆的公切线方程为:y=,∴故所求圆的公切线为x=0或y=.点评:此题考查了直线与圆的位置关系,以及关于点与直线对称的圆的方程.此题的综合性比较强,要求学生审清题意,综合运用方程与函数的关系,掌握直线与圆相切时圆心到直线的距离等于半径,在作(Ⅱ)时先用消去参数的方法求定直线的方程,然后采用分类讨论的数学思想分别求出C2所表示的一系列圆的公切线方程.。
鹤岗一中2017-2018学年度上学期期中高二数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把正确答案填在答题卡上)1. 双曲线221102x y -=的焦距为( )2.已知抛物线()220x py p =>的准线经过点()11--,,则抛物线的焦点坐标为( ) A .()0,1 B .()02, C .()10, D .()20,3.已知椭圆的一个焦点为F (1,0),离心率e =12,则椭圆的标准方程为 ( )A .2212x y +=B .2212y x += C .22143x y += D .22143y x += 4.某公司为确定明年投入某产品的广告支出,对近5年的广告支出m 与销售额t (单位:百万元)进行了初步统计,得到下列表格中的数据:经测算,年广告支出m 与年销售额t 满足线性回归方程 6.517.5t m =+ ,则p 的值为 A .45 B .50 C .55 D .605.已知圆04:22=-+y y x M ,圆1)1()1(:22=-+-y x N ,则圆M 与圆N 的公切线条数是( )A .1B .2C .3D .46.甲、乙两名同学八次数学测试成绩如茎叶图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为( )A .85,86B .85,85,C .86,85D .86,867.如图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为16,28,则输出的a=( ) A .0 B .2 C .4 D .148.焦点是()02±,,且与双曲线22133x y -=有相同的渐近线的双曲线的方程是( )A .2213y x -= B .2213x y -=C .222x y -=D .222y x -=9.已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0) B .1362022=+y x (x ≠0) C .120622=+y x (x ≠0) D .162022=+y x (x ≠0) 10.设抛物线24x y =的焦点为F ,经过点()1,5P 的直线l 与抛物线相交于A B ,两点,且点P 恰为线段AB 的中点,则AF BF +=( )A. 13B. 12C. 11D. 1011.椭圆1422=+y x 的两个焦点为21,F F ,过1F 作垂直于x 轴的直线于椭圆相交,一个交点为P ,2PF = A .27 B .4 C .3 D .23 12、已知过双曲线()2222:10,0x y C a b a b-=>>的中心的直线交双曲线于点,A B .在双曲线上任取与点,A B 不重合点P ,记直线,,PA PB AB 的斜率分别为12,,k k k ,若12k k k >恒成立,则离心率的取值范围是( )A. (B.(C.)+∞ D. )+∞二、填空题(本大题共4小题,每小题5分,共20分,把正确答案写在答题卡上) 13.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.14.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF = 15.已知点P(2,1),若抛物线24y x =的一条弦AB 恰好是以P 为中点,则弦AB 所在直线方程是____________.16.以下三个关于圆锥曲线的中:①A 、B 为两个定点,K 为非零常数,若|PA |-|PB |=K ,则动点P 的轨迹是双曲线。
②方程22-520x x +=的两根可分别作为椭圆和双曲线的离心率④已知抛物线y 2=2px,以过焦点的一条弦AB 为直径作圆,则此圆与准线相切其中真为(写出所有真的序号)三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤) 17. 已知两直线1:870l x y ++=和2:210l x y +-=. (1)求1l 与2l 交点坐标;(2)求过1l 与2l 交点且与直线10x y ++=平行的直线方程。
18.已知直线03:=--k y kx l 与圆M :092822=+--+y x y x .(1)直线过定点A ,求A 点坐标; (2)求证:直线l 与圆M 必相交;(3)当圆M 截直线l 所得弦长最小时,求k 的值.19.某工厂随机抽取部分工人调查其上班路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),若上班路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (1)求直方图中a 的值;(2)如果上班路上所需时间不少于1小时的工人可申请在工厂住宿,若招工2400人,请估计所招工人中有多少名工人可以申请住宿;(3)该工厂工人上班路上所需的平均时间大约是多少分钟。
20.P 为椭圆2212516x y +=上任意一点,12,F F 为左、右焦点,如图所示.(1)若1PF 的中点为M ,求证:1152MO PF =-(2)若∠01260F PF =,求|PF 1|·|PF 2|之值;(3)椭圆上是否存在点P ,使PF 1→·PF 2→=0,若存在,求出P 点的坐标,若不存在,试说明理由21.如图,已知抛物线x y 42=的焦点为F .过点)02(,P 的直线交抛物线于A ),(11y x ,B ),(22y x 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求21y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k 证明:21k k 为定值 22.如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.高二数学理答案一、选择题1-5 DACDB 6-10 BCDBB 11-12 AD 二、填空题13. 16 14. 2 15. 230x y --= 16. ②③④ 三、解答题17、(1)()1,1- ----------------------5分(2)0x y += -----------------------10分18、(1)直线l 恒过点A (3,0), ----------3分 (2)此点在圆内,所以直线l 与圆M 必相交; -----------6分 (3)当直线垂直圆心与点A 连线时,弦长最短 -------------9分 所以 1k =- --------12分19(1)由直方图可得:0.12520200.0065200.0032201a ⨯+⨯+⨯+⨯⨯=,解得:0.025a =. --------4分 (2)工人上班所需时间不少于1小时的频率为:0.0032200.12⨯⨯=, 因为24000.12288⨯=,所以所招2400名工人中有288名工人可以申请住宿. ---------8分 (3)该工厂工人上班路上所需的平均时间为:100.25300.5500.13700.06900.0633.6⨯+⨯+⨯+⨯+⨯=(分钟). --------12分20.(1)证明:在△F 1PF 2中,MO 为中位线,∴|MO |=|PF 2|2=2a -|PF 1|2=a -|PF 1|2=5-12|PF 1|. --------------4分(2)解:∵ |PF 1|+|PF 2|=10, ∴|PF 1|2+|PF 2|2=100-2|PF 1|·|PF 2|,-----8分---12分21.证明:(Ⅰ)依题意,设直线AB 的方程为()20x my m =+≠.将其代入x y 42=,消去x ,整理得2480y my --=.从而128y y =-. ------------------5分(Ⅱ)AF :11(1)1y y x x =--与24y x =联立,得2111(1)04y y x y y +--=由韦达定理得,1144M M y y y y =-⇒=-, -----------------8分 同理,24N y y =-112122124244M N M N y y k y y y y k y y y y ++===-=++(定值). -------------12分22、解:(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=; --------------4分 (Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l y x x ky k k=--⇒++=,所以圆心(0,到直线1:110l yk x k x y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦AB ==; ----------6分由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以228||44D P k x x DP k k +=-∴==++所以---------8分11||||22444313ABDS AB DP k k k ∆====++++23232==≤=+2522k k =⇒=⇒=±,当时等号成立,此时直线1:1l y x=--------------12分。