激光的基本原理及特性)
- 格式:ppt
- 大小:952.00 KB
- 文档页数:13
激光的基础知识相信激光这名词对大家来说一点也不陌生。
在日常生活中,我们常常接触到激光,例如在课堂上我们所用的激光指示器,与及在计算机或音响组合中用来读取光盘资料的光驱等等。
在工业上,激光常用于切割或微细加工。
在军事上,激光被用来拦截导弹。
科学家也利用激光非常准确地测量了地球和月球的距离,涉及的误差只有几厘米。
激光的用途那么广泛,究竟它有哪些特点,又是如何产生的呢?以下我们将会阐释激光的基本特点和基本原理。
激光的特性高亮度、高方向性、高单色性和高相干性是激光的四大特性。
(1)激光的高亮度:一般规律认为,光源在单位面积上向某一方向的单位立体角内发射的功率,就称为光源在该方向上的亮度。
激光在亮度上的提高主要是靠光线在发射方向上的高度集中。
激光的发射角极小(一般用毫弧度表示),它几乎是高度平等准直的光束,能实现定向集中发射。
因此,激光有高亮度性。
固体激光器的亮度更可高达1011W/cn2Sr 。
不仅如此,一束激光经过聚焦后,由于其高亮度性的特点,能产生强烈的热效应,其焦点范围内的温度可达数千度或数万度,能熔化甚至于气化对激光有吸收能力的生物组织或非生物材料。
如工业上精密器件的焊接、灯孔、切割;医学上切割组织(光刀)、气化表浅肿瘤以及显微光谱分析等这些新技术都是利用激光的高亮度性所产生的高温效应。
激光功率密度的单位为mw/cm2或W/cm2,能量密度为焦尔/厘米2。
(2)激光的高方向性:激光的高方向性使其能在有效地传递较长距离的同时,还能保证聚焦得到极高的功率密度,激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。
1962年人类第一次使用激光照射月球,地球离月球的距离约38万公里,这两点都是激光加工的重要条件。
(3)激光的高单色性:光的颜色由光的波长(或频率)决定。
一定的波长对应一定的颜色。
太阳光的波长分布范围约在0.76微米至0.4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。
第二章激光与半导体光源激光的原理、特性和应用发光二极管与半导体激光器§2-1 激光的工作原理一、光的发射与光的吸收当原子从高能级向低能级跃迁时,将两能级之差部分以光子形式发射出去,称光的发射;当原子从低能级向高能级跃迁时,将吸收两能级之差部分的光子能量,称光的吸收。
光的发射和吸收过程满足相同的规律:两能级之差决定发射和吸收光子的频率光发射的三种跃迁过程1自发辐射:处在高能级的原子以一定的几率自发的向低能级跃迁,同时发出一个光子的过程,a)图;2 受激辐射过程:在满足两能级之差的外来光子的激励下,处在高能级的原子以一定的几率自发向低能级跃迁,同时发出另一个与外来光子频率相同的光子,b)图;两种辐射过程特点的比较:自发辐射过程是随机的,发出一串串光波的相位、传播方向、偏振态都彼此无关,辐射的光波为非相干光;受激辐射的光波,其频率、相位、偏振状态、传播方向均与外来的光波相同,辐射的光波是相干光。
3 受激吸收过程:在满足两能级之差的外来光子的激励下,处在低能级的原子向高能级跃迁,c)图受激辐射与受激吸收过程同时存在:实际物质原子数很多,处在各个能级上的原子都有,在满足两能级能量之差的外来光子激励时,两能级间的受激辐射和受激吸收过程同时存在。
当吸收过程占优势时,光强减弱;当受激辐射占优势时,光强增强。
二、粒子数反转与光放大当一束频率为的光通过具有能级E1和E2(假定E2>E1)的介质时,将同时发生受激辐射和受激吸收过程,在dt时间内,单位体积内受激吸收的光子数为dN12,受激辐射的光子数为dN21 ,设两能级上的原子数为N1、N2(正常情况下N2> N1),有dN21/ dN12 =B N2/ N1,比例系数B与能级有关。
1、N2/ N1<1时,高能级E2上原子数少于低能级E1上原子数(称正常分布),有dN21 < dN12,表明光经介质传播的过程中受激辐射的光子数少于受激吸收的光子数,宏观效果表现为光被吸收。
激光成像的基本原理
激光成像是一种高分辨率的成像技术,利用激光器产生的高能光束,将物体表面反射或散射的光信号捕捉并重建成图像。
下面将详细介绍激光成像的基本原理。
一、激光的特性
激光是一种单色光,具有高亮度、高方向性、高相干性等特点。
这些特性赋予了激光成像技术高分辨率、高精度的较强优势。
二、激光成像原理
1. 激光照射
激光束通过扫描系统,照射到被成像物上,被照射的表面会和激光产生相互作用,造成反射或散射。
2. 光探测
接收反射或散射的光信号,将光信号转化成电信号。
一般利用光电探测器进行光信号的转换。
3. 信号处理
将产生的电信号进行放大、滤波、数字化等处理,以便进行图像重建。
4. 图像重建
在计算机处理后,将处理好的图像信号还原成图像。
图像处理主要包
括激光束的扫描、光信号的探测以及信号处理等过程。
三、激光成像技术的优缺点
优点:
1. 分辨率高:激光束具有较小的波长,可以在微观级别上进行成像,
分辨率极高。
2. 精度高:采用激光束经过物体扫描的方式进行成像,精度高,误差小。
3. 适用范围广:激光成像技术广泛应用于工业制造、医学、生物学等
各个领域中。
缺点:
1. 昂贵:激光器等设备价格高昂。
2. 安全性问题:高能量、高亮度的激光束会对人体造成伤害,需要严
密的安全措施。
3. 依赖性较强:激光成像技术对环境要求高,需要较为理想的实验条
件。
总之,激光成像技术作为一种高分辨率成像技术,可以在微观级别上进行成像,广泛应用于工业制造、医学、生物学等领域。
激光的原理与特点
激光,是指具有高度一致的光波振荡特性的一种光束。
激光的原理是通过三级系统(包括基态、激发态和亚稳态)之间的电磁辐射相互作用而产生的。
具体来说,激光的原理包括光放大、光共振、正反馈等。
激光的特点主要有以下几个方面:
1. 高度的单色性:激光的频率非常纯净,只有极少的频率成分,因此它具有非常高的单色性。
这是由于激光光波是由一个频率极为准确的谐振振荡系统所产生的。
2. 高度的方向性:激光光束具有非常高的方向性,激光光束在传播过程中很少发生散射,能够以非常窄的角度进行定向传播。
这是由于激光的振荡介质是一个长而细的谐振腔。
3. 高度的相干性:激光光束具有非常高的相干性,所有的光波的振幅和相位都高度一致。
这是由于激光光波是由许多同样频率和相位的原子或分子发射的。
4. 高度的能量密度:激光光束具有非常高的能量密度,能够集中大量的能量在一个很小的空间范围内。
由于激光的强度非常大,因此它可以用来进行高精度的切割、焊接等工业加工。
总之,激光作为一种特殊的光线,具有高度的单色性、方向性、相干性和能量密度,这些特点使得激光被广泛应用于科学、医学、工业等多个领域。