组合试题及答案11.11(工硕)l
- 格式:doc
- 大小:212.00 KB
- 文档页数:5
组合(一)课后作业详细解析1.以下四个命题,属于组合问题的是()A.从3个不同的小球中,取出2个排成一列B.老师在排座次时将甲、乙两位同学安排为同桌C.在电视节目中,主持人从100位幸运观众中选出2名幸运之星D.从13位司机中任选出两位开同一辆车往返甲、乙两地答案C 解析只有从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题.2.C 26+C 57的值为()解析C 26+C 57=C 26+C 27=6×52×1+7×62×1=15+21=36.3.A 3101C 2100+C 97100等于()解析A 3101C 2100+C 97100=A 3101C 2100+C 3100=A 3101C 3101=A 33=6.4.若集合M ={x |C x 7≤21},则组成集合M 的元素共有()A.1个B.3个C.6个D.7个答案B 解析∵C 07=1,C 17=7,C 27=7×62!=21,∴x =0,1,2.5.若C 2n -320=C n +220(n ∈N *),则n 等于()解析由题意知2n -3=n +2或2n -3+n +2=20,则n =5或7.6.组合数C r n (n >r ≥1,n 、r ∈Z )恒等于()A.r +1n +1C r -1n -1 B.(n +1)(r +1)C r -1n -1C.nr C r -1n -1 D.n rC r -1n -1答案D 解析A 中r +1n +1C r -1n -1=r +1n +1·(n -1)(n -2)…(n -r +1)(r -1)!=r (r +1)n (n +1)C r n ;B 中(n +1)(r +1)C r -1n -1=(n +1)(r +1)·(n -1)(n -2)…(n -r +1)(r -1)!=r (n +1)(r +1)nC r n ;C 中nr C r -1n -1=nr ·(n -1)(n -2)(n -3)…(n -r +1)(r -1)!=r 2C r n ;D 中n r C r -1n -1=n r ·(n -1)(n -2)…(n -r +1)(r -1)!=C r n .7.已知C 4n ,C 5n ,C 6n 成等差数列,则C 12n =________.答案91解析∵C 4n ,C 5n ,C 6n 成等差数列,∴2C 5n =C 4n +C 6n ,∴2×n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!整理得n 2-21n +98=0,解得n =14,n =7(舍去),则C 1214=C 214=91.。
专题11 多面手问题【方法技巧与总结】解含有约束条件的排列组合问题,即多面手问题,可元素的性质进行分类,接事件发生的连续过程分步,做到标准明确.分步层次清楚,不重不漏,分类标准一旦确定,要贯穿于解题过程的始终.【典型例题】例1.(2023·全国·高三专题练习)我校去年11月份,高二年级有10人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余5人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有()种不同的选法.A.675B.575C.512D.545例2.(2023·全国·高三专题练习)某国际旅行社现有11名对外翻译人员,其中有5人只会英语,4人只会法语,2人既会英语又会法语,现从这11人中选出4人当英语翻译,4人当法语翻译,则共有()种不同的选法A.225B.185C.145D.110例3.(2023·全国·高三专题练习)“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,在我国南方普遍存在端午节临近,某单位龙舟队欲参加今年端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有()A.26种B.30种C.37种D.42种例4.(2023·全国·高三专题练习)某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、右舷的3人共6人去参加比赛,则不同的选派方法共有()A.56种B.68种C.74种D.92种例5.(2023春·湖北十堰·高二统考期末)某龙舟队有8名队员,其中3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有()A.26种B.30种C.37种D.42种例6.(2023春·安徽六安·高二六安一中阶段练习)在11名工人中,有5人只当钳工, 4人只当车工,另外2人既会钳工又会车工,现从11人中选出4人当钳工, 4人当车工,则共有()种不同的选法.A.120B.125C.180D.185例7.(2023春·宁夏·高二宁夏长庆高级中学校考期中)某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为A.36种B.33种C.27种D.21种例8.(2023·全国·高三专题练习)有6 名学生,其中有3 名会唱歌,2 名会跳舞,1名既会唱歌又会跳舞,现从中选出2 名会唱歌的,1名会跳舞的,去参加文艺演出,求所有不同的选法种数为A.18B.15C.16D.25例9.(2023秋·河南南阳·高二校考阶段练习)我校去年11月份,高二年级有9人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余4人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有______种不同的选法例10.(2023春·上海长宁·高二上海市延安中学校考期末)“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,某单位龙舟队欲参加端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派3人划左桨、3人划右桨共6人去参加比赛,则不同的选派方法共有__________种.例11.(2023秋·辽宁朝阳·高三校考期中)现有7名志愿者,其中只会俄语的有3人,既会俄语又会英语的有4人.从中选出4人担任“一带一路”峰会开幕式翻译工作,2人担任英语翻译,2人担任俄语翻译,共有_______种不同的选法.例12.(2023·上海·高三专题练习)6名男生4名女生共10人,要从这10个人中选出3人共同去完成某项任务,要求这3人中至少要有1个女生,则不同的选法有_________种.例13.(2023秋·海南·高二海南华侨中学校考期末)6名学生,其中3人只会唱歌,2人只会跳舞,剩下1人既会唱歌又会跳舞,选出2人唱歌2人跳舞,共有______种不同的选法.(请用数学作答)例14.(2023春·四川广安·高二四川省武胜烈面中学校校考期中)6名工人,其中2人只会电工,3人只会木工,还有1人既会电工又会木工,选出电工2人木工2人,共有______种不同的选法.例15.(2023春·上海浦东新·高二上海市进才中学校考期中)在一次演唱会上共10名演员,其中8人能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有___________种选派方法(填数字).例16.(2023春·山西·高二临汾第一中学校校考期中)某公园现有甲、乙、丙三只小船,甲船可乘3人,乙船可乘2人,丙船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由成人陪同方可乘船,则分乘这些船只的方法有______种(用数字作答).例17.(2023·高二课时练习)有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其他5人既会划左舷又会划右舷,现要从这12名运动员中选出6人平均分在左、右舷参加划船比赛,有多少种不同的选法?例18.(2023·二年级单元测试)某公园有P,Q,R三只小艇,P艇最多可乘3人,Q艇最多可乘2人,R艇只能乘1人,现在3个大人和2个小孩打算同时分乘若干只小艇,规定有小孩的艇必须有大人,共有多少种不同的乘艇方法?例19.(2023春·上海闵行·高二闵行中学校考期中)在一次演唱会上共10 名演员(每名演员都会唱歌或跳舞),其中7人能唱歌,6人会跳舞.(1)问既能唱歌又会跳舞的有几人?(2)现要选出一个2人唱歌2人伴舞的节目,有多少种选派方法?例20.(2023·全国·高三专题练习)有11名翻译人员,其中5名是英语翻译人员,4名是日语翻译人员,另2人英、日语均精通.现从中选出8人组成两个翻译小组,其中4人翻译英语,另4人翻译日语,则有多少种不同的选派方式?例21.(2023春·山东烟台·高二烟台二中校考阶段练习)有11名外语翻译人员,其中5名英语翻译员,4名日语翻译员,另两名英,日语都精通,从中找出8人,使他们可以组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作,问这样的8人名单共可开出几张?。
【高三】2021年11月高三会考理综物理试题(有答案)高三会考理科综合试题(卷)2021.11温馨提示:1.本试卷分第i卷()和第ll卷(非)两部分。
成绩单前,学生务必将自己的姓名、准考证号核对在答题卡上。
2.回答第i卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.提问第ii卷时,将答案写下在答题卡上。
写下在本试卷上违宪。
4.考试结束后,考生只须将答题卡交回。
可能将使用的相对原子质量:h-1c-12n-14o-16cl-35.5na-23ba-137ca-40第ⅰ卷(选择题,共126分后)一、选择题:本题共13小题,每小题6分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.右图为以32p的磷酸盐培育大麦幼苗种子一段时间后,测量的根点相同区域32p的累积和运输的量,分析恰当的就是a.细胞吸收磷酸盐的过程主要是主动运输b.细胞内累积的32p主要在atp中c.细胞内积累的32p主要在细胞的生物膜中d.根点细胞的核糖体内不能所含32p2.关于生物及细胞对能量的输入、输出和利用说法正确的是a.生物细胞无法输出无机物水解释放出来的能量b.植物细胞输入的不一定是光能,但都主要是以atp为直接能源物质c.动物、真菌输出的能量都就是平衡的化学能,输入的就是热能d.植物细胞的能量输入都不消耗能量3.右图就是某生物的细胞分裂示意图,以下描述恰当的就是a.若图中的2和6表示两个y染色体,则此图一定表示次级精母细胞b.若图中①上某位点存有基因b,则②上适当位点的基因可能将就是bc.若该细胞是正常的分裂细胞,且1与4是同源染色体,则该个体可能是雄性也可能是雌性d.若该细胞就是正常的分裂细胞,且1与8不是同源染色体,则该个体细胞染色体数目最多时就是8条4.有关实验分析错误的是a.观测dna和rna在细胞中的原产的实验,必须用甲基绿和吡罗红混合染液对细胞染色b.观察植物细胞有丝分裂的实验,必须用龙胆紫或醋酸洋红等碱性燃料给活细胞染色c.观测植物细胞的叶绿体实验的通常可有活细胞d.观察植物细胞线粒体的实验用健那绿给活细胞染5.图示分株的四种葡萄枝条,其中极易长成的就是6.下列关于染色体组的说法,不正确的是a.单倍体不一定只不含一个染色体组b.四倍体水稻的单倍体体细胞中含2个染色体组c.一个染色体组的染色体大小、形态通常相同d.有性生殖细胞中形状大小不同的染色体就是一个染色体组7.人们日益注重环境问题,以下观点不恰当的就是a.装饰装修材料中的甲醛、芳香烃及放射性物质都会造成室内污染b.人类超量碳排放及氮氧化物和二氧化硫的排放量就是构成酸雨的主要原因c.煤燃烧时加入少量的石灰石可以减少废气中的二氧化硫排放d.我国自实行“限塑令”以来,“白色污染”在一定程度上获得有效率遏止8.下列叙述正确的是a.0.1ol/l氨水中,c(oh-)=c(nh4+)b.体积和物质的量浓度均相同的稀h2so4与naoh溶液充分混合后溶液的ph=7c.在0.1ol/lch3coona溶液中:c(oh-)=c(ch3cooh)+c(h+)d.0.1ol/l某二元弱酸强碱盐naha溶液中:c(na+)=2c(a2-)+c(ha-)+c(h2a)9.以下描述恰当的就是a.12g石墨烯(单层石墨)中含有六元环的个数为0.5nab.25℃时ph=13的naoh溶液中所含oh一的数目为0.1nac.1ol的羟基与1ol的氢氧根离子所含电子数均为9nad.1.0l1.5o1l-1的naalo2水溶液中所含的氧原子数为3na10.2021年3月15日,央视新闻频道播出了一期《“健美猪”真相》的特别节目,再次掀起瘦肉精热潮。
排列与组合练习题及解析在数学中,排列和组合是组合数学中的基本概念。
排列是指从给定的元素集合中选取一些元素并按照一定的顺序排列,而组合是指从给定的元素集合中选取一些元素并形成一个集合,不考虑顺序。
在此,我们提供一些排列与组合的练习题,并给出详细的解析过程。
1. 排列问题:(1) 从10个不同的球中,按照一定的顺序取出5个球,问共有多少种不同的结果?解析:排列问题要考虑元素的顺序,因此可以使用排列公式进行计算。
对于这个问题,可以使用10个不同的球中取出5个球的排列数公式:P(10, 5) = 10! / (10-5)! = 10 * 9 * 8 * 7 * 6 = 30,240因此,共有30,240种不同的结果。
(2) 一个由字母组成的字符串,字母顺序可以重复,共有8个字母。
从中选取4个字母组成字符串,问共有多少种不同的结果?解析:同样地,对于这个问题,我们可以使用排列公式进行计算。
从8个字母中选取4个字母的排列数为:P(8, 4) = 8! / (8-4)! = 8 * 7 * 6 * 5 = 1,680因此,共有1,680种不同的结果。
2. 组合问题:(1) 从10个不同的球中,按照任意顺序取出5个球,问共有多少种不同的结果?解析:与排列问题不同的是,组合问题不考虑元素的顺序。
那么我们可以使用组合公式进行计算。
对于这个问题,可以使用10个不同的球中取出5个球的组合数公式:C(10, 5) = 10! / (5! * (10-5)!) = 10 * 9 * 8 * 7 * 6 / (5 * 4 * 3 * 2 * 1) = 252因此,共有252种不同的结果。
(2) 一个由字母组成的字符串,字母顺序可以重复,共有8个字母。
从中选取4个字母组成字符串,问共有多少种不同的结果?解析:同样地,对于这个问题,我们可以使用组合公式进行计算。
从8个字母中选取4个字母的组合数为:C(8, 4) = 8! / (4! * (8-4)!) = 8 * 7 * 6 * 5 / (4 * 3 * 2 * 1) = 70因此,共有70种不同的结果。
圆梦教育中心排列组合专项训练1.题1 (方法对比,二星) 题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题 (法1)每所学校各分一个名额后,还有2个名额待分配,可将名额分给2所学校、1所学校,共两类:2133C C +(种) (法2——挡板法)相邻名额间共4个空隙,插入2个挡板,共:246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)同类题一 题面:有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 答案:69C 详解:因为10个名额没有差别,把它们排成一排。
相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。
同类题二题面:求方程X+Y+Z=10的正整数解的个数。
答案:36. 详解:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x 、y 、z之值, 故解的个数为C 92=36(个)。
2.题2 (插空法,三星)题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48同类题一题面:6男4女站成一排,任何2名女生都不相邻有多少种排法?答案:A 66·A 47种.详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47种不同排法.同类题二 题面:有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种答案:C.详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A 24=72种排法,故选C.3.题3 (插空法,三星)题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.1]没有坐人的7个位子先摆好,[2](法1——插空)每个男生占一个位子,插入7个位子所成的8个空当中,有:58A =6720种排法.(法2)[1]5个男生先排好:55A ;[2]每个男生加上相邻的一个座位,共去掉9个位置,当作5个排好的元素,共有6个空,剩下的3个元素往里插空,每个空可以插1个、2个、3个元素,共有:3216662C C C ++种,综上:有55A (3216662C C C ++)=6720种.同类题一题面:文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添两个小品节目,则不同的排列方法有多少种? 答案:30。
第六章计数原理6.2 排列与组合6.2.3 组合 6.2.4 组合数课后篇巩固提升必备知识基础练1.某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直线上,现要在该社区内建“村村通”工程,共需建公路的条数为( )A.4B.8C.28D.64“村村通”公路的修建是组合问题,故共需要建C 82=28(条)公路.2.某中学从4名男生和3名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( ) A.140种 B .120种 C .35种 D .34种1男3女有C 41C 33=4(种);若选2男2女有C 42C 32=18(种);若选3男1女有C 43C 31=12(种).所以共有4+18+12=34(种)不同的选法.故选D .3.已知C n+17−C n 7=C n 8,则n 等于( )A.14B.12C.13D.15,得C n+17=C n+18,故7+8=n+1,解得n=14.4.某校有6名志愿者,在放假的第一天去北京世园会的中国馆服务,任务是组织游客参加“祝福祖国征集留言”“欢乐世园共绘展板”“传递祝福发放彩绳”三项活动,其中1人负责“征集留言”,2人负责“共绘展板”,3人负责“发放彩绳”,则不同的分配方案共有( ) A.30种 B.60种 C.120种 D.180种6人中选1人负责“征集留言”,从剩下的人中选2人负责“共绘展板”,最后剩下的3人负责“发放彩绳”,则不同的分配方案共有C 61C 52C 33=60(种).故选B.5.安排A,B,C,D,E,F 共6名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人,考虑到义工与老人住址距离问题,义工A 不安排照顾老人甲,义工B 不安排照顾老人乙,则安排方法共有( ) A.30种 B.40种 C.42种 D.48种名义工照顾三位老人,每两位义工照顾一位老人共有C 62C 42=90(种)安排方法,其中A 照顾老人甲的情况有C 51C 42=30(种), B 照顾老人乙的情况有C 51C 42=30(种),A 照顾老人甲,同时B 照顾老人乙的情况有C 41C 31=12(种).故符合题意的安排方法有90-30-30+12=42(种). 故选C.6.若已知集合P={1,2,3,4,5,6},则集合P 的子集中含有3个元素的子集数为 .,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C 63=20(个)子集.7.不等式C n 2-n<5的解集为 .C n 2-n<5,得n (n -1)2-n<5,∴n 2-3n-10<0.解得-2<n<5.由题设条件知n ≥2,且n ∈N *,∴n=2,3,4.故原不等式的解集为{2,3,4}.8.若对任意的x ∈A ,则1x ∈A ,就称A 是“具有伙伴关系”的集合.集合M=-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为 .-1;1;12,2;13,3,共4组.所以集合M 的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组.又因为集合中的元素是无序的,所以所求集合的个数为C 41+C 42+C 43+C 44=15.9.如图,某区有7条南北向街道,5条东西向街道.(1)图中有多少个矩形?(2)从A 点走向B 点最短的走法有多少种?在7条南北向街道中任选2条,5条南北向街道中任选2条,这样4条线可组成一个矩形,故可组成矩形有C 72·C 52=210(个).(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A 到B 最短的走法包括10段,其中6段方向相同,另4段方向也相同,每种走法,即从10段中选出6段,这6段是走东西方向的(剩下4段即走南北方向的),共有C 106=C 104=210(种)走法.关键能力提升练10.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( ) A.72种B.84种C.120种D.168种3盏不相邻的灯,即将这3盏灯插入9盏亮着的灯形成的10个空中,所以关灯方案共有C103=120(种).11.(2021江苏江宁校级期中)计算组合数C129得到的值为()A.1 320B.66C.220D.240=220.,C129=C123=12×11×103×2×112.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.36所得空间直角坐标系中的点的坐标中不含1的有C21·A33=12(个);②所得空间直角坐标系中的点的坐标中含有1个1的有C21·A33+A33=18(个);③所得空间直角坐标系中的点的坐标中含有2个1的有C31=3(个).故共有符合条件的点的个数为12+18+3=33(个).故选A.13.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种,一周内两天连排的方法一共有6种:(1,2),(2,3),(3,4),(4,5),(5,6),(6,7).甲任选一种为C61,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A52种,按照分步乘法计数原理可知共有不同的安排方法C61·A52=120(种),故选C.14.(多选)有13名医生,其中女医生6人,现从中抽调5名医生组成医疗小组前往湖北疫区,若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为N,则下列等式能成为N的算式是()A.C135−C71C64B.C72C63+C73C62+C74C61+C75C.C135−C71C64−C65D.C72C113名医生,其中女医生6人,男医生7人.(方法一直接法)2男3女C72C63;3男2女C73C62;4男1女C74C61;5男C75,所以N=C72C63+C73C62+C74C61+C75.(方法二间接法)13名医生,任取5人,减去4、5名女医生的情况,即N=C135−C71C64−C65.故选BC.15.某同学有同样的画册2本、同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有种.,就所剩余的1本进行分类:第1类,剩余的是1本画册,此时满足题意的赠送方法有4种;第2类,剩余的是1本集邮册,此时满足题意的赠送方法有C 42=6(种).因此,满足题意的赠送方法共有4+6=10(种).16.C 88+C 98+C 108+C 118= .88+C 98+C 108+C 118=C 129=C 123=220.17.4个不同的小球放入编号为1,2,3,4的4个盒子中,则恰好有1个空盒子的放法有 种.,必有1个盒子内放入2个小球,从4个小球中取出2个小球,有C 42种取法,此时把它看作1个小球,与另2个小球共3个小球放入4个盒子中,有A 43种放法,所以满足题意的放法有C 42·A 43=144(种).18.(2021湖南模拟)甲、乙、丙、丁4名同学到A ,B ,C 三个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,且同学甲安排在A 小区,则共有 种不同的安排方案.:(1)A 小区安排2人(同学甲及另一名同学),则有C 31A 22=6(种)安排方案.(2)A 小区只安排同学甲1人,则有C 32A 22=6(种)安排方案,根据分类加法计数原理可得共有6+6=12(种)安排方案.19.(1)计算:C 85+C 10098C 77.(2)求证:C m+2n =C m n +2C m n -1+C m n -2.=C 83+C 1002×1=8×7×63×2×1+100×992×1=56+4 950=5 006.C n+1m =C n m +C n m -1可知,右边=(C m n +C m n -1)+(C m n -1+C m n -2)=C m+1n +C m+1n -1=C m+2n =左边.所以原等式成立.学科素养创新练20.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法? (1)甲得4本、乙得3本、丙得2本; (2)一人得4本、一人得3本、一人得2本; (3)甲、乙、丙各得3本.分三步完成:第1步,从9本不同的书中,任取4本分给甲,有C 94种方法; 第2步,从余下的5本书中,任取3本给乙,有C 53种方法; 第3步,把剩下的书给丙,有C 22种方法,所以甲得4本、乙得3本、丙得2本,共有C 94C 53C 22=1 260(种)不同的分法.(2)分两步完成:第1步,按4本、3本、2本分成三组有C 94C 53C 22种方法;第2步,将分成的三组书分给甲、乙、丙三个人,有A 33种方法,所以一人得4本、一人得3本、一人得2本,共有C 94C 53C 22A 33=7 560(种)不同的分法.(3)用与(1)相同的方法即可求解,可得甲、乙、丙各得3本,共有C 93C 63C 33=1 680(种)不同的分法.21.按照下列要求,分别求有多少种不同的方法? (1)5个不同的小球放入3个不同的盒子;(2)5个不同的小球放入3个不同的盒子,每个盒子至少一个小球; (3)5个相同的小球放入3个不同的盒子,每个盒子至少一个小球; (4)5个不同的小球放入3个不同的盒子,恰有1个空盒.个不同的小球放入3个不同的盒子,每个小球都有3种可能,利用分步乘法计数原理可得不同的方法有35=243(种).(2)5个不同的小球放入3个不同的盒子,每个盒子至少一个小球,先把5个小球分组,分法有2,2,1和3,1,1两种,再放入3个不同的盒子,故不同的方法共有C 52C 32C 11A 22+C 53A 33=150(种).(3)5个相同的小球放入3个不同的盒子,每个盒子至少一个小球,类似于在5个小球间的空隙中,放入2个隔板,把小球分为3组,故不同的方法共有C 42=6(种).(4)5个不同的小球放入3个不同的盒子,恰有一个空盒,先把5个小球分2组,分法有3,2,0和4,1,0两种,再放入3个不同的盒子,故不同的方法共有(C 53C 22+C 54)A 33=90(种).。
2011年12月31日组合数学考试题(2011年12月31日考后30分钟出炉)一、填空题1 不相邻组合的组合数是 .(2分)2 序列a 1,a 2,....,a n 其对应的指数型母函数G a (x)为: (3分)主要用来解决 问题。
(1分)3 1,3,5,7,9五个数字组成的n 位数,要求其中1,3,7出现的次数为偶数,其他5,9出现的次数不加限制。
设满足条件的n 位数的个数为a n ,则序列a n 对应的指数型母函数G a (x)为(不写收敛形式) 。
(3分)4 棋盘多项式R()=1,而R(见右图) = 。
(3分)5 群的四个基本属性包括封闭性、 。
(3分)二、简答题1 组合数学主要解决什么问题?主要采用哪两种方法?(4分)2 排列的生成算法主要有哪几种?(3分)3 普通型母函数的基本形式是什么?主要用来解决哪类问题?(5分)4 容斥原理的两个基本公式是什么?(5分)5 组合的生成算法要解决什么问题?(3分)6 写出广义容斥原理中α(m),β(m)代表什么?其基本公式是什么?(5分)三、综合题1 用路径数方法解释和证明:的组合意义。
(n n )+(n+1n )+(n+2n )+…+(n+r n )=(n+r+1n+1)(7分)2 用26个英文字母作不允许重复的全排列,要求排除dog,god,gum,depth,thing 字样的出现,应用容斥原理满足这些条件的排列数(不用计算阶乘结果)(8分)3 结合一一对应的概念,使用例证法证明Cayley 定理:n 个有标点的顶点的树的数目等于n n-2,使用例子如下图,7个顶点的带标号的树。
(10分)⑦ ⑥ | |②-③-①-⑤-④4 使用特征根法求解以下递推关系。
平面上有一点P ,它是n 个域D 1,D 2,…..,D n 的共同交界点,见下图,现取K 中颜色对这n 个域进行着色,要求相邻两个域着的颜色不同,试求着色的方案数。
(13分)5 写出使用广义容斥定理求解下列问题的过程。
组合数学试题 共 5 页 ,第 1 页电子科技大学研究生试卷(考试时间: 至 ,共 2 小时)课程名称 组合数学 教师 卢光辉、杨国武 学时 40 学分 2 教学方式 讲授 考核日期 2011 年 11 月 日 成绩 考核方式: (学生填写)一、(共10分) 1、(4分)名词解释:广义Ramsey 数R (H 1,H 2,…,H r )。
2、(6分)证明:R(C 4,C 4) ≥ 6,其中C 4为4个顶点的无向回路图。
解:1、使得K n 对于(H 1,H 2,…,H r )不能r -着色的最小正整数n 称为广义Ramsey 数R (H 1,H 2,…,H r )。
-----------------4分2、如下图所示的5个顶点的完全图就没有一个纯的C 4,实线和虚线分别代表不同的颜色。
-----------------4分故R(C 4,C 4)>=6。
-----------------2分二、(16分)未来5届欧盟主席职位只能有法国、德国、意大利、西班牙、葡萄牙五国的人当选,一个国家只能当选一次。
假如法国只能当选第一届、第二届或者第三届,德国不能当选第二届和第三届,意大利不能当选第一届,西班牙不能当选第五届,葡萄牙只能能当选第二届、第四届或者第五届。
问未来的5届欧盟主席职位有多少种不同的当选方案? 解:原问题可模型化为一个5元有禁位的排列. 其禁区棋盘C 如下图的阴影部分。
-----------------4分学 号 姓 名 学 院……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………组合数学试题 共 5 页 ,第 2 页1 5432EDCBA由图,可得C 的棋盘多项式为 R(C)=3223)21()21()1(])21)(1()1([x x x x x x x x x +++++++++ ----------------4分=543211242281x x x x x +++++-----------------4分 所以安排方案数为5! - 8·4! + 22·3! - 24·2! +11-1 -----------------4分 = 22即共有22种。
-----------------1分 三、(12分)意大利打算用36个月共偿还8000亿欧元国债,计划每个月至少偿还200亿欧元,证明:无论怎样安排偿还时间表,必然存在相继的若干月,在这些月内恰好偿还6000亿欧元国债。
假定每月偿还的国债都以整200亿欧元计。
证明:设1a 是第1个月偿还的国债,2a 是第1、2个月偿还的国债的和,j a 是第1,2,… ,第j 个月偿还的国债的和,j =1,2,…,36。
-----------------3分每月偿还的国债都以整200亿欧元计,用1代表200亿欧元,于是,序列361,...,a a 是严格递增序列(每个月至少偿还200亿欧元),而且,≥1a 1,4036=a 。
于是序列30,...,30361++a a 也是严格递增的序列,且703036=+a 。
-----------------2分因此72个数361,...,a a ,30,...,30361++a a 都在1和70之间,由鸽笼原理知,这72个数中必有两个是相等的。
-----------------2分由于361,...,a a 中任何两个数都不相等,故30,...,30361++a a 中任何两个数也是不相等学 院答……………题……………无……………效……………………组合数学试题 共 5 页 ,第 3 页的,因此,一定存在两个数,i j 使得i a =30+j a ,即i a -j a =30。
-----------------4分因此,在第1,2,,j j i ++⋅⋅⋅⋅⋅⋅这些月中,恰好偿还30×200=6000亿欧元国债。
-----------------1分四、(14 分)求方程⎩⎨⎧≤≤≤≤=++53,418242321321x x x x x 的非负整数解的个数。
解:设所求的非负整数解的个数为M ,则M 为)1)()(()(84108612963 ++++++++=x x x x x x x x x x f 的82x 的系数。
-----------------5分=)(x f )1)(1)(1(84429639 ++++++++x x x x x x x x=)1)(1(84131110987654329 ++++++++++++++x x x x x x x x x x x x x x -----------------4分=)621(7354329 +++++++x x x x x x -----------------3分82x 的系数为6,故该方程的非负整数解的个数为6。
-----------------2分五、(15分)解下列递归关系⎩⎨⎧==-=----5,1)3(2141021a a a a a nn n n 解 对应的齐关系的特征方程 x 2-4x -21=0 -----------------3分 有根 x 1 = 7,x 2 = -3。
-----------------1分 故齐关系的通解为*n a =c 17n +c 2(-3)n -----------------2分 设特解 n a = An (-3)n ,代入原关系:An (-3)n -4A (n -1) (-3)n -1-21A (n -2) (-3)n -2 = (-3)n-----------------3分⇒ A = 1233 ⇒ n a =12333n n )(- -----------------2分 ∴ a n =*n a +n a = c 17n +c 2(-3)n+12233nn )(- -----------------1分……无……………效……………………组合数学试题 共 5 页 ,第 4 页由初值得 ⎪⎩⎪⎨⎧=-=+56333712121-c c c c ⇒ ⎪⎪⎩⎪⎪⎨⎧-==207202721c c -----------------2分 ∴ a n = 20277n -207 (-3)n+ 12233nn )(- -----------------1分六、(12分)求3和5都出现偶数次,1和4都出现奇数次,并且9至少出现1次的r 位十进制数的个数。
解:设a n 是由0,1,……,9组成的满足“3和5都出现偶数次”且“1和4都出现奇数次” 并且“9至少出现1次”的长为n 的序列的个数, -----------------2分 则a n 的指数母函数为: f e (x )=1622)1()2()2()!22!11)(!3!2!1()!3!1()!4!21(25691052253223242x x x x x x xx x x x x e e e e e e e e e e e e x x x x x x x x x -++-=-⋅=++++++++++--++--=!)125262910(1610n x n nn n n n n -+⨯+⨯-∑-∞= -----------------4分 所以a n = )125262910(161-+⨯+⨯--n n n n n ,n ≥3 -----------------2分以0为首项的长为n 的序列有a n -1个,在上述序列中去掉以0为首项的长为n 的序列便可得到3和5都出现偶数次,1和4都出现奇数次,并且9至少出现2次n 位十进制数的个数: -----------------2分 a n -a n -1=)-----1111125861098109(161n n n n n +⨯+⨯-⨯-⨯ n ≥3 -----------------1分 当n <=2时,结果为0。
-----------------1分 七、(16 分)全国4个片区共36所大学申报国家重点实验室,其中,西部片区有6所大学,华北片区有14所大学,华东片区有11所大学,华南片区有5所大学。
假定同一片区的各所大学不加以区别,现在要从中选取10所大学入围。
(1)问理论上有多少种不同的选取方案?(2)现为了考虑不同片区的特殊情况,如果西部片区至少有3家入围,华北片区至少有1家入围,问理论上有多少种不同的选取方案?组合数学试题 共 5 页 ,第 5 页解 (1)等价于求集合S 0={6.A,14.B,11.C,5.D}的所有10-组合构成的集合。
-----------------2分 令集合S 为{,,,}A B C D ∞⋅∞⋅∞⋅∞⋅的所有10-组合构成的集合。
则有 |S|=F(4,10) = 286。
令 A 1表示S 中至少含有7个A 的元素构成的集合, A 2表示S 中至少含有6个D 的元素构成的集合, -----------------2分 于是20)3,4(||1==F A ,35)4,4(||2==F A ,0||21=⋂A A -----------------1分由容斥原理,所求的9-组合数为AA 21∑∑+-==||21A A A jii iS ----------------2分=286 – (20+35)=231 -----------------1分(2)设r a 为选取r 所大学入围的方案数,故12(,,,,)r a a a 的母函数为)...1()...1()...()()(521121454326543x x x x x x x x x x x x x x x x x f ++++⨯++++⨯++++++⨯+++=-----------------5分...73...104+++=x x -----------------2分 因此理论上有73种不同的选取方案。
-----------------1分八、(5分)设n a 表示一个凸n 边形被它的对角线划分成互不重叠的区域个数(没有三条对角线在该n 边形内交于一点)。
试建立n a 的递规关系(不需要求解)。
解:23 11-+⎪⎪⎭⎫ ⎝⎛-+=-n n a a n n ,n>3.其中: 13=a―――――――――――――――――过程3分,结果2分。
学 号 姓 名 学 院……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………。