图解拉伸试验
- 格式:ppt
- 大小:4.73 MB
- 文档页数:67
材料基本力学性能试验—拉伸和弯曲一、实验原理拉伸实验原理拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。
对于均匀横截面样品的拉伸过程,如图 1 所示,图 1 金属试样拉伸示意图则样品中的应力为其中A 为样品横截面的面积。
应变定义为其中△l 是试样拉伸变形的长度。
典型的金属拉伸实验曲线见图 2 所示。
图3 金属拉伸的四个阶段典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。
直线部分的斜率E 就是杨氏模量、σs 点是屈服点。
金属拉伸达到屈服点后,开始出现颈缩现象,接着产生强化后最终断裂。
弯曲实验原理可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实验结果测定材料弯曲力学性能。
为方便分析,样品的横截面一般为圆形或矩形。
三点弯曲的示意图如图 4 所示。
图4 三点弯曲试验示意图据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是其中I 为试样截面的惯性矩,E 为杨氏模量。
弯曲弹性模量的测定将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲,对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。
对试样施加相当于σpb0.01。
(或σrb0.01)的10%以下的预弯应力F。
并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。
记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为对于矩形横截面试样,横截面的惯性矩I 为其中b、h 分别是试样横截面的宽度和高度。
也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。
宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。
在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。
力-伸长曲线是指在拉伸试验中外力与试样伸长量之间的关系曲线,曲线的纵坐标为拉力 F ,横坐标为绝对伸长△L。
若将力-伸长曲线图纵坐标F除以试样的原始横截面积,横坐标△L除以试样的标距L,即可得到材料的应力-应变曲线,该图形不再与试样的几何尺寸有关,因而具有更加广泛的意义。
由于退火低碳钢在拉伸试验过程中各个变形阶段表现得最为明显,所以一般用退火低碳钢作为力-伸长曲线及应力-应变曲线的典型来分析。
低碳钢力-伸长曲线图整个拉伸过程中的变形可分为四个阶段:弹性阶段、屈服阶段、强化阶段和局部塑性变形阶段。
Oe阶段:弹性阶段。
此阶段试样变形为弹性变形,外力卸除后试样可以完全恢复原貌。
拉伸开始后,试样的伸长随力的增加而增大。
在P点以下拉伸力F和伸长量△L呈直线关系。
当拉伸力超过 Fp后, F-△L呈非线性关系,直至最大弹性力Fe。
P点的应力称为比例极限。
e点应力则称为弹性极限。
eC阶段:屈服阶段。
当外力超过最大弹性力Fe之后,试样便产生不可恢复的永久变形,即出现塑性变形。
当外力增加一定值之后,力-伸长曲线出现锯齿状的峰和谷,这种外力不增加或者减少的条件下试样仍然伸长的现象称为屈服现象。
这个阶段的外力称为屈服力,首次下降前的屈服力称为上屈服力,即A点外力。
屈服阶段最小的外力称为下屈服力。
屈服阶段过后,金属材料发生明显塑性变形。
C点应力称为屈服强度或屈服点,对于无明显屈服的塑性材料,规定以产生0.2%残余变形的应力值为其屈服极限,又叫名义屈服极限或δ0.2。
CB阶段:强化阶段。
屈服阶段过后,外力与变形不成比例增加。
力-伸长曲线中B点即为材料在拉伸时的最大力。
B点的应力称为抗拉强度或者强度极限。
BK阶段:局部塑性变形阶段。
外力超过最大值Fb之后,材料某一部分横截面发生收缩,即“缩颈”现象。
试样抵抗变形能力下降,外力随之下降而变形继续增加。
至K处,试样断裂。
K点的应力称为断裂强度。
但对于工程使用的金属而言,大部分没有明显的屈服现象。