掉话的现象及解决方法
- 格式:doc
- 大小:35.50 KB
- 文档页数:5
LTE的掉话原因分析及处理思路LTE“掉话”是指UE异常退出RRC_CONNECTED状态导致的连接中断。
统计节点为“RrcConnctionReconfigurationComplete”消息正确达到网络侧开始,之后进行的各类业务,未正常释放的均计为“掉话”。
正常释放流程如下:一、外场常见掉话原因分析目前LTE常见掉话原因包括弱覆盖、越区覆盖、切换失败、邻区漏配、系统设备异常、干扰、拥塞等。
掉话原因1:弱覆盖现象:由于弱覆盖导致的掉话,通常有以下表现:1.掉话前服务小区的RSRP持续变差(低于弱覆盖标准,如小于-105dBm),同时服务小区的SINR也一起持续变差(小于0dB,甚至小于-3dB)。
2.掉话后可能会有一段时间(数秒至数分钟不等,取决于实际网络覆盖情况),UE无数据上报(类似于UE脱网)。
解决方案:要解决此类掉话,需要改善覆盖。
具体手段有:1.首先明确当前的弱覆盖区域由哪些扇区的信号覆盖。
2.根据网络拓扑结构和相关无线环境来确定最适合覆盖该区域的扇区,并加强它的覆盖。
如常用的天馈调整、站点建设等。
具体案例:对呼和浩特市大昭寺前街DT过程中占用到大昭寺华隆小区-FL_3小区,覆盖较差存在掉线风险。
通过调整PA:3→0,RS参考功率:13.4dB→15.2dB,覆盖改善,掉线风险大大降低。
掉话原因2:越区覆盖现象:在支持切换的移动通信网络中,由于无法精确控制无线信号的传播,因此或多或少都会存在越区覆盖的情况,导致“孤岛覆盖”无法与周边站点进行正常切换掉话,通常有以下表现:1.越区覆盖导致的“导频污染”。
在覆盖区内,没有稳定的强信号作为主服务小区。
服务小区信号的频繁变化,是导致掉话的一个主要原因。
2.越区覆盖对主服务小区的干扰(包括邻区漏配、越区信号的迅速变化等)。
在某些区域,主服务小区收到越区信号的干扰,最终导致掉话。
解决方案:1.越区覆盖的一般优化原则是:在区域中已有合理的稳定信号覆盖的情况下,尽可能的控制越区覆盖的信号。
GSM网掉话、话务均衡及通话干扰的原因及解决方法- -讨论了GSM数字移动通信无线系统网络优化问题;分析了目前网络中掉话、干扰、话务不均衡等一些常见问题产生的原因,给出了解决这些常见问题的网络优化方法及经验。
摘要讨论了GSM数字移动通信无线系统网络优化问题;分析了目前网络中掉话、干扰、话务不均衡等一些常见问题产生的原因,给出了解决这些常见问题的网络优化方法及经验。
关键词GSM网络掉话干扰话务均衡优化1 掉话——在移动通信中,掉话是指在分配了话音信道(TCH)后,由于某种原因,使呼叫丢失或中断,正常通话无法进行的现象。
掉话对系统接通率等指标虽没有重大影响,但却给用户造成许多不便,是目前用户投诉的热点。
掉话是用户衡量企业运营质量和水平的重要标志,企业必须予以重视。
1.1 产生掉话的原因——根据OMC-R话务分析、CQT呼叫质量拨打测试、无线场强测试以及结合基站实际运行状况,掉话产生的原因一般有以下几种:——(1)手机在移动过程中,进入无线覆盖盲区请求切换不成功产生掉话。
——(2)"远端孤岛效应"产生掉话。
由于天线较高(或其它原因)使小区覆盖范围较大,导致频率复用的距离缩小或有小区覆盖交叠,产生同频及邻频干扰,造成掉话。
——(3)FHU成FLT状态,导致掉话。
BTS中FHU单元是连接FU和CU的跳频单元,如果FHU成为FLT状态,将严重影响通话正常接续,CU、FU连接不畅或有误,产生掉话。
——(4)从COMBINER出去至天线的电压驻波比较大导致掉话。
由于从COMBINER出来经天馈线连接至天线的电压驻波比VSWR较大,导致BTS收发信性能下降,使该小区内的手机接收到的信号品质变差,最终产生掉话。
——(5)天线实际发射方向偏离数据定义方向,使得无线覆盖范围发生变化,出现信号特弱甚至盲点的地方,手机进入该小区时就会发生掉话。
——(6)越区切换不成功产生掉话。
由于越区切换参数如:上行电平切换门限(L-RXLEV-ULH)、上行质量切换门限(L-RXQUAL-ULH)、下行电平切换门限(LRXLEV-DLH)、下行质量切换门限(L-RXQUAL-DLH)、以及切换功率控制参数(U-RXLEV-DLP、URXLEV-ULP、L-RXLEV-ULP、L-R QUAL-ULP、U-RQUAL-DLP、U-RQUAL-ULP、L-RXLEV-DLP、L-ROUAL-DLP)、切换余量(H0-MA GIN)等定义不合理,致使越区切换失败,产生掉话。
析移动通信中的掉话问题由于移动通信网络的优化迅猛发展,使人们对网络服务质量提出了更高的要求,移动通信的重点也由网络工程建设进入网络的调整和优化阶段。
通过系统化的网络优化工程,可以充分利用现有的网络设备、资源和容量,最大限度地提高网络的服务质量,提高效益。
对于掉话问题更是势在必行需要解决,就这个问题自己简单的分析了几点原因,提出了几点方案。
一、产生切换掉话的原因所谓切换,就是指当移动台在通话过程中从一个基站覆盖区移动到另一个基站覆盖区,必须改变原有的话音信道而转接到一条新的空闲话音信道上去,以继续保持通话的过程。
切换是移动通信系统中一项非常重要的技术,切换失败会导致掉话,影响网络的运行质量。
(1)越区切换参数定义不合理:上行电平切换门限、切换余量以及切换功率控制参数等定义不合理,致使越区切换失败,产生掉话。
(2)信号强度滞后值设置不度当:信号强滞后值设置太小,小区基站没有足够的时间处理切换呼叫,造成许多呼叫在切换时丢失。
(3)忙时目标基站无切换信道:相邻小区都很繁忙,造成忙时呼叫重建失败导致掉致使手机用户在进行切换时无法占用相邻小区的空闲话音信道。
(4)信号强度太弱:当基站做分担话务量的切换时,有些切换请求会因切入小区的信号强度太弱而失败,有时即使切换成功,也会因信号强度太弱而掉话。
(5)网络存在漏覆盖区或盲区:当移动台进入网络的漏覆盖区或信号强度盲区时,信号变得太弱而发出切换请求,切换不成功引起掉话。
二、产生干扰掉话的原因无线电波传播的特性决定其在传播过程中易受外界多种因素的影响;由于网络内部原因,它还受到网络内部各种因素的影响,如同频、邻频干扰以及网络中设备本身的非线性、设备故障所引起的交调干扰。
(1)设备本身的非线性以及设备故障引起的交调干扰。
设备运行中缺乏定期的指标测试和调整,使交调干扰在一定范围存在。
(2)频率规划或频点选择不正确,在较近距离内存在同频、邻频现象。
目前市区的站点分布越来越密,而分配给网络的频率资源是有限的,因此在通话中产生严重的背景噪音甚至掉话。
1.出现小区级掉话时,首先查看该小区有硬件故障告警,2.检查切出成功率是否正常,如果切换成功率较低,检查邻区关系以及是否存在同频同码的情况。
1》邻小区关系中是否存在同频同扰码的现象,这种情况在路测中也可以发现,一般是在邻区表中出现两条相同频点的邻小区关系,这里需要注意的是业务同频同扰的现象,它无法在路测中发现,一般需要对信令进行分析,此时虽然两个小区主载频异频,但measurement report却上报了1G事件,针对这种情况需要通过修改频点和扰码解决(可以通过系统自带的全局参数合法性检查工具进行检查)2》邻小区关系中是否存在同频同码组的现象,这种情况在路测中也可以发现,一般情况是它是影响到终端的测量结果,此时测量结果不准确,造成终端上报系统后系统判断错误,针对这种情况则需要修改频点和扰码解决(可以通过系统自带的全局参数合法性检查工具进行检查)3》是否存在单边邻小区关系,如果存在,添加单边邻区,单边小区的检查可以使用NOP-T工具进行也可以通过对性能统计指标中的小区对切换统计指标来检查。
4》是否存在异频邻小区个数过多的现象(异频邻区数超过8个),如果存在,删除不必要的邻区,这种情况可以使用NOP-T工具进行检查,也可以使用办公软件进行检查。
5》是否存在切换开关设置的问题(有部分HOM开关可能被关掉或在外部小区定义中的切入开关设为禁止),如果存在,打开切换开关。
6》切换相关的事件定义是否准确,不区引用是否正确,如果存在,修改引用。
7》PS切换失败是否存在完整性算法问题,如果存在,将之间的完整性开关设成一致。
8》是否存在邻区漏配的情况9》目标小区拥塞造成的掉话,由于目标小区的资源不足,而本小区的覆盖又越来越差,此时造成掉话,常见的错误代码为no_resource_available或RRM_Celloverload_Release3、检查时隙转换点配置是否正确,是否存在交叉时隙干扰,如果存在,修改时隙转换点4、检查UP时隙贺上行业务时隙的干扰电平,是否存在上行干扰导致掉话,若存在,进行干扰排查5、根据性能指标统计,如果PS域和CS域的BLER都比较高则可能存在干扰,然后再结合载频时隙干扰统计指标来判断是否确实存在干扰,另外通过对信令的分析如存在干扰则一般信令流程正常,未有切换或其他事件,但RNC进行了IURELEASE,原因一般为无线链路的原因(比如无线链路错误等),有时也会发生CELLUPDATE原因为RLCunrecoverable erro如果存在则需要现场排查,现场测试时如果存在干扰则有以下几方面的显示:1》C/I较差:系统内同频的干扰较为严重,发生掉话时会存在终端发射功率较高的现象,同时覆盖也相对较好,表现在RSCP值上,一般都在-90dB以上,另外一表现象就是起呼比较困难,而起呼成功后也容易掉话2》终端发射功率较高,基本上满功率发射,一般都在-20dB以上3》系统外的干扰造成的掉话同样具有终端发射功率较高的现象,也一般都在-20dB以上4》系统外的干扰造成的掉话也可以通过误块率指标进行判断,此时无论是进行CS业务还是PS业务BLER都比较高,且保持时间较长5》系统外的干扰语音业务判断,此时进行通话会出现断字,吞字等现象,比较难以进行通话6.通过对性能指标的统计主要是RRC连接成功率的统计,这其中包括业务相关和非业务相关的统计,如果两种统计都差则可能存在覆盖问题,此时检查CT数据中RRC CONNECTION REQUEST中的PCCPCH的值,则存在弱覆盖现象,需进行功率参数,天线方位角、下倾角的调整7.如果上述都检查不出原因,可能是载波的隐性故障,此时可以尝试闭解载波时隙,或者强行闭载波、时隙观察掉话率的变化8.终端问题,一般是通过对大量的性能数据统计,发现掉话高的小区,然后依据小区信令数据分析信令,可以看出掉话常发生的用户,而后进行处理。
GSM网络优化中掉话、拥塞的原因及解决办法1.掉话在移动通信中,掉话是指在分配了话音信道(TCH)后,由于某种原因,使呼叫丢失或中断,正常通话无法进行的现象。
掉话不仅影响网络指标,而且会给用户造成许多不便,是用户投诉的热点。
1.1掉话产生的原因1、由干扰引起的掉话:干扰主要包括同频、邻频及交调干扰。
当手机在服务小区中收到很强的同频或邻频干扰信号时,会引起误码率恶化,使手机无法准确解调邻近小区的BSIC码或不能正确接收移动台测量报告。
基站在通过SDCCH为手机分配好应使用的话音信道后,由于没有临近小区BSIC码而无法判断该使用哪个小区的话音信道,从而产生掉话。
交调干扰主要来自于外部干扰,如CDMA站会对我基站上行频率产生干扰。
2、由于切换引起的掉话:(1) MS在通话中,手机列表中计算6个最好的相邻小区为切换做准备,但当网络覆盖不好时,会产生频繁切换,造成无主控小区,产生掉话。
(2)一些小区由于话务忙,会把话务推给相邻小区,但当相邻小区信号不好或无空闲信道时就会产生掉话。
(3)孤岛效应。
如果服务小区A由于地形的原因产生的场强覆盖小岛C,而在小岛C周围又为小区B的覆盖范围,如在A的相邻小区列表中未添加小区B,那么当用户在C 中建立呼叫后一走出小岛C,由于无处可切换将产生掉话。
3、参数设置不合理引起的掉话:影响掉话的参数主要有切换参数和相邻小区参数。
如:PMRG设置过高或相邻小区参数做错都会导致掉话。
4、基站硬件引起的掉话:BTS的硬件故障也会引起掉话,NOKIA设备中的7745(CHANNEL FAILURE RATE ABOVE DEFINED THRESHOLD)、7949 (DIFFERENCE IN RX LEVELS OF MAIN AND DIVERSITY ANTENNA / TRX)是特别要引起注意的,因为这些告警同时伴随着掉话。
5、Abis接口失败产生的掉话Abis接口的,包括BSC未收到来自BTS的测量报告,超过TA极限,切换过程的一些信令失败以及一些内部原因,此外还有Abis接口的误码率的影响。
GSM移动通信系统中无线掉话地原因及解决在GSM移动通信系统中,无线掉话是指通话中突然中断或声音质量非常差的现象。
这种问题可能由多种原因引起,包括信号覆盖不足、干扰、设备故障等。
为了解决这些问题,需要采取一些措施。
首先,信号覆盖不足是导致无线掉话的主要原因之一、GSM系统使用蜂窝结构和基站进行通信,当移动设备离基站太远时,信号强度会减弱,导致通信质量下降。
解决信号覆盖不足的方法有增加基站密度和安装分布式天线系统。
通过增加基站密度,可以提高区域内的信号覆盖范围。
而分布式天线系统将天线分布到较远的位置,可以将信号辐射到更远的地方,提高覆盖范围。
其次,干扰也是导致无线掉话的常见原因之一、干扰可以来自于其他电子设备、无线电频段的交叉干扰、天气等因素。
要解决干扰问题,可以采取以下措施:调整频率分配方案以减少交叉干扰;优化接收机的灵敏度和选择性,使其可以更好地过滤掉干扰信号;提高天线的方向性,以减少来自其他方向的干扰信号;加强地面设备的抗干扰能力,以减少外部干扰对系统的影响。
此外,设备故障也可能导致无线掉话问题。
移动设备或基站设备出现故障时,可能会导致掉话或通话质量下降。
要解决设备故障问题,需要进行设备的定期检查和维护,确保设备正常运行。
同时,及时更换或修理故障设备,以减少无线掉话问题的发生。
总之,无线掉话是GSM移动通信系统中常见的问题,可以通过增加信号覆盖范围、解决干扰问题和及时维修设备等方式来解决。
通过采取这些措施,可以提高通话质量,减少无线掉话问题的发生。
掉话类故障处理指导掉话分类定义在华为Probe侧对于掉话(ERAB Abnormal Release)的定义:UE没有收到Deactivate Eps Bearer Context Request消息,但收到RRC Release或RRC Connection Reconfiguration消息,则表示ERAB异常释放。
标口信令在eNodeB跟踪到的标准接口信令中,如果存在eNodeB发起的释放,即在S1接口上发往CN的S1AP_UE_CONTEXT_REL_REQ消息内携带的原因值不为“User-inactivity (20)”时,则判断为掉话。
掉话预检查方式异常掉话通常都是由eNB发起的释放,通知MME释放上下文,因此只要查看S1口发送的S1AP_UE_CONTEXT_REL_REQ消息即可,如下图所示。
S1AP_UE_CONTEXT_REL_REQ点击“标准接口消息类型”按消息类型进行排序,这样所有的S1AP_UE_CONTEXT_REL_REQ 都会排列在一起,如下图所示。
按消息类型排序依次点击下一条,查看中的原因值,找出最后的原因为非02 80 的原因值。
找到异常掉话消息根据对应的时间点,打开标准UU口的跟踪,找到对应时间点的RRC_CONN_REL消息,如下图所示。
找到对应的UU口消息掉话率指标话统公式在话统侧异常掉话指标的公式定义如下:Call Drop Rate = L.E-RAB.AbnormRel / (L.E-RAB.AbnormRel + L.E-RAB.NormRel)等同于:Call Drop Rate = L.E-RAB.AbnormRel.QCI.N / (L.E-RAB.AbnormRel.QCI.N +L.E-RAB.NormRel.QCI.N)其中:分子上表征异常释放的Counter为L.E-RAB.AbnormRel.QCI.N= L.E-RAB.AbnormRel.QCI.1+L.E-RAB.AbnormRel.QCI.2+L.E-RAB.AbnormRel.QCI.3+L.E-RAB.AbnormRel.QCI.4+ L.E-RAB.AbnormRel.QCI.5+ L.E-RAB.AbnormRel.QCI.6+ L.E-RAB.AbnormRel.QCI.7+ L.E-RAB.AbnormRel.QCI.8+ L.E-RAB.AbnormRel.QCI.9;而分母上是正常释放与异常释放的总和,正常释放的Counter为L.E-RAB.NormRel.QCI.N= L.E-RAB.NormRel.QCI.1+L.E-RAB.NormRel.QCI.2+L.E-RAB.NormRel.QCI.3+L.E-RAB.NormRel.QCI.4+ L.E-RAB.NormRel.QCI.5+ L.E-RAB.NormRel.QCI.6+ L.E-RAB.NormRel.QCI.7+ L.E-RAB.NormRel.QCI.8+ L.E-RAB.NormRel.QCI.9;常见掉话原因邻区错/漏配通常,网络建设初期优化过程掉话占大多数是由于邻区错/漏配导致的。
通常情况下掉话产生的原因,应当采用什么方法来解决掉话问题?掉话是指呼叫保持过程中的异常释放,包括语音与数据业务。
掉话率指标反映CDMA移动网的无线环境与系统质量情况。
掉话率= 掉话总次数/呼叫建立成功次数*100%产生掉话的原因主要有以下几点原因:1.前向覆盖问题。
如果前向链路不能被解调,手机关掉发射机,进而引起掉话。
前向Ec/Io、Rx数据在手机上及各种路测设备上都能得到。
1)如果Ec/Io差,接收电平也差,则覆盖差。
造成这种现象的原因可能是该地点距离基站较远,传播路径上有较大障碍,或与天馈系统的设计、安装有关,如:天线安装位置不当,天线增益不足,倾角设置不当,天线前方有阻挡物,馈线接头损耗过大,馈线进水损伤造成的驻波比偏高等问题。
在解决覆盖问题时要注意对这些问题的处理。
2)如果Ec/Io差,而接收电平好,则前向干扰严重。
前向干扰包括基站间的干扰和外界干扰,前向干扰数据可以通过如YBT250等干扰测试仪得到。
或者通过移动台掉话后的现象也能辅助判断干扰的原因:如果移动台掉话后很快上到一个新的PN上,则掉话有可能是由于CDMA系统内的干扰造成切换失败的掉话;如果移动台掉话后长时间进入搜索状态(如超过10秒),则掉话就很有可能是由于存在外界干扰导致。
3)前向差引起掉话的另一种情形可能是前向导频强度好,但前向业务信道的功率设置不合理造成。
如果此时在移动台上看,导频强度和移动台接收功率较好,而发生移动台的TX_GAIN_ADJ保持5秒(移动台的Fade Timer计时器)不变,然后移动台重新初始化又上到原服务导频上,就说明很可能是因前向业务信道功率不足而造成掉话。
解决的办法是检查并合理设置前向功率参数。
由于前向差造成的掉话,在BSC上反映出来的都只是手机关闭发射机后造成的“反向误帧多”。
此时往往需要结合其它手段来帮助判断到底是前向或反向差造成了掉话,例如路测。
在R003C03之后的版本中,从RFMT、CDR等工具中能够帮助我们更方便的判断掉话原因。
无线链路失败原理1) 下行无线链路失败在正常的业务保持阶段,如果检测到来自L1层的连续N313次“out of sync”指示,则认为下行失步。
UE 启动定时器T313。
如果在T313时间内,检测到连续N315次“in sync”则认为下行同步,则停止定时器T313。
否则将认为下行无线链路失败,UE 将进行小区搜索过程,在搜到小区后,UE 将在目标小区上进行cellupdate ,如果小区更新成功,则该次下行无线链路失败得到挽救。
3GPP 规范里约束的下行失步检测窗窗长为160ms ,且监测机制较为严格;而同步监测机制较为宽松,同步检测窗的大小为一个TTI 或者是160ms 。
需要指出的是监测窗的滑动步长是由各个终端厂家自行实现的,下面以某厂家终端为例:UE 侧采用滑窗方式,监测窗窗长为160ms ,滑动步长为10ms 。
由此,UE 收到第一个下行失步指示到UE 上发Cell Update 的时间为:160ms+(N313-1)*10ms+T313+小区搜索的时间(正常情况在2s左右),如下图所示当N313配置为20,N315设为4,T313设为5s 时,整个时间的长度大约7350ms 。
图1 上行无线链路、下行无线链路失步时间计算2) 上行无线链路失败3GPP 协议规定,在业务保持阶段,Node B 高层收到物理层上报的连续N_OUTSYNC_IND个失步指示后,将启动T_RLFAILURE ,在此期间如果收到连续N_SYNC_IND 个同步状态指示,Node B 将停止并复位T_RLFAILURE ,如果T_RLFAILURE 超时,物理层向高层汇报失步。
在实际的运行过程中,基站对于上行失步也是如此操作的,Node B 对于物理层两个连续同步指示间的时间间隔为160ms ,那么上行方向,Node B 如果收到连续“同步信息_连续保密仅供中国移动学员内部使用失步指示”个outofsync ,则认为上行失步,并启动“同步信息_无线链路失败定时器”,在该定时器期间,如果未收到连续“同步信息_连续同步指示”个insync ,则Node B 认为上行无线链路失败,向RNC 上发“Radio link failure indication ”,并且停发下行数据,RNC 启动“收到RL 失败等待定时器”,在该定时器超时前,如果未收到“Radio link restore ”则RNC 释放链路,并记为无线链路失败的掉话。
LTE的掉话原因分析及处理思路LTE“掉话”是指UE异常退出RRC_CONNECTED状态导致的连接中断。
统计节点为“RrcConnctionReconfigurationComplete”消息正确达到网络侧开始,之后进行的各类业务,未正常释放的均计为“掉话”。
正常释放流程如下:一、外场常见掉话原因分析目前LTE常见掉话原因包括弱覆盖、越区覆盖、切换失败、邻区漏配、系统设备异常、干扰、拥塞等。
掉话原因1:弱覆盖现象:由于弱覆盖导致的掉话,通常有以下表现:1.掉话前服务小区的RSRP持续变差(低于弱覆盖标准,如小于-105dBm),同时服务小区的SINR也一起持续变差(小于0dB,甚至小于-3dB)。
2.掉话后可能会有一段时间(数秒至数分钟不等,取决于实际网络覆盖情况),UE无数据上报(类似于UE脱网)。
解决方案:要解决此类掉话,需要改善覆盖。
具体手段有:1.首先明确当前的弱覆盖区域由哪些扇区的信号覆盖。
2.根据网络拓扑结构和相关无线环境来确定最适合覆盖该区域的扇区,并加强它的覆盖。
如常用的天馈调整、站点建设等。
具体案例:对呼和浩特市大昭寺前街DT过程中占用到大昭寺华隆小区-FL_3小区,覆盖较差存在掉线风险。
通过调整PA:3→0,RS参考功率:13.4dB→15.2dB,覆盖改善,掉线风险大大降低。
掉话原因2:越区覆盖现象:在支持切换的移动通信网络中,由于无法精确控制无线信号的传播,因此或多或少都会存在越区覆盖的情况,导致“孤岛覆盖”无法与周边站点进行正常切换掉话,通常有以下表现:1.越区覆盖导致的“导频污染”。
在覆盖区内,没有稳定的强信号作为主服务小区。
服务小区信号的频繁变化,是导致掉话的一个主要原因。
2.越区覆盖对主服务小区的干扰(包括邻区漏配、越区信号的迅速变化等)。
在某些区域,主服务小区收到越区信号的干扰,最终导致掉话。
解决方案:1.越区覆盖的一般优化原则是:在区域中已有合理的稳定信号覆盖的情况下,尽可能的控制越区覆盖的信号。
GSM无线系统掉话是用户在使用手机过程中经常遇到的问题,且无线系统掉话率还是考核网络运行情况的重要指标,所以如何降低无线系统掉话率,提高网络运行质量是当务之急,是用户衡量企业运营质量和水平的重要标志。
无线系统掉话分为SDCCH掉话和TCH掉话。
TCH掉话是指在分配了话音信道(TCH)后,由于某种原因,使呼叫丢失或中断,正常通话无法进行的现象。
SDCCH掉话是指在独立专用控制信道上进行切换等请求时,由于信号弱或小区忙造成请求失败。
产生掉话的原因:1、由于切换而导致的掉话手机在移动过程中,进入无线覆盖盲区请求切换不成功产生掉话。
①在基站做分担话务量的切换时,一些切换请求会因为切入小区的信号强度太弱而失败,即使切换成功也经常会因为信号强度太弱而掉话。
原因是在BSC中我们对手机用户的接收信号强度设有最低门限(RX_LEV_ACC_MIN=-105dBm),当低于此门限值时,手机无法建立呼叫。
②有一些小区由于相邻小区都很繁忙,造成忙时目标基站无切换信道,致使手机用户在进行切换时无法占用相邻小区的空闲话音信道,此时BSC将对此进行呼叫重建(Direct Retry),若主叫基站的信号此时不能满足最低工作门限或亦无空闲话音信道,则呼叫重建失败导致掉话。
当小区之间存在着漏覆盖或者盲区时也会导致切换失败而掉话。
③小岛效应。
如果服务小区A由于地形的原因产生的场强覆盖小岛C,而在小岛1C周围又为小区B的覆盖范围,如在A的邻近小区的拓扑结构表中未添加小区B,那么当用户在C中建立呼叫后一走出小岛C,由于无处可切换将产生掉话。
④越区切换不成功产生掉话。
上行电平切换门限(L-RXLEV-ULH)、上行质量切换门限(L-RXQUAL-ULH)、下行电平切换门限(LRXLEV-DLH)、下行质量切换门限(L-RXQUAL-DLH)、以及切换功率控制参数(U-RXLEV-DLP、URXLEV-ULP、L-RXLEV-ULP、L-RQUAL-ULP、U-RQUAL-DLP、U-RQUAL-ULP、L-RXLEV-DLP、L-ROUAL-DLP)、切换余量(H0-MAGIN)等定义不合理,致使越区切换失败,产生掉话。
2、由于干扰而导致的掉话干扰主要包括同频、邻频及交调干扰。
当手机在服务小区中收到很强的同频或邻频干扰信号时,会引起误码率恶化,使手机无法准确解调邻近小区的BSIC码或不能正确接收移动台测量报告。
基站在通过SDCCH为手机分配好应使用的话音信道后,由于没有临近小区BSIC码而无法判断该使用哪个小区的话音信道,从而产生掉话。
交调干扰主要是指数模共站的基站由于模拟基站发射机的影响而产生的干扰,这种干扰的直接后果是时隙分配不出去造成基站资源的浪费。
3、由于天馈线原因而导致的掉话“远端孤岛效应”产生掉话。
由于天线较高(或其它原因)使小区覆盖范围较大,导致频率复用的距离缩小或有小区覆盖交叠,产生同频及邻频干扰,造成掉话。
天线实际发射方向偏离数据定义方向,使得无线覆盖范围发生变化,出现信号特弱甚至盲点的地方,手机进入该小区时就会发生掉话。
①由于两副天线俯仰角不同而产生的掉话在基站安装过程中每个定向小区均有两副收发天线,当小区的DATABASE中参数CCCH_CONF=0时,小区的SDCCH和BCCH采用NO-COMBINED MODE,这样,该小区的BCCH和SDCCH就有可能分别从两副不同的天线发出。
当两副天线的俯仰角不同时,就会造成两副天线的覆盖范围不同,当用户在某一区中,能收到BCCH信号,但产生呼叫时却因无法占用SDCCH而掉话。
②由于天馈线方位角原因而产生的掉话在基站安装过程中每个定向小区均有两副天线,当两副天线的方位角不同时,在A小区中的用户可以收到控制信号SDCCH,但用户一旦被指定为由另一副天线发射出的TCH时就会造成掉话。
在C小区中的用户将无法收到信号。
③由于天馈线自身原因而产生的掉话天馈线损伤、进水、打折和接头处接触不良,均会降低发射功率和收信灵敏度,从而产生严重的掉话。
④由于两副天线之间的距离原因而产生的掉话两副天线之间应保持一定的水平距离以实现分集接收,否则将会降低收信灵敏度产生掉话。
两副天线之间的水平距离(经验值)应为垂直距离的十分之一,至少应大于3m。
4、Abis接口失败产生的掉话Abis接口的失败,包括BSC未收到来自BTS的测量报告,超过TA极限,切换过程的一些信令失败以及一些内部原因,此外还有Abis接口的误码率的影响。
5、A接口失败产生的掉话A接口失败出现的较少,主要是切换(BSC之间或MSC之间的切换)的失败,原因是切换局数据不全或目的基站不具备切入条件。
6、基站软硬件故障而产生的掉话系统的硬件故障或软件不完善,程序或数据差错等原因都会造成掉话。
7、允许的网络色码(NCC PERMITTED)参数设置不当导致掉话。
允许的网络色码参数定义了移动台需测量的小区的NCC码的集合,为手机切换提供可行的目标小区。
如果该数据定义错误将引起越区切换不成功和小区重选失败,产生掉话。
掉话的分析和解决方法:在实际的网络优化工作中,可通过CQT呼叫质量拨打测试、DRIVE TEST(电测)、无线场强测试等技术手段得到网络实际运行情况及无线覆盖情况,从MSC部分的ATOM及BSS 部分的0MC-R上得到系统运行指标如接通率、掉话率、切换成功率、每信道话务量等数据,根据这些数据对网络进行分析,找出掉话的原因,并根据实际情况进行处理。
1、切换的分析和解决切换的原因主要有以下几类:①上下行接收电平RX_LEVEL原因引起的切换;②下下行接收质量RX_QUAL原因引起的切换;③上下行干扰引起的切换;④功率预算(PBGT)引起的切换;⑤呼叫重建;⑥话务原因引起的切换。
如果掉话率高涉及到切换问题,可先用测试车进行较大范围的测试,因为切换是在小区及基站之间发生的,本小区的掉话有可能是因为其与相邻小区之间的切换设置不合理造成的。
对于一些与该小区有切换拓扑关系而拥塞率又较高的小区应作为测试的重点,并需要检查小区周围是否有盲区存在,如果是这种原因应及时修改相关频率并增加新基站或扩大原有基站的覆盖范围。
对于因切换设置不合理而造成的掉话可根据实测情况适当修改切换参数。
对那些由于话务量不均衡,造成忙时因目标基站无切换信道而产生的掉话,解决的办法是进行话务量的调整。
2、干扰的分析和解决①上行干扰上行干扰主要来源于同频干扰,也可能是外部干扰,同频干扰与同频小区的话务量有关,话务量高则干扰大,外部干扰主要是交调干扰。
对上行干扰可通过分析DRIVE_TEST中的相关报告,修改同频小区的同频频率,增加两个同频小区间的间距(实际统计表明信号强度随距离以近似4次幂指数的规律衰减)或利用频谱分析仪对交调干扰加以定位,通过分集接收和有效的功率控制也可减少干扰。
②下行干扰下行干扰主要是由于频率规划不当而造成部分基站的同频干扰和邻频干扰。
发现的方法是通过在OMC中取得切换测量报告来加以判断,下行干扰会引起频繁切换。
通过测量报告和现场实测如发现存在同频和邻频干扰,需对蜂窝系统的频率规划重新进行优化调整。
对无上述情况但有干扰的小区可用频谱分析仪寻找干扰源。
③使用不连续发射(DTX)和跳频技术DTX分为上行DTX和下行DTX,是采用话音激活检测(VAD)技术,在不传送话音信号时停止发射,限制无用信息的发送,减少了发射的有效时间,从而降低了系统的干扰电平,并能延长电池寿命。
跳频可有效地改善无线信号的传输质量,特别是慢速移动体的传输质量,这是由于跳频使得发射载频以突发脉冲序列为基础进行跳变,能明显地降低同频干扰和频率选择性衰落效应。
3、天馈线的分析和解决①对因天线方位角或信俯仰角不正确而形成的掉话,首先应到基站现场进行观测。
如不能发现问题可以通过对特写故障小区的手机拨打测试(CQT)或通过分析从OMC中得到的相关统计参数(RF_LOSS_RATE、SDCCH_CONGESTION_KEY、TCH_CONGESTION_KEY 等)来发现故障原因,并及时调整天线方位角和俯仰角以降低掉话率。
②对由于天馈线损坏或接头接触不良致使发射功率和收信灵敏度降低而产生的掉话,可采用天馈线测试仪对天馈线进行测量来判断故障原因及故障点,并及时更换故障天馈线和接头。
4、软硬件故障的分析和解决对因硬件原因而产生的掉话,可通过OMC_R察看到相关硬件的告警。
如果OMC_R中无硬件告警信息,则可能是信道盘的某个时隙或压缩编码器中的某个信道损坏。
这可以通过关闭掉小区内其它信道盘,对怀疑有问题的信道盘进行拨打测试或关闭掉压缩编码器中其它XCDR板,对怀疑有问题的XCDR板进行拨打测试来发现故障点。
一旦发现故障硬件后,应及时更换,如无备件,也应先闭掉故障板以免产生掉话现象影响网络运行质量。
对于由于软件原因而产生的掉话应及时通过对软件进行打补丁或版本升级来解决。
5、检查允许的网络色码(NCC PERMITTED)参数设置是否正确各小区是否已包含其中,根据实际情况进行更正修订。
总之,不管是因何种原因产生的掉话都应及时通过各种测试手段以及分析从OMC中取得的各种测试报告来发现故障现象的原因,并建议做定时定量的CQT和DRIVER_TEST测试,特别是对热点地区,以便能够尽早地发现问题,解决问题。
在一个小区内发生SDCCH拥塞是什么原因造成的?一般来说,无线网拥塞大致有两类:一类是话音信道的拥塞即TCH的拥塞,另一类是信令信道的拥塞即SDCCH的拥塞。
TCH拥塞会造成话音信道的难以占用,同时用户切换时也会因为切入小区的信道堵塞,在进行切换时无法占用相邻小区的空闲话音信道而失败;SDCCH拥塞会造成本业务区用户接收信号时断时续,一些切换请求也会因为目标小区无空闲SDCCH分配而无法进行位置登记。
拥塞产生的原因:1、由于TCH话务量过大导致的拥塞对于一些O/1站,由于只分配7个TCH,而每TCH承载的话务量有限,当忙时话务量很大,一般达到0.3erl/TCH以上时,导致瞬间无空闲的TCH分配而拥塞,同时4个SDCCH 也因用户试呼次数太多(一般达到400-500次)而拥塞。
对于市区站来说,一般是5/5/5配置,三个小区都拥塞的可能性较小,但如果三个小区话务分配不均衡,则可能某一个小区会拥塞。
2、地理位置原因一些乡镇基站位于交通要道,因本地话务量很小,一般都是O/1配置,但是来往车辆人次较为频繁,漫游用户较多,两相邻小区间多属于不同的位置区域(LAC),这时用户的切换请求、LOCATE UPDATE请求较为频繁,也会造成SDCCH的拥塞。
3、硬件的原因由于PA或TPU 工作不稳定导致部分TCH、MBCCH闭塞,天馈线损坏或接头接触不良致使发信和收信不正常,HPAG与PA25混用,ACOM/FICOM驻波比过高等等。