考点1零点的求法及零点的个数
- 格式:doc
- 大小:225.50 KB
- 文档页数:11
考点 1零点的求法及零点的个数题型 1:求函数的零点。
[例1]求函数 y x32x2x 2的零点.[ 解题思路 ] 求函数yx 32x 2x 2的零点就是求方程 x 32x 2x 2 0的根[解析]令 x32x2x 2 0,∴ x2 ( x 2) ( x 2) 0∴ (x 2)( x 1)( x 1) 0 ,∴x1或x 1或 x 2即函数yx32x 2x2的零点为 -1 ,1,2。
[ 反思归纳 ]函数的零点不是点,而是函数函数y f ( x) 的图像与x轴交点的横坐标,即零点是一个实数。
题型 2:确定函数零点的个数。
[例2]求函数 f(x)=lnx+2x - 6 的零点个数 .[ 解题思路 ] 求函数 f(x)=lnx+ 2x -6 的零点个数就是求方程 lnx + 2x -6=0 的解的个数[ 解析 ] 方法一:易证 f(x)= lnx+ 2x -6 在定义域(0,)上连续单调递增,又有 f (1) f (4)0,所以函数 f(x)= lnx + 2x-6 只有一个零点。
方法二:求函数 f(x)=lnx +2x- 6 的零点个数即是求方程lnx +2x- 6=0 的解的个数y ln x即求y62x 的交点的个数。
画图可知只有一个。
[ 反思归纳 ]求函数y f ( x)的零点是高考的热点,有两种常用方法:①(代数法)求方程f ( x)0的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数y f ( x)的图像联系起来,并利用函数的性质找出零点。
题型 3:由函数的零点特征确定参数的取值范围[ 例3] (2007 ·广东 ) 已知 a 是实数 , 函数f x2ax22x 3a, 如果函数y f x在区间1,1上有零点,求 a 的取值范围。
[ 解题思路 ] 要求参数 a 的取值范围,就要从函数y f x 在区间1,1 上有零点寻找关于参数 a 的不等式(组),但由于涉及到 a 作为x2的系数,故要对 a 进行讨论[ 解析]若a 0, f ( x)2x 3 ,显然在1,1上没有零点 ,所以a 0.48a 3a8a 224a4, 解得a37令2 a37y f x1,12时,上;①当恰有一个零点在②当f1 f 1a1a50 ,即1 a 5 时,yf x在1,1 上也恰有一个零点。
第六节 利用导数解决函数的零点问题考点1 判断、证明或讨论函数零点的个数判断函数零点个数的3种方法 直接法令f (x )=0,则方程解的个数即为零点的个数 画图法转化为两个易画出图象的函数,看其交点的个数即可 定理法利用零点存在性定理判定,可结合最值、极值去解决(2019·全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点; (2)f (x )有且仅有2个零点.[证明] (1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2.当x ∈⎝ ⎛⎭⎪⎫-1,π2时,g ′(x )单调递减,而g ′(0)>0,g ′⎝ ⎛⎭⎪⎫π2<0,可得g ′(x )在⎝ ⎛⎭⎪⎫-1,π2有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫α,π2时,g ′(x )<0. 所以g (x )在(-1,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,故g (x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点,即f ′(x )在⎝ ⎛⎭⎪⎫-1,π2存在唯一极大值点. (2)f (x )的定义域为(-1,+∞).(ⅰ)当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0,故f (x )在(-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.(ⅱ)当x ∈⎝ ⎛⎦⎥⎤0,π2时,由(1)知,f ′(x )在(0,α)单调递增,在⎝ ⎛⎭⎪⎫α,π2单调递减,而f ′(0)=0,f ′⎝ ⎛⎭⎪⎫π2<0,所以存在β∈⎝ ⎛⎭⎪⎫α,π2,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫β,π2时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎝ ⎛⎭⎪⎫β,π2单调递减. 又f (0)=0,f ⎝ ⎛⎭⎪⎫π2=1-ln ⎝ ⎛⎭⎪⎫1+π2>0,所以当x ∈⎝ ⎛⎦⎥⎤0,π2时,f (x )>0.从而,f (x )在⎝ ⎛⎦⎥⎤0,π2没有零点. (ⅲ)当x ∈⎝ ⎛⎦⎥⎤π2,π时,f ′(x )<0,所以f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减.而f ⎝ ⎛⎭⎪⎫π2>0,f (π)<0,所以f (x )在⎝ ⎛⎦⎥⎤π2,π有唯一零点. (ⅳ)当x ∈(π,+∞)时,ln(x +1)>1,所以f (x )<0,从而f (x )在(π,+∞)没有零点.综上,f (x )有且仅有2个零点.根据参数确定函数零点的个数,解题的基本思想是“数形结合”,即通过研究函数的性质(单调性、极值、函数值的极限位置等),作出函数的大致图象,然后通过函数图象得出其与x 轴交点的个数,或者两个相关函数图象交点的个数,基本步骤是“先数后形”.设函数f (x )=ln x +m x ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3零点的个数.[解] (1)由题意知,当m =e 时,f (x )=ln x +e x (x >0),则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增,∴当x=e时,f(x)取得极小值f(e)=ln e+ee=2,∴f(x)的极小值为2.(2)由题意知g(x)=f′(x)-x3=1x-mx2-x3(x>0),令g(x)=0,得m=-13x3+x(x>0).设φ(x)=-13x3+x(x≥0),则φ′(x)=-x2+1=-(x-1)(x+1).当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=23,又∵φ(0)=0.结合y=φ(x)的图象(如图),可知,①当m>23时,函数g(x)无零点;②当m=23时,函数g(x)有且只有一个零点;③当0<m<23时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>23时,函数g(x)无零点;当m=23或m≤0时,函数g(x)有且只有一个零点;当0<m<23时,函数g(x)有两个零点.考点2 已知函数零点个数求参数解决此类问题常从以下两个方面考虑(1)根据区间上零点的个数情况,估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足条件.(2)先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解.设函数f (x )=-x 2+ax +ln x (a ∈R ).(1)当a =-1时,求函数f (x )的单调区间;(2)若函数f (x )在[13,3]上有两个零点,求实数a 的取值范围.[解] (1)函数f (x )的定义域为(0,+∞),当a =-1时,f ′(x )=-2x -1+1x =-2x 2-x +1x, 令f ′(x )=0,得x =12(负值舍去),当0<x <12时,f ′(x )>0;当x >12时,f ′(x )<0.∴f (x )的单调递增区间为(0,12),单调递减区间为(12,+∞).(2)令f (x )=-x 2+ax +ln x =0,得a =x -ln x x .令g (x )=x -ln x x ,其中x ∈[13,3],则g ′(x )=1-1-ln x x 2=x 2+ln x -1x 2,令g ′(x )=0,得x =1,当13≤x <1时,g ′(x )<0;当1<x ≤3时,g ′(x )>0,∴g (x )的单调递减区间为[13,1),单调递增区间为(1,3],∴g (x )min =g (1)=1,∴函数f (x )在[13,3]上有两个零点,g (13)=3ln 3+13,g (3)=3-ln 33,3ln 3+13>3-ln 33,∴实数a 的取值范围是(1,3-ln 33].与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.(2018·全国卷Ⅱ)已知函数f (x )=e x -ax 2.(1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .[解] (1)当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x . 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)只有一个零点等价于h (x )在(0,+∞)只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-4ae2是h(x)在(0,+∞)的最小值.①若h(2)>0,即a<e24,h(x)在(0,+∞)没有零点;②若h(2)=0,即a=e24,h(x)在(0,+∞)只有一个零点;③若h(2)<0,即a>e24,由于h(0)=1,所以h(x)在(0,2)有一个零点.由(1)知,当x>0时,e x>x2,所以h(4a)=1-16a3e4a=1-16a3(e2a)2>1-16a3(2a)4=1-1a>0,故h(x)在(2,4a)有一个零点.因此h(x)在(0,+∞)有两个零点.综上,f(x)在(0,+∞)只有一个零点时,a=e24.考点3函数零点性质研究本考点包括两个方向:一是与函数零点性质有关的问题(更多涉及构造函数法);二是可以转化为函数零点的函数问题(更多涉及整体转化、数形结合等方法技巧).能够利用等价转换构造函数法求解的问题常涉及参数的最值、曲线交点、零点的大小关系等.求解时一般先通过等价转换,将已知转化为函数零点问题,再构造函数,然后利用导数研究函数的单调性、极值、最值等,并结合分类讨论,通过确定函数的零点达到解决问题的目的.已知函数f(x)=12x2+(1-a)x-a ln x,a∈R.(1)若f(x)存在极值点为1,求a的值;(2)若f(x)存在两个不同的零点x1,x2,求证:x1+x2>2.[解](1)由已知得f′(x)=x+1-a-ax,因为f(x)存在极值点为1,所以f′(1)=0,即2-2a=0,a=1,经检验符合题意,所以a=1.(2)证明:f′(x)=x+1-a-ax=(x+1)(1-ax)(x>0),①当a≤0时,f′(x)>0恒成立,所以f(x)在(0,+∞)上为增函数,不符合题意;②当a>0时,由f′(x)=0得x=a,当x>a时,f′(x)>0,所以f(x)单调递增,当0<x<a时,f′(x)<0,所以f(x)单调递减,所以当x=a时,f(x)取得极小值f(a).又f(x)存在两个不同的零点x1,x2,所以f(a)<0,即12a2+(1-a)a-a ln a<0,整理得ln a>1-12a,作y=f(x)关于直线x=a的对称曲线g(x)=f(2a-x),令h(x)=g(x)-f(x)=f(2a-x)-f(x)=2a-2x-a ln 2a-x x,则h′(x)=-2+2a2(2a-x)x =-2+2a2-(x-a)2+a2≥0,所以h(x)在(0,2a)上单调递增,不妨设x1<a<x2,则h(x2)>h(a)=0,即g(x2)=f(2a-x2)>f(x2)=f(x1),又2a-x2∈(0,a),x1∈(0,a),且f(x)在(0,a)上为减函数,所以2a-x2<x1,即x1+x2>2a,又ln a>1-12a,易知a>1成立,故x1+x2>2.(1)研究函数零点问题,要通过数的计算(函数性质、特殊点的函数值等)和形的辅助,得出函数零点的可能情况;(2)函数可变零点(函数中含有参数)性质的研究,要抓住函数在不同零点处函数值均为零,建立不同零点之间的关系,把多元问题转化为一元问题,再使用一元函数的方法进行研究.已知函数f(x)=ln x-x.(1)判断函数f(x)的单调性;(2)若函数g(x)=f(x)+x+12x-m有两个零点x1,x2,且x1<x2,求证:x1+x2>1.[解](1)函数f(x)的定义域为(0,+∞),f′(x)=1x-1=1-xx.令f′(x)=1-xx>0,得0<x<1,令f′(x)=1-xx<0,得x>1.所以函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)证明:根据题意知g(x)=ln x+12x-m(x>0),因为x1,x2是函数g(x)=ln x+12x-m的两个零点,所以ln x1+12x1-m=0,ln x2+12x2-m=0,两式相减,可得ln x1x2=12x2-12x1,即ln x1x2=x1-x22x1x2,故x1x2=x1-x22lnx1x2,则x1=x1x2-12lnx1x2,x2=1-x2x12lnx1x2.令t=x1x2,其中0<t<1,则x1+x2=t-12ln t +1-1t2ln t=t-1t2ln t.构造函数h(t)=t-1t-2ln t(0<t<1),则h′(t)=(t-1)2t2.因为0<t<1,所以h′(t)>0恒成立,故h(t)<h(1),即t-1t -2ln t<0,可知t-1t2ln t>1,故x1+x2>1.课外素养提升④逻辑推理——构造法求f(x)与f′(x)共存问题在导数及其应用的客观题中,有一个热点考查点,即不给出具体的函数解析式,而是给出函数f(x)及其导数满足的条件,需要据此条件构造抽象函数,再根据条件得出构造的函数的单调性,应用单调性解决问题的题目,该类题目具有一定的难度.下面总结其基本类型及其处理方法.f′(x)g(x)±f(x)g′(x)型【例1】(1)定义在R上的函数f(x),满足f(1)=1,且对任意的x∈R都有f′(x)<12,则不等式f(lg x)>lg x+12的解集为________.(2)设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集为________.(1)(0,10)(2)(-∞,-3)∪(0,3)[(1)由题意构造函数g(x)=f(x)-12x,则g′(x)=f′(x)-12<0,所以g(x)在定义域内是减函数.因为f(1)=1,所以g(1)=f(1)-12=1 2,由f(lg x)>lg x+12,得f(lg x)-12lg x>12.即g(lg x)=f(lg x)-12lg x>12=g(1),所以lg x<1,解得0<x<10.所以原不等式的解集为(0,10).(2)借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y =f(x)g(x)在(-∞,0)上单调递增.又由题意知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3).][评析](1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0).xf′(x)±nf(x)(n为常数)型【例2】(1)设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)(2)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是()A.f(x)>0 B.f(x)<0C.f(x)>x D.f(x)<x(1)A(2)A[(1)令g(x)=f(x)x,则g′(x)=xf′(x)-f(x)x2.由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵f(x)是奇函数,∴当x∈(-∞,-1)时,f(x)>0;当x∈(-1,0)时,f(x)<0.综上,使f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).(2)令g(x)=x2f(x)-14x4,则g′(x)=2xf(x)+x2f′(x)-x3=x[2f(x)+xf′(x)-x2].当x>0时,g′(x)>0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x<0时,g′(x)<0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x=0时,由题意可得2f(0)>0,∴f(0)>0.综上可知,f(x)>0.][评析](1)对于xf′(x)+nf(x)>0型,构造F(x)=x n f(x),则F′(x)=x n-1[xf′(x)+nf(x)](注意对x n-1的符号进行讨论),特别地,当n=1时,xf′(x)+f(x)>0,构造F(x)=xf(x),则F′(x)=xf′(x)+f(x)>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )x n +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2>0.f ′(x )±λf (x )(λ为常数)型【例3】 (1)已知f (x )在R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0)B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0)C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0)D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e x f (x )-e x2>0的解集为________.(1)D (2)(2,+∞) [(1)构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e -2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D.(2)由f (x )+2f ′(x )>0,得2[12f (x )+f ′(x )]>0,可构造函数h (x )=e x 2f (x ),则h ′(x )=12e x 2[f (x )+2f ′(x )]>0,所以函数h (x )=e x 2f (x )在R 上单调递增,且h (2)=e f (2)=1.不等式ex f (x )-e x 2>0等价于e x 2f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e x f (x )-e x2>0的解集为(2,+∞).][评析](1)对于不等式f′(x)+f(x)>0(或<0),构造函数F(x)=e x f(x).(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x)e x.。
函数零点的题型总结例题及解析考点一函数零点存在性定理的应用【例1】已知函数f(x)=(12)x-13x,那么在下列区间中含有函数f(x)零点的是( )(A)(0,13) (B)(13,12)(C)(12,23) (D)(23,1)解析:f(0)=1>0,f(13)=(12)13-(13)13>0,F(12)=(12)12-(12)13<0,f(13)f(12)<0,所以函数f(x)在区间(13,12)内必有零点,选B.【跟踪训练1】已知函数f(x)=2x-log3x,在下列区间中包含f(x)零点的是( )(A)(0,1) (B)(1,2) (C)(2,3) (D)(3,4)解析:由题意,函数f(x)=2x-log3x为单调递减函数,且f(2)= 22-log32=1-log32>0,f(3)= 23-log33=-13<0,所以f(2)·f(3)<0,所以函数f(x)=2x-log3x在区间(2,3)上存在零点,故选C.【教师备用巩固训练1】设函数f(x)=ln (x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是( )(A)[0,1] (B)[-1,0](C)[0,2] (D)[-1,1]解析:f(1)=ln 2>0,当a=-1时,f(2)=ln 3-2<0,所以f(x)在(1,2)上至少有一个零点,舍去B,D;当a=2时,f(12)=ln 32-12<0,所以f(x)在(12,1)上至少有一个零点,舍去C.因此选A.考点二函数零点的个数考查角度1:由函数解析式确定零点个数【例2】 (1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为( )(A)5 (B)4 (C)3 (D)2(2)已知f(x)=2xx +x-2x,则y=f(x)的零点个数是( )(A)4 (B)3 (C)2 (D)1解析:(1)由题意可知x=0或cos(x2-2x-3)=0,又x∈[-1,4],所以x2-2x-3=(x-1)2-4∈[-4,5],当cos(x2-2x-3)=0时,x2-2x-3=kπ+π2,k ∈Z,在相应的范围内,k只有-1,0,1三个值可取,所以总共有4个零点,故选B.解析:(2)令2xx +x-2x=0,化简得2|x|=2-x2,画出y=2|x|,y=2-x2的图象,由图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.考查角度2:根据函数零点个数确定参数范围 【例3】 (1)已知函数f(x)= 24,1,ln 1,1,x x a x x x ⎧-+⎪⎨+≥⎪⎩<若方程f(x)=2有两个解,则实数a 的取值范围是( ) (A)(-∞,2) (B)(-∞,2] (C)(-∞,5) (D)(-∞,5] (2)已知函数f(x)= 3,2,1e ,20x xa x x a x x ⎧--≤-⎪⎪+⎨⎪--⎪⎩<<恰有3个零点,则实数a 的取值范围为( )(A)(-1e ,-13) (B)(-1e ,-21e) (C)[-23,-21e ) (D)[-23,-13)解析:(1)可知x ≥1时,f(x)=2必有一解,x=e,所以只需x<1时f(x)=2有一解即可,即x 2-4x+a=2有解,设g(x)=x 2-4x+a-2,由于该函数的对称轴为直线x=2,故只需g(1)=-3+a-2<0,即a<5,故实数a 的取值范围是(-∞,5).选C. 解析:(2)-1x x +-3a=-111x x +-+-3a=1x x +-1-3a,在(-∞,-2]上单调递减.若a≥0,则e x -a x在(-2,0)上递增,那么零点个数至多有一个,不符合题意,故a<0.故需f(x)当x ≤-2时,-1-3a>0,a<-13,且121-+-1-3a ≤0,a ≥-23,使得第一段有一个零点,故a ∈[-23,-13).对于第二段,e x -a x=e xx a x -,故需g(x)=xe x -a 在区间(-2,0)有两个零点,g ′(x)=(x+1)e x ,故g(x)在(-2,-1)上递减,在(-1,0)上递增,所以(2)0,(1)0,(0)0,g g g -⎧⎪-⎨⎪⎩><>解得-22e >a>-1e.综上所述,a ∈(-1e ,-13).故选A.【题组通关】1.若函数f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( C ) (A)(0,4) (B)(0,+∞)(C)(3,4) (D)(3,+∞)解析:如图,若f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a ∈(3,4),故选C.2.已知偶函数f(x)= 4log,04,(8),48,x x f x x ⎧≤⎪⎨-⎪⎩<<<且f(x-8)=f(x),则函数F(x)=f(x)-12x在区间[-2 018,2 018]的零点个数为( A )(A)2 020 (B)2 016 (C)1 010 (D)1 008解析:依题意,当4<x<8时,f(x)=f(8-x)对称轴为直线x=4,由f(x-8)=f(x)可知,函数f(x)的周期T=8. 令F(x)=0,可得f(x)=12x,求函数F(x)=f(x)-12x的零点个数,即求偶函数f(x)与函数y=12x图象交点个数,当0<x<8时,函数f(x)与函数y=12x图象有4个交点,2 018=252×8+2由f(2)=|log 42|=12>212=14知, 当0<x<2时函数f(x)与函数y=12x图象有2个交点.故函数F(x)的零点个数为(252×4+2)×2=2 020, 故选A.3.已知函数f(x)= 31,1,,1,x xx x ⎧≥⎪⎨⎪⎩<若关于x 的方程f(x)=k 有两个不同零点,则k 的取值范围是 . 解析:作出f(x)=31,1,,1x xx x ⎧≥⎪⎨⎪⎩<的函数图象如图所示.方程f(x)=k 有两个不同零点,即y=k 和f(x)= 31,1,1x x x x ⎧≥⎪⎨⎪⎩<的图象有两个交点,由图可得k 的取值范围是(0,1). 答案:(0,1)【教师备用 巩固训练2】 已知函数f(x)=32233,2,4(56),2,x x x x x x ⎧-+⎪⎨--+≥⎪⎩<则函数f(f(x))的零点个数为( ) (A)6 (B)7 (C)8 (D)9 解析:画出函数的图象,如图所示,令f(x)=t,因为f(f(x))=0则f(t)=0,由图象可知,f(t)=0有四个解,分别为t 1=2,t 2=3,-1<t 3<0,1<t 4<2, 由图象可知,当t 1=2时,f(x)=2有两个根,即函数f(f(x))有2个零点; 由图象可知,当t 2=3时,f(x)=3有一个根,即函数f(f(x))有1个零点;由图象可知,当-1<t 3<0时,f(x)=t 有三个根,即函数f(f(x))有3个零点;由图象可知,当1<t 4<2时,f(x)=t 有两个根,即函数f(f(x))有2个零点;综上所述,函数f(f(x))有8个零点. 考点三 函数零点的性质考查角度1:求零点的代数式的取值或取值范围 【例4】 (1)已知函数f(x)=122log ,022,0,x x x x x ⎧⎪⎨⎪++≤⎩>函数F(x)=f(x)-b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则43x x -2213232x x x x +的取值范围是( )(A)(2,+∞) (B)(174,25716] (C)[2,174) (D)[2,+∞) (2)已知函数f(x)是定义域为R 的偶函数,且满足f(12+x)=f(32-x),当x ∈[-1,0]时,f(x)=-x.若函数F(x)=f(x)+412x x +-,则在区间[-9,10]上的所有零点之和为 . 解析:(1)f(x)=122log ,0,22,0x x x x x ⎧⎪⎨⎪++≤⎩>=122log ,0,(11,0x x x x ⎧⎪⎨⎪++≤⎩>), 由二次函数的对称性可得x 1+x 2=-2,由12log x 3=-12log x 4可得x 3x 4=1,函数F(x)=f(x)-b 有四个不同的零点,等价于y=f(x)的图象与y=b 的图象有四个不同的交点,画出y=f(x)的图象与y=b 的图象,由图可得1<b ≤2,所以1<12log x 3≤2⇒x 3∈[14,12),所以43x x -2123()2x x x +=43x x +23x =231x+23x , 令t=23x ∈[116,14), 所以1t +t ∈(174,25716],故选B. 解析:(2)因为满足f(12+x)=f(32-x), 所以f(x)=f(2-x), 又因函数f(x)为偶函数,所以f(x)=f(-x)=f(2+x),即f(x)=f(2+x),所以T=2,令F(x)=0,f(x)=421x x +-,即求f(x)与y=421x x +-交点横坐标之和.y=421x x +-=12+9221x -, 作出图象如图所示.由图象可知有10个交点,并且关于(12,12)中心对称, 所以其和为102=5. 答案:(1)B (2)5考查角度2:隐性零点的性质 【例5】已知函数f(x)= ln(1),0,11,0,2x x x x +⎧⎪⎨+≤⎪⎩>若m<n,且f(m)=f(n),则n-m 的取值范围为( )(A)[3-2ln 2,2) (B)[3-2ln 2,2] (C)[e-1,2) (D)[e-1,2]解析:作出函数f(x)的图象,如图所示,若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e-1, 则满足0<n ≤e-1, -2<m ≤0,则ln(n+1)=12m+1,即m=2ln(n+1)-2,则n-m=n+2-2ln(n+1), 设h(n)=n+2-2ln(n+1),0<n ≤e-1,则h ′(n)=1-21n +=11n n -+, 当h ′(n)>0,解得1<n ≤e-1,当h ′(n)<0,解得0<n<1,当n=1时,函数h(n)取得最小值h(1)=1+2-2ln(1+1)=3-2ln 2,当n=0时,h(0)=2-2ln 1=2;当n=e-1时,h(e-1)=e-1+2-2ln(e-1+1)=e-1<2,所以3-2ln 2≤h(n)<2,即n-m的取值范围是[3-2ln 2,2),故选A.【题组通关】1.已知a>1,方程12e x+x-a=0与ln 2x+x-a=0的根分别为x1,x2,则21x+22x+2x1x2的取值范围为( A ) (A)(1,+∞) (B)(0,+∞)(C)(12,+∞) (D)(12,1)解析:方程12e x+x-a=0的根,即y=12e x与y=a-x图象交点的横坐标,方程ln 2x+x-a=0的根,即y=ln 2x与y=a-x图象交点的横坐标, 而y=12e x与y=ln 2x的图象关于直线y=x对称,如图所示.所以x1+x2=a,所以21x +22x +2x 1x 2=(x 1+x 2)2=a 2,又a>1,所以21x +22x +2x 1x 2>1,故选A2.已知函数f(x)= 42log ,04,1025,4,x x x x x ⎧≤⎪⎨-+⎪⎩<>若a,b,c,d 是互不相同的正数,且f(a)=f(b)=f(c)=f(d),则abcd 的取值范围是( A ) (A)(24,25) (B)(18,24) (C)(21,24) (D)(18,25)解析:由题意可知,ab=1,c+d=10,所以abcd=cd=c(10-c),4<c<5,所以取值范围是(24,25),故选A.考点四 函数零点的应用【例6】 (1)已知α,β分别满足α·e α=e 2,β(ln β-2)=e 4,则αβ的值为( )(A)e (B)e 2 (C)e 3 (D)e 4 (2)已知f(x)=9x-t ·3x,g(x)=2121x x -+,若存在实数a,b 同时满足g(a)+g(b)=0和f(a)+f(b)=0,则实数t 的取值范围是 . 解析:(1)因为α·e α=e 2,所以e α=2e α, 因为β(ln β-2)=e 4,所以ln β-2=4e β,所以ln β-ln e 2=4e β,所以ln 2e β=4e β=22e e β. 所以α,2e β分别是方程ex=2e x ,ln x=2e x的根,因为点(α,2e α)与点(2e β,4e β)关于直线y=x 对称, 所以α=4e β,所以αβ=e 4.故选D.解析:(2)因为g(-x)=2121x x ---+=1212xx-+=-2121x x -+=-g(x),所以函数g(x)为奇函数, 又g(a)+g(b)=0,所以a=-b. 所以f(a)+f(b)=f(a)+f(-a)=0有解, 即9a -t ·3a +9-a -t ·3-a =0有解, 即t=9933a a aa--++有解.令m=3a+3-a(m ≥2),则9933a aa a--++=22m m-=m-2m ,因为ϕ(m)=m-2m 在[2,+∞)上单调递增,所以ϕ(m)≥ϕ(2)=1.所以t ≥1.故实数t 的取值范围是[1,+∞). 答案:(1)D 答案:(2)[1,+∞)【跟踪训练2】函数f(x)的定义域为D,若满足:①f(x)在D 内是单调函数;②存在[a,b]⊆D 使得f(x)在[a,b]上的值域为[2a ,2b ],则称函数f(x)为“成功函数”.若函数f(x)=log m (m x +2t)(其中m>0,且m ≠1)是“成功函数”,则实数t 的取值范围为( ) (A)(0,+∞) (B)(-∞,18] (C)[18,14) (D)(0,18] 解析:无论m>1还是0<m<1,f(x)=log m (m x +2t)都是R 上的单调增函数,故应有(),2(),2a f a b f b ⎧=⎪⎪⎨⎪=⎪⎩则问题可转化为求f(x)=2x ,即f(x)=log m (m x +2t)=2x,即m x+2t=12x m在R上有两个不相等的实数根的问题,令λ=12x m (λ>0),则m x+2t=12x m可化为2t=λ-λ2=-(λ-12)2+14,结合图形可得t∈(0,18].故选D.。
零点个数怎么求①解方程:通过解方程 f(x)=0 得到零点;②数形结合:这是经常用到的分析方法,特别是选填题中得到广泛应用;③零点存在定理:用零点存在定理来确定某区间是否有零点,这是解答题中的重要方法;④求零点个数:求零点个数时,就要判断每个单调区间,同时还要判断个单调区间的零点存在性.而具体解答题的过程中,我们也会遇到函数较复杂,先将复杂问题转化为简单问题,再选择合适的方法来求零点.我们来看一个具体的例子.【例1】(2018全国2卷文数21-2)已知函数f(x)=\frac{1}{3}x^3-a(x^2+x+1),证明: f(x) 只有一个零点.【分析】 f(x) 是一个含参的三次函数,貌似是一个三次函数求零点个数问题,但是带着参数问题就变复杂了,所以这个时候可以转化一下,分离参数为求: a=\frac{x^3}{3(x^2+x+1)} 的解个数问题.进一步转化为函数g(x)=\frac{x^3}{3(x^2+x+1)}-a的零点个数问题.【解析】因为 x^2+x+1>0 恒成立.所以 f(x) 零点个数等价于函数函数g(x)=\frac{x^3}{3(x^2+x+1)}-a的零点个数问题.先判断 g(x) 单调性,用导数法:g'(x)=\frac{3x^2(x^2+x+1)-x^3(2x+1)}{3(x^2+x+1)^2}=\frac{x^2(x^2+2x+3)}{3(x^2+x+ 1)^2}\geq0 ,当且仅当 x=0 时 g'(x)=0 ,g(x) 单调递增.所以 g(x) 至多有一个零点,从而 f(x)至多有一个零点.又因为 f(3a+1)=\frac{1}{3}>0 , f(3a-1)=-6a^2+2a-\frac{1}{3}=-6(a-\frac{1}{6})^2-\frac{1}{6}<0 ,所以 f(x) 恰有一个零点.【小结】分离参数读者们应该还好理解,为什么要选择f(3a+1),f(3a-1) 就是一脸懵了.这属于找点的内容(内点定理),我们后面专门花章节来讲解这个内容.我们还是先理解零点存在定理的应用.本节我们重点讲解求零点个数问题的求法,近年高考也是热点题型,也是我们零点问题将面临的重点问题.【例2】(2019全国2卷理数20-1改编)已知函数f(x)=lnx-\frac{x+1}{x-1} ,求 f(x) 的零点个数.【分析】求零点个数问题,我们要求函数的单调区间,然后判断每一个单调区间的零点存在性.【解析】 f(x) 定义域为 (0,1)\cup(1,+\infty) ,而f(x)=lnx-1-\frac{2}{x-1} ,由和差法: y=lnx 和 y=-\frac{1}{x-1} 在(0,1)\cup(1,+\infty)上都是单调递增了,所以 f(x) 在(0,1)\cup(1,+\infty)单调递增;在 (0,1) 上 f(x) 单调递增,当 \frac{1}{3}<x<1 时,f(x)>f(\frac{1}{3})=\frac{2}{1-\frac{1}{3}}-1-ln3>\frac{2}{1-\frac{1}{3}}-3=0 ,当 0<x<\frac{1}{e^2} 时,f(x)<f(\frac{1}{e^2})=\frac{2}{1-\frac{1}{e^2}}-3<\frac{2}{1-\frac{1}{3}}-3=0 ,由零点存在定理和单调性, f(x) 在 (0,1) 有唯一零点,在 (1,+\infty) 上 f(x) 单调递增,当 1<x<3 时, f(x)<f(3)=ln3-2<0 ,当 x>e^2 时, f(x)>f(e^2)=1-\frac{2}{e^2-1}>1-\frac{2}{3-1}=0 ,所以 f(x) 在 (1,+\infty)有唯一零点.综上, f(x) 在定义域上有两个零点.【例3】(2019全国1卷文数20-1改编)已知函数h(x)=cosx+xsinx-1 ,证明: h(x) 在区间 (0,\pi) 存在唯一零点.【分析】让我确定零点个数,需要结合单调区间和零点存在定理来证明.【解析】给定了定义域区间为 (0,\pi) ,用导数法判断单调性: h'(x)=xcosx ,判正负区间: h'(x) 正负区间同 y=cosx ,易知在(0,\frac{\pi}{2}) 上 h'(x)>0,h(x) 单调递增;在(\frac{\pi}{2},\pi) 上, h'(x)<0,h(x) 单调递减.而 h(0)=0,h(\frac{\pi}{2})=\frac{\pi}{2}-1>0,h(\pi)=-2<0 ,由零点存在定理和单调性,所以在(0,\frac{\pi}{2})上 h(x) 无零点,在 (\frac{\pi}{2},\pi) 上有唯一零点.得证.【例4】(2015全国1卷文书21-1)设函数 f(x)=e^{2x}-alnx .讨论 f(x) 的导函数 f'(x) 零点的个数.【分析】先求出 f'(x) 及定义域,通过判断 f'(x) 单调性和零点存在性来确定零点个数.【解析】 f'(x)=2e^{2x}-\frac{a}{x}(x>0) .①当 a\leq0 时,显然 f'(x)>0 恒成立,无零点.②当 a>0 时,判断 f'(x) 的单调性,用和差法:y=2e^{2x},y=-\frac{a}{x} 都是在 (0,+\infty) 上的单调递增函数,所以 f'(x) 单调递增.当 x>max(1,\frac{a}{2e^2}) 时, f'(x)>2e^2-2e^2=0 ,当 x<min(1,\frac{a}{2e^2}) 时, f'(x)<2e^2-2e^2=0 ,所以此时 f'(x) 有唯一零点,综上,当 a\leq0 , f'(x) 无零点,当 a>0 时,有唯一零点.【例5】(2015广东理数19-2)设 a>1 ,函数f(x)=(1+x^2)e^x-a .证明 :f(x) 在 (-\infty,+\infty) 上仅有一个零点.【分析】还是求零点个数问题,用单调性+存在性来求解.【解析】 f(x) 的单调性,用求导法:f'(x)=e^x(x+1)^2\geq0 ,当且仅当 x=-1 时, f'(x)=0 ,所以 f(x) 是定义域上的单调递增函数.当 x>lna 时, f(x)>f(lna)>0 .当 -\sqrt{e-1}<x<-1 时,f(x)<\frac{e}{e}-a<0 ,由零点存在性定理及单调性,得证::f(x) 在 (-\infty,+\infty) 上仅有一个零点.【总结】通过上面五题,是否明白求解零点个数问题的基本方法,如果遇到复杂函数,分参转化为新函数的零点个数问题不失为一种思路;具体求解过程,先判断函数的单调性,再确定每个单调区间函数的零点存在性.但是对于开区间上零点的存在,往往很难通过取点来确定函数值的符号,我们也不容易用极限的思想来解释。
专题一 “四招”判断函数零点个数函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数 的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕函数零点个数的判断问题,例题说法,高效训练.【典型例题】第一招 应用函数性质,判定函数零点个数例 1.已知偶函数 f (x ) = {log 4 x , 0 <x≤ 4f(8 - x ), 4 < x < 8 ,且 f (x - 8) = f (x ),则函数 F (x ) = f (x )- 1 2 x在区间 [-2018, 2018]的零点个数为()A. 2020B. 2016C. 1010D. 1008第二招 数形结合,判定函数零点个数例 2.【2018 届福建省永春一中、培元、季延、石光中学四校高三上第二次联考】定义在 R 上的函数 f (x )满足 f (x + 2) = f (x )+1,且 x ∈[0,1]时, f (x )= 4x; x ∈(1, 2]时, f (x ) = f (1) . 令xg (x ) = 2 f (x )- x - 4, x ∈[-6, 2],则函数 g (x )的零点个数为()A. 7B. 8C. 9D. 10第三招 应用零点存在性定理,判定函数零点个数例 3.【广西桂林市、贺州市、崇左市 2019 届高三下学期 3 月联合调研】已知函数.(1)讨 的单调性; (2)讨在上的零点个数.第四招 构造函数,判定函数零点个数例 4.【山东省菏泽市 2019 届高三上学期期末】已知函数 f (x )=l n x +﹣1,a ∈R. (1)当 a >0 时,若函数 f (x )在区间[1,3]上的最小值,求 a 的值;(2)讨论函数g(x)=f′(x)﹣零点的个数.【规律与方法】函数零点个数的求解与判断:(1)直接求零点:令f (x)= 0 ,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f (a)⋅f (b)< 0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.(4)构造函数模型,判断零点个数.构造函数可根据题目不同,直接做差构造函数、分离参数后构造函数、先求导数再构造函数、先换元再构造函数等.【提升训练】1.【浙江省杭州地区(含周边)重点中学2019届高三上期中】已知定义在R上的奇函数,满足当时,则关于x的方满A.对任意,恰有一解B.对任意,恰有两个不同解C.存在,有三个不同解D.存在,无解2.【吉林省延边州2019届高三2月复检测】已知函数在上可导且,其导函数满足,对于函数,下列结论错误的是( )A.函在上为单调递增函数B.是函的极小值点C.函至多有两个零点D.时,不等恒成立3.已知函数y = f (x )的图像为R 上的一条连续不断的曲线,当x ≠ 0 时,f ' (x )+1f (x )> 0 ,则关于x 的x函数g (x )= f (x )+的零点的个数为()xA.0 B.1 C.2 D.0 或2 4.【新疆乌鲁木齐市2019届高三一模】已知函数.(Ⅰ)的图像在点处的切线与直平行,求的值;(Ⅱ),讨的零点个数.5.【辽宁省大连市2019届高三下学期第一次(3月)双基测试】已知函数f(x)=lnx+ax2-x(x>0,a∈R).(Ⅰ)讨论函数 f(x)的单调性;(Ⅱ)求证:当a≤0 时,曲线 y=f(x)上任意一点处的切线与该曲线只有一个公共点.6.【四川省成都石室中学2019届高三第二次模拟】已知函数,.(Ⅰ)当,函图象上是否存在3 条互相平行的切线,并说明理由?(Ⅱ)讨论函的零点个数.7.【浙江省金华十校2019届高三上学期期末】已知,,其中,为自然对数的底数.若函的切线l经点,求l的方程;Ⅱ若函数为递减函数,试判断函数零点的个数,并证明你的结论.8.【辽宁省丹东市2019 届高三总复习质量测试(一)】已知函.(1)当时,讨的单调性;(2)证明:当时只有一个零点 . 9.【云南师范大学附属中学2019届高三上学期第一次月考】已知函数.求的单调区间和极值;当时,证明:对任意的,函有且只有一个零点.10.【2019届高三第一次全国大联考】已知函数(其中).(1)时,求函的单调区间;(2)当时,求函的极值点;(3)讨论函零点的个数.11.【2019年四川省达州市高考一诊】已知,函数,.求证;讨论函零点的个数.12.【北京延庆区2019届高三一模】已知函数.(1)当时,求曲在处的切线方程;(2)求函的单调区间;(3)时,求函在上区零点的个数.13.【广东省江门市2019届高考模拟(第一次模拟)】设函数,是自然对数的底数,是常数.(1)若,的单调递增区间;(2)讨论曲与公共点的个数.14.【安徽省六安市毛坦厂中学2019届高三3月联考】设函数.(1)试讨论函的单调性;:,,(2)若,证明:方程有且仅有3个不同的实数根.(附)。
第十五讲导数与函数的零点【考点剖析】考点一判断零点的个数【例1】已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=f(x)x-4ln x的零点个数.解(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},∴设f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0.∴f(x)min=f(1)=-4a=-4,a=1.故函数f(x)的解析式为f(x)=x2-2x-3.(2)由(1)知g(x)=x2-2x-3x-4ln x=x-3x-4ln x-2,∴g(x)的定义域为(0,+∞),g′(x)=1+3x2-4x=(x-1)(x-3)x2,令g′(x)=0,得x1=1,x2=3.当x变化时,g′(x),g(x)的取值变化情况如下表:X (0,1)1(1,3)3(3,+∞)g′(x)+0-0+g(x)极大值极小值当0<x≤3时,g(x)≤g(1)=-4<0,当x>3时,g(e5)=e5-3e5-20-2>25-1-22=9>0.又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点,故g(x)仅有1个零点.规律方法利用导数确定函数零点或方程根个数的常用方法(1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.考点二已知函数零点个数求参数的取值范围【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)函数f(x)=ax+x ln x的定义域为(0,+∞).f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,即f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,由题意得,m+1>-1,即m>-2,①当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞.由图象可知,m+1<0,即m<-1,②由①②可得-2<m<-1.所以m的取值范围是(-2,-1).规律方法与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.考点三函数零点的综合问题【例3】设函数f(x)=e2x-a ln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+a ln 2 a.(1)解f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x>0).当a≤0时,f′(x)>0,f′(x)没有零点;当a>0时,因为y=e2x单调递增,y=-ax单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,假设存在b满足0<b<a4时,且b<14,f′(b)<0,故当a>0时,f′(x)存在唯一零点.(2)证明由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0).由于2e2x0-ax0=0,所以f(x0)=a2x0+2ax0+a ln2a≥2a+a ln2a.故当a>0时,f(x)≥2a+a ln 2 a.规律方法 1.在(1)中,当a>0时,f′(x)在(0,+∞)上单调递增,从而f′(x)在(0,+∞)上至多有一个零点,问题的关键是找到b,使f′(b)<0.2.由(1)知,函数f′(x)存在唯一零点x0,则f(x0)为函数的最小值,从而把问题转化为证明f(x0)≥2a +a ln 2a.【真题演练】1.(2021·全国高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点①21,222e a b a <≤>; ②10,22a b a <<≤. 【详解】(1)由函数的解析式可得:()()'2xf x x e a =-,当0a ≤时,若(),0x ∈-∞,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增; 当102a <<时,若()(),ln 2x a ∈-∞,则()()'0,f x f x >单调递增, 若()()ln 2,0x a ∈,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增;当12a =时,()()'0,f x f x ≥在R 上单调递增; 当12a >时,若(),0x ∈-∞,则()()'0,f x f x >单调递增,若()()0,ln 2x a ∈,则()()'0,f x f x <单调递减, 若()()ln 2,x a ∈+∞,则()()'0,f x f x >单调递增; (2)若选择条件①:由于2122e a <,故212a e <≤,则()21,010b af b >>=->,而()()210b f b b e ab b --=----<,而函数在区间(),0-∞上单调递增,故函数在区间(),0-∞上有一个零点.()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a >--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦ ()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于2122e a <,212a e <≤,故()()ln 22ln 20a a a -≥⎡⎤⎣⎦,结合函数的单调性可知函数在区间()0,∞+上没有零点. 综上可得,题中的结论成立. 若选择条件②: 由于102a <<,故21a <,则()01210f b a =-≤-<,当0b ≥时,24,42ea ><,()2240f e a b =-+>,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点. 当0b <时,构造函数()1xH x e x =--,则()1xH x e '=-,当(),0x ∈-∞时,()()0,H x H x '<单调递减,当()0,x ∈+∞时,()()0,H x H x '>单调递增,注意到()00H =,故()0H x ≥恒成立,从而有:1x e x ≥+,此时:()()()()22111x f x x e ax b x x ax b =---≥-+-+()()211a x b =-+-,当x >()()2110a x b -+->,取01x =,则()00f x >,即:()00,10f f ⎫<>⎪⎪⎭,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点.()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦()()22ln 21ln 22a a a a a ≤--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦ ()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于102a <<,021a <<,故()()ln 22ln 20a a a -<⎡⎤⎣⎦, 结合函数的单调性可知函数在区间(),0-∞上没有零点. 综上可得,题中的结论成立.2.(2021·浙江高考真题)设a ,b 为实数,且1a >,函数()2R ()xf x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点12,x x ,满足2212ln 2b b ex x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数) 【详解】(1)2(),()ln x x f x b f a x e a x a b '==+--,①若0b ≤,则()ln 0x f x a a b '=-≥,所以()f x 在R 上单调递增; ②若0b >, 当,log ln ab x a ⎛⎫∈-∞ ⎪⎝⎭时,()()'0,f x f x <单调递减, 当log ,ln ab x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0,f x f x >单调递增. 综上可得,0b ≤时,()f x 在R 上单调递增;0b >时,函数的单调减区间为,log ln a b a ⎛⎫-∞ ⎪⎝⎭,单调增区间为log ,ln a b a ⎛⎫+∞ ⎪⎝⎭.(2)()f x 有2个不同零点20x a bx e ⇔-+=有2个不同解ln 20x a e bx e ⇔-+=有2个不同的解,令ln t x a =,则220,0ln ln t tb b e e e e t a a tt +-+=⇒=>,记()22222(1)(),()t t t t e t e e e e e t e g t g t t t t '⋅-++--===, 记2()(1),()(1)10t t t t h t e t e h t e t e e t '=--=-+⋅=⋅>, 又(2)0h =,所以(0,2)t ∈时,()0,(2,)h t t <∈+∞时,()0h t >,则()g t 在(0,2)单调递减,(2,)+∞单调递增,22(2),ln ln b bg e a a e∴>=∴<, 22222,ln ,21bb e a a e e>∴>∴≤⇒<≤. 即实数a 的取值范围是(21,e ⎤⎦.(3)2,()x a e f x e bx e ==-+有2个不同零点,则2x e e bx +=,故函数的零点一定为正数. 由(2)可知有2个不同零点,记较大者为2x ,较小者为1x ,1222412x x e e e e b e x x ++==>,注意到函数2x e e y x +=在区间()0,2上单调递减,在区间()2,+∞上单调递增,故122x x <<,又由5245e e e +<知25x >,122211122x e e e e b x x x b+=<⇒<,要证2212ln 2b b e x x e b >+,只需22ln e x b b>+, 222222x x e e e b x x +=<且关于b 的函数()2ln e g b b b =+在4b e >上单调递增,所以只需证()22222222ln 52x x e x e x x x e >+>, 只需证2222222ln ln 02x x x e x e e x e-->, 只需证2ln ln 202x e xx e-->,242e <,只需证4()ln ln 2xx h x x e =--在5x >时为正, 由于()11()44410x x x h x xe e e x x x '---+-+-==>,故函数()h x 单调递增, 又54520(5)ln 5l 20n 2ln 02h e e =--=->,故4()ln ln 2x xh x x e=--在5x >时为正,从而题中的不等式得证.【过关检测】1.(2021·全国高三其他模拟(理))已知函数()ln mf x x m x=-+在区间()1e ,e -内有唯一零点,则实数m 的取值范围为( )A .2e e ,1e 12⎡⎤-+⎢⎥+⎣⎦ B .1e ,e 1e 1-⎛⎫⎪++⎝⎭ C .e ,1e 1-⎛⎫⎪+⎝⎭D .e 1,12⎛⎫-+ ⎪⎝⎭【答案】B 【详解】 令f(x)=0,则11ln m x x ⎛⎫+=⎪⎝⎭,ln 1x x m x =+,令()ln 1()1x x x e x e h x =<<+,()()21ln 1x x x h x +++'=, 令()1ln k x x x =++,()110xk x =+>', 则函数()y k x =在区间()1e ,e -单调递增,()()11e e 0k k x -->=>, 所以()0h x '>,函数()y h x =在区间()1e ,e -单调递增, 所以有()()()1e e h h x h -<<,即()1ee 1e 1h x -<<++, 所以1ee 1e 1m -<<++, 故选:B .2.(2021·黑龙江大庆市·铁人中学高三一模(理))下列命题为真命题的是( )A .函数()()11x f x ex x R -=--∈有两个零点 B .“0x R ∃∈,00xe x >”的否定是“0x R ∀∈,00x ex <”C .若0a b <<,则11a b< D .幂函数()22231m m y m m x--=--在()0,x ∈+∞上是减函数,则实数1m =- 【答案】A 【详解】对于A ,函数()()11x f x ex x R -=--∈,()1e 1x f x -'=-,当()0f x '>得1x >,当()0f x '<得1x <,所以()f x 在1x >是单调递增函数,在1x <是单调递减函数,所以()f x 在1x =时有最小值,即()011110f e =--=-<,()3344150f e e =--=->,()3322110f e e ---=+-=+>,所以()f x 有两个零点,正确;对于B ,“0x R ∃∈,00xe x >”的否定是x R ∀∈,x e x ≤,错误; 对于C ,11b aa b ab--=,因为0a b <<,所以0,0b a ab ->>,所以110->a b ,11a b >,错误;对于D , 由已知得2211230m m m m ⎧--=⎨--<⎩,无解,幂函数()22231m m y m m x --=--在()0,x ∈+∞上是减函数,则实数1m =-,错误. 故选:A3.(2021·全国高三其他模拟(理))已知函数()()1213()ln 1ln 122x f x ex e -=+-+-+.若4,()(),x x g x f x x λλ-≥⎧=⎨<⎩的零点恰有2个,则λ的取值范围是( )A .(1,3](4,)+∞B .(1,2][4,)+∞C .(1,3](4,)-+∞D .(1,1](4,)-+∞【答案】C 【详解】由题可知()f x 的定义域为R .()()11111111211()122121x x x x x x x e e e e f x e e e ----------'=-==+++, 当1x >时,()0f x '>,()f x 在()1,+∞上单调递增;当1x <时,()0f x '<,()f x 在(),1-∞上单调递减.令()0f x =,可得3x =或1-.在同一坐标系中作出函数(),4y f x y x ==-的图象,因为函数()g x 恰有2个零点, 结合图象可知13λ-<≤或4λ>. 故选:C4.(2021·内蒙古赤峰市·高三二模(文))已知函数()21()2f x a x x x =-+有且仅有两个零点,则实数a =( ) A .3227B .3227-C .2732D .2732-【答案】C 【详解】令()21()20f x a x x x=-+=,则()212a x x x =--由两个不同的根, 令()()212g x x x x =--,则()()23342x g x x x -'=--,当0x <时,()0g x '>,当403x <<时,()0g x '<, 当423x <<或2x >时,()0g x '>, 当43x =时, ()2732g x =,在同一坐标系中作出(),y a y g x ==的图象,如图所示:因为函数()21()2f x a x x x=-+有且仅有两个零点, 由图象知:实数a =3227, 故选:A5.(2021·山西高三一模(理))函数()log 1xa f x a x =-(0a >,且1a ≠)有两个零点,则a 的取值范围为( ) A .(1,)+∞ B .1e (1,)e -⎧⎫⋃+∞⎨⎬⎩⎭C .{}ee (1,)-⋃+∞ D .1(1,)e ⎧⎫⋃+∞⎨⎬⎩⎭【答案】B 【详解】()0f x =,得1log a x x a =,即11log xax a ⎛⎫= ⎪⎝⎭.由题意知函数1log a y x =图象与函数1xy a ⎛⎫= ⎪⎝⎭图象有两个交点.当1a >时,11log ,xay x y a ⎛⎫== ⎪⎝⎭草图如下,显然有两交点.当01a <<时,函数1log a y x =图象与函数1xy a ⎛⎫= ⎪⎝⎭图象有两个交点时,注意到11,log xay y x a ⎛⎫== ⎪⎝⎭互为反函数,图象关于直线y x =对称,可知函数1xy a ⎛⎫= ⎪⎝⎭图象与直线y x =相切,设切点横坐标0x ,则0111ln 1x x x a a a ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩,解得01e,e .e x a -=⎧⎪⎨⎪=⎩ 综上,a 的取值范围为1ee (1,)-⎧⎫+∞⎨⎬⎩⎭. 故选:B .6.(2020·绵阳市·四川省绵阳江油中学高三月考)函数()()1ln 03f x x x x =->的零点个数为( ) A .0 B .1C .2D .3【答案】C 【详解】()1103f x x'=-=,得3x =, 当03x <<时,()0f x '<,()f x 单调递减,当3x >时,()0f x '>,()f x 单调递增,()31ln30f =-<,()1103f => ()22262033e ef e -=-=>,所以函数()f x 在()1,3和()23,e 各有1个零点,所以共2个零点.故选:C7.(2021·安徽亳州市·高二期末(文))已知函数()e e x x f x x a =--有且仅有两个不同的零点,则实数a 的取值范围是( ) A .34,0e ⎫⎡-⎪⎢⎣⎭B .(1,0]-C .3342,e e ⎡⎤--⎢⎥⎣⎦D .(1,0)-【答案】D 【详解】解:令函数()e e 0x x f x x a =--=,则有e e x x x a -=,令()e e x x g x x =-,则()g x a =.()e e e e x x x x g x x x '=+-=,∴当0x <时,()0g x '<,()g x 单调递减,当0x >时,()0g x '>,()g x 单调递增.∴当0x =时,()g x 取得最小值,且min ()(0)1g x g ==-,显然(1)0g =,当1x <时,()0<g x 恒成立.由此可以画出函数()g x 的大致图象,如图所示,由图象可得,要使函数()f x 有且仅有两个不同的零点,只需(0)0g a <<,即10a -<<. 故选:D .8.(2021·江苏连云港市·高二期末)已知函数ln ()xf x a x=-有两个不同的零点,则实数a 的取值范围是( ). A .(0,e) B .(,e)-∞C .10,e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】C 【详解】 因为函数ln ()xf x a x =-有两个不同的零点,所以方程ln ()0x f x a x=-=有两个不同的实数根,因此函数ln ()xg x x =与函数y a =有两个交点. ()()2ln 1ln x xg x g x x x -='=⇒,当x e >时,'()0,()g x g x <单调递减,当0x e <<时,'()0,()g x g x >单调递增, 因此当x e =时,函数()g x 有最大值,最大值为:ln 1()e g e e e==, 显然当1x >时,()0>g x ,当01x <<时,()0<g x ,当1x =时,(1)0g =,因此函数ln ()xg x x=的图象如下图所示:通过函数ln ()x g x x =的图象和上述分析的性质可知:当10,e a ⎛⎫∈ ⎪⎝⎭时,函数ln ()x g x x=与函数y a =有两个交点. 故选:C9.(2021·全国高三其他模拟(理))若函数()3212912,32f x x x x m x ⎛⎫⎛⎫=-+-+∈ ⎪ ⎪⎝⎭⎝⎭存在三个不同的零点,则实数m 的取值范围是( ) A .(5,9) B .[)4,5C .()4,5D .(1,3)【答案】C 【详解】由3229120x x x m -+-+=知,322912m x x x =-+,令32()2912h x x x x =-+,2()618126(2)(1)h x x x x x '=-+=-- 则函数()h x 在1,12x ⎛⎫∈ ⎪⎝⎭上单增,在()1,2x ∈上单减,在()2,3x ∈上单增, 由1()42h =,(1)5h =,(2)4h =,(3)9h =则若使函数()f x 存在三个不同的零点,只需满足()4,5m ∈ 故选:C10.(2021·黑龙江哈尔滨市第六中学校高三月考(文))若函数()3233x x x f x m =---在区间[]2,6-有三个不同的零点,则实数m 的取值范围是( ) A .()9,18- B .25,33⎡⎫-⎪⎢⎣⎭ C .59,3⎛⎫- ⎪⎝⎭D .2,183⎡⎫-⎪⎢⎣⎭【答案】B 【详解】()()()22313f x x x x x '=--=+-,∴当[)(]2,13,6x ∈--时,()0f x '>;当()1,3x ∈-时,()0f x '<;()f x ∴在[)2,1--,(]3,6上单调递增,在()1,3-上单调递减,又()223f m -=--,()513f m -=-,()39f m =--,()618f m =-, 则()f x 在区间[]2,6-有三个不同的零点,则其大致图象如下图所示:25033m m ∴--≤<-,解得:2533m -≤<,即实数m 的取值范围为25,33⎡⎫-⎪⎢⎣⎭.11.(2021·河北沧州市·高二期末)已知函数()ln ()f x x ax a =+∈R .(Ⅰ)当1a =-时,求()f x 的极值;(Ⅱ)若()f x 在()20,e 上有两个不同的零点,求a 的取值范围.【详解】(Ⅰ)当1a =-时,11'()1x f x x x-=-=,0x >. 由'()0f x =,得1x =.当(0,1)x ∈时,'()0f x >,()f x 在(0,1)上单调递增, 当(1,)x ∈+∞时,'()0f x <,()f x 在(1,)+∞上单调递减,()f x ∴只有极大值,无极小值,且()(1)1f x f ==-极大值.(Ⅱ)11'()(0)axf x a x x x +=+=>. 当0a 时,1'()0axf x x+=>, ∴函数()ln f x x ax =+在(0,)+∞上单调递增,从而()f x 至多有一个零点,不符合题意.当0a <时,1'()(0)a x a f x x x⎛⎫+ ⎪⎝⎭=>, ()f x ∴在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减.由11ln 10f a a ⎛⎫⎛⎫-=--> ⎪ ⎪⎝⎭⎝⎭得10e a -<<. 由()22e 2e 0f a =+<得22e a <-. 当212e ea -<<-时,(1)0f a =<,满足()f x 在()20,e 上有两个不同的零点.a ∴的取值范围是212,e e ⎛⎫--⎪⎝⎭. 12.(2021·安徽安庆市·高三一模(理))函数()2x f x e ax a =--. (1)讨论函数的极值;(2)当0a >时,求函数()f x 的零点个数. 【详解】(1)由题意,函数()2x f x e ax a =--,可得()2xf x e a '=-,当0a ≤时,()20xf x e a '=->,()f x 在R 上为单调增函数,此时无极值;当0a >时,令()20xf x e a '=->,解得()ln 2x a >,所以()f x 在()ln(2),a +∞上为单调增函数,令()20xf x e a '=-<,解得()ln 2x a <,()f x 在(),ln(2)a -∞上为单调减函数,所以当ln(2)x a =时,函数()f x 取得极小值()=ln(2)2ln(2)f f a a a a =-极小值,无极大值. 综上所述:当0a ≤时,()f x 无极值,当0a >时,()=ln(2)2ln(2)f f a a a a =-极小值,无极大值.(2)由(1)知当0a >时,()f x 在()ln(2),a +∞上为单调增函数,在(),ln(2)a -∞上为单调减函数,且2ln(2)f a a a =-极小值,又由()(21)xf x e a x =-+,若x →-∞时,()f x →+∞;若x →+∞时,()f x →+∞;当2ln(2)0a a a ->,即02a <<时,()f x 无零点;当2ln(2)=0a a a -,即a ()f x 有1个零点;当2ln(2)0a a a -<,即a >时,()f x 有2个零点.综上:当0a <<时,()f x 无零点;当a ()f x 有1个零点;当a >时,()f x 有2个零点.。
三角函数零点个数解题技巧三角函数零点个数解题技巧一、引言在学习高中数学时,我们会接触到三角函数的概念和相关的应用。
而在解题过程中,求出三角函数的零点是非常重要的一步。
本文将介绍三角函数零点个数解题技巧,帮助大家更好地掌握这一知识点。
二、三角函数的定义及性质1. 三角函数的定义正弦函数:$y = \sin x$余弦函数:$y = \cos x$正切函数:$y = \tan x$余切函数:$y = \cot x$正割函数:$y = \sec x$余割函数:$y = \csc x$2. 三角函数的周期性对于任意实数 $x$,有以下周期性:$\sin (x + 2k\pi) = \sin x, k\in Z$ $\cos (x + 2k\pi) = \cos x, k\in Z$ $\tan (x + k\pi) = \tan x, k\in Z$ $\cot (x + k\pi) = \cot x, k\in Z$ $\sec (x + 2k\pi) = \sec x, k\in Z$ $\csc (x + 2k\pi) = \csc x, k\in Z$ 3. 三角函数的奇偶性对于任意实数 $x$,有以下奇偶性:$\sin (-x) = -\sin x$$\cos (-x) = \cos x$$\tan (-x) = -\tan x$$\cot (-x) = -\cot x$$\sec (-x) = \sec x$$\csc (-x) = -\csc x$4. 三角函数的单调性对于 $0<x<\pi$,有以下单调性:正弦函数:增函数余弦函数:减函数正切函数:增函数余切函数:减函数正割函数:减函数余割函数:增函数三、三角函数零点个数的判定方法1. 正弦和余弦的零点个数判定方法当 $f(x)=a\sin x+b\cos x$ 时,可以使用以下方法求解:令 $t=\arctan(\frac{b}{a})$,则 $f(x)=\sqrt{a^2+b^2}\sin(x+t)$。
高考数学《函数零点的个数问题》知识点讲解与分析一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。
(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫ ⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。
考点1 零点的求法及零点的个数 题型1:求函数的零点。
[例1] 求函数2223+--=x x x y 的零点. [解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根 [解析]令 32220x x x --+=,∴2(2)(2)0x x x ---=∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或即函数2223+--=x x x y 的零点为-1,1,2。
[反思归纳] 函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。
题型2:确定函数零点的个数。
[例2] 求函数f(x)=lnx +2x -6的零点个数.[解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数[解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增, 又有(1)(4)0f f ⋅<,所以函数f(x)= lnx +2x -6只有一个零点。
方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数即求ln 62y x y x =⎧⎨=-⎩的交点的个数。
画图可知只有一个。
[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。
题型3:由函数的零点特征确定参数的取值范围[例3] (2007·广东)已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。
[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行讨论[解析] 若0a = , ()23f x x =- ,显然在[]1,1-上没有零点, 所以 0a ≠.令()248382440a a a a ∆=++=++=, 解得a =①当a =时, ()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。
③当()y f x =在[]1,1-上有两个零点时, 则()()208244011121010a a a a f f >⎧⎪∆=++>⎪⎪-<-<⎨⎪≥⎪⎪-≥⎩或()()208244011121010a a a a f f <⎧⎪∆=++>⎪⎪-<-<⎨⎪≤⎪⎪-≤⎩解得5a ≥或a <综上所求实数a 的取值范围是 1a > 或a ≤。
[反思归纳]①二次函数、一元二次方程和一元二次不等式是一个有机的整体,也是高考热点,要深刻理解它们相互之间的关系,能用函数思想来研究方程和不等式,便是抓住了关键.②二次函数2()f x ax bx c =++的图像形状、对称轴、顶点坐标、开口方向等是处理二次函数问题的重要依据。
考点3 根的分布问题[例5] 已知函数2()(3)1f x mx m x =+-+的图像与x 轴的交点至少有一个在原点的右侧,求实数m 的取值范围[解题思路]由于二次函数的图象可能与x 轴有两个不同的交点,应分情况讨论 [解析](1)若m=0,则f (x )=-3x+1,显然满足要求. (2)若m ≠0,有两种情况:原点的两侧各有一个,则⇒⎪⎩⎪⎨⎧<=>--=0104)3(212m x x m m Δm <0;都在原点右侧,则⎪⎪⎪⎩⎪⎪⎪⎨⎧>=>-=+≥--=,01,023,04)3(21212m x x m m x x m m Δ解得0<m ≤1,综上可得m ∈(-∞,1]。
[反思归纳]二次方程根的分布是高考的重点和热点,需要熟练掌握有关二次方程ax2+bx+c=0(a≠0)的根的分布有关的结论:①方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a·f(r )<0.②二次方程f (x )=0的两根都大于r ⎪⎪⎩⎪⎪⎨⎧>⋅>->-=⇔.0)(,2,042r f a r a b ac b Δ③二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=⇔.0)(,0)(,2,042p f a q f a q a b p ac b Δ④二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f(q )<0,或f (p )=0,另一根在(p ,q )内或f (q )=0,另一根在(p ,q )内.⑤方程f (x )=0的两根中一根大于p ,另一根小于q (p <q )⎩⎨⎧>⋅<⋅⇔.0)(,0)(q f a p f a (二)、强化巩固训练1、函数()221f x mx x =-+有且仅有一个正实数的零点,则实数m 的取值范围是( )。
A .(],1-∞;B .(]{},01-∞;C .()(],00,1-∞;D .(),1-∞[解析] B ;依题意得(1)⎪⎩⎪⎨⎧<>--=∆>0)0(04)2(02f m m 或(2)⎪⎩⎪⎨⎧>>--=∆<0)0(04)2(02f m m 或(3)⎩⎨⎧=--=∆≠04)2(02m m 显然(1)无解;解(2)得0<m ;解(3)得1=m 又当0=m 时12)(+-=x x f ,它显然有一个正实数的零点,所以应选B 。
2、方程223x x -+=的实数解的个数为 _______ 。
[解析] 2;在同一个坐标系中作函数x y )21(=及32+-=x y 的图象,发现它们有两个交点故方程223x x -+=的实数解的个数为2。
3、已知二次函数22()42(2)21f x x p x p p =----+,若在区间[-1,1]内至少存在一个实数c,使f(c)>0,则实数p 的取值范围是_________。
[解析] (-3,23) 只需2(1)2290f p p =--+>或2(1)210f p p -=-++> 即-3<p <23或-21<p <1.∴p ∈(-3, 23)。
4、设函数321()2x y x y -==与的图象的交点为00(,)x y ,则0x 所在的区间是( )。
A.(0,1)B.(1,2)C.(2,3)D.(3,4) 答案B 。
5、若方程2(2)210x k x k +-+-=的两根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围。
[解析] 1223k <<;令12)2()(2-+-+=k x k x x f ,则依题意得⎪⎩⎪⎨⎧><>0)2(0)1(0)0(f f f ,即⎪⎩⎪⎨⎧>-+-+<-+-+>-01242401221012k k k k k ,解得1223k <<。
(三)、小结反思:本课主要注意以下几个问题:1.利用函数的图象求方程的解的个数;2.一元二次方程的根的分布;3.利用函数的最值解决不等式恒成立问题 。
(四)作业布置:限时训练10中12、13、14课外练习:限时训练10中1、3、4、6、7、9、10、11补充题:1、定义域和值域均为[-a,a] (常数a>0)的函数y=f(x)和y=g(x)的图像如图所示,给出下列四个命题中:(1) 方程f[g(x)]=0有且仅有三个解; (2) 方程g[f(x)]=0有且仅有三个解;(3) 方程f[f(x)]=0有且仅有九个解; (4)方程g[g(x)]=0有且仅有一个解。
[解析] B ;由图可知,][)(a a x f ,-∈,][)(a a x g ,-∈,由左图及f[g(x)]=0得]2[)(1a a x x g --∈=,,]02[)(2,a x x g -∈=,2)(ax g =,由右知方程f[g(x)]=0有且仅有三个解,即(1)正确;由右图及g[f(x)]=0得)2()(0a ax x f ,∈=,由左图知方程g[f(x)]=0有且仅有一个解,故(2)错误;由左图及f[f(x)]=0得]2[)(1a a x x f --∈=,,]02[)(2,a x x f -∈=,2)(ax f =,又由左图得到方程y f (y g (af[f(x)]=0最多有三个解,故(3)错误;由右图及g[g(x)]=0得)2()(0a ax x g ,∈=,由右图知方程g[g(x)]=0有且仅有一个解,即(4)正确,所以应选择B 2、已知关于x 的二次方程22210x mx m +++=。
(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围。
(2)若方程两根均在区间(0,1)内,求m 的范围。
[解析](1)条件说明抛物线2()221f x x mx m =+++与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m .(2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m<1是因为对称轴x=-m 应在区间(0,1)内通过)1.函数y=)23(log 21-x 的定义域是 ( )A.[1,+∞)B.(32,+∞) C.[32,1] D.(32,1]2.设函数f(x)=x|x|+bx+c,给出下列四个命题:①当b≥0时,函数y=f(x)是单调函数 ②当b=0,c >0时,方程f(x)=0只有一个实根 ③函数y=f(x)的图象关于点(0,c )对称④方程f(x)=0至多有3 个实根,其中正确命题的个数为( )。
个 个 个 个3.下列函数在其定义域内既是奇函数又是增函数的是 ( )=x 21(x∈(0,+∞)) =3x (x∈R) =x 31 (x∈R)=lg|x|(x≠0)4.已知偶函数f(x)满足条件:当x∈R 时,恒有f(x+2)=f(x),且0≤x≤1时,有)(x f '>0,则f ()1998,f ()17101,f ()15106的大小关系是 ( )A. f ()1998>f ()15106>f ()17101 B. f ()15106> f ()1998>f ()17101C. f ()17101> f ()1998> f ()15106D. f ()15106> f ()17101>f ()1998,5.如图为函数y=m+log n x 的图象,其中m ,n 为常数,则下列结论正确的是 ( )<0,n >1 >0,n >1>0,0<n <1<0,0<n <16.已知f(x)是以2为周期的偶函数,且当x∈(0,1)时,f(x)=2x -1,则f(log 212)的值为( ) A.31 B.347.(2009·重庆理,4)已知函数y=31++-x x 的最大值为M ,最小值为m ,则Mm的值为 ( ) A.41B.21C.22D.238.若方程2ax 2-x-1=0在(0,1)内恰有一解,则a 的取值范围是( ) <-1>1<a <1 ≤a<1(x)是定义在R 上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是 ( )10.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表: 表1 市场供给表 表2 市场需求表 根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间( )A.(,)内B.(,)内C.(,)内D.(,)内11.已知函数f(x)=log a (12 x +bx) (a >0且a≠1),则下列叙述正确的是( )A.若a=21,b=-1,则函数f(x)为R 上的增函数B.若a=21,b=-1,则函数f (x)为R 上的减函数C.若函数f(x)是定义在R 上的偶函数,则b=±1D.若函数f(x)是定义在R 上的奇函数,则b=1单价(元/kg ) 2 4 供给量(1 000kg ) 5060 70758090单价(元/kg ) 4 2 供给量(1 000kg )50606570758012.设函数f (x )=⎪⎩⎪⎨⎧≥<-,)0()0(7)21(x x x x若f(a)<1,则实数a 的取值范围是( )A.(-∞,-3)B.(1,+∞)C.(-3,1)D.(-∞,-3) (1,+∞)二、填空题13.已知函数f(x)=log 2(x 2+1)(x≤0),则)2(1-f = .14.已知函数f(x)=⎪⎩⎪⎨⎧<+≥)4()1()4()21(x x f x x 则f(log 23)的值为 .15.用二分法求方程x 3-2x-5=0在区间[2,3]内的实根,取区间中点x 0=,那么下一个有实根的区间是 .答案 (2,)16.对于函数f(x)定义域中任意的x 1,x 2 (x 1≠x 2),有如下结论: ①f(x 1+x 2)=f(x 1)f(x 2); ②f(x 1·x 2)=f(x 1)+f(x 2);③2121)()(x x x f x f -->0;④f(221x x+)<2)()(21x f x f +当f(x)=2x 时,上述结论中正确结论的序号是 .三、解答题17.设直线x=1是函数f(x)的图象的一条对称轴,对于任意x∈R,f(x+2)=-f(x),当-1≤x≤1时,f(x)=x 3. (1)证明:f(x)是奇函数;(2)当x∈[3,7]时,求函数f(x)的解析式.18.等腰梯形ABCD 的两底分别为AB=10,CD=4,两腰AD=CB=5,动点P 由B 点沿折线BCDA 向A 运动,设P 点所经过的路程为x ,三角形ABP 的面积为S(1)求函数S=f(x)的解析式;(2)试确定点P 的位置,使△ABP 的面积S 最大.19.据调查,某地区100万从事传统农业的农民,人均收入3 000元,为了增加农民的收入,当地政府积极引进资本,建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有x (x >0)万人进企业工作,那么剩下从事传统农业的农民的人均收入有望提高2x%,而进入企业工作的农民的人均收入为3 000a 元 (a >0).(1)在建立加工企业后,要使从事传统农业的农民的年总收入不低于加工企业建立前的农民的年总收入,试求x 的取值范围;(2)在(1)的条件下,当地政府应该如何引导农民(即x 多大时),能使这100万农民的人均年收入达到最大.20.设a,b∈R,且a≠2,定义在区间(-b,b )内的函数f(x)=xax 211lg ++是奇函数.(1)求b 的取值范围;(2)讨论函数f(x)的单调性.21.已知定义域为R 的函数f(x)满足f(f(x)-x 2+x)=f(x)-x 2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x 0,使得f(x 0)=x 0,求函数f(x)解析表达式.22.已知函数y=f(x)是定义在区间[-23,23]上的偶函数,且 x∈[0,23]时,f (x )=-x 2-x+5.(1)求函数f(x)的解析式;(2)若矩形ABCD 的顶点A ,B 在函数y=f(x)的图象上,顶点C ,D 在x 轴上,求矩形ABCD 面积的最大值.。