报童问题模型
- 格式:doc
- 大小:184.50 KB
- 文档页数:2
报童卖报问题摘要:这个问题解决的是报刊亭购进报纸数量。
通过分析上月报纸的销售量得出上月的平均期望x =243.3,方差S=13,最后通过计算分析得出,当报纸数量n=248时,利润)(n G =99.5最大。
正文:一. 问题的重述设某报刊亭报纸的购进价为0.6元,售出价为1元,退回价为0.4元,问该报 亭每天应购进几份报纸,才能使收益最大?并求出最大收益。
二.符号的约定b 购进价格 a 零售价格c 退回价格 n 报纸数量 S 方差x 平均期望)(n G 利润函数 )(r p 概率密度函数三.模型的基本假设假设外界环境不变.假设这个月卖报量服从上个月分布,并服从正态分布.假设-∞到0的概率为0. 四.模型的建立与求解根据上面的符号约定,显然有c b a >>。
设报童每天购进n 份报纸,因为需求量r 是随机的,r 可以小于n 、等于n 或大于n ;并由分析计算可知,上月报童卖报的平均期望x =243.3,方差S=13。
记报童每天购进n 份报纸时平均收入为)(n G ,考虑到需求量为r 的概率是)(r f ,所以∑∑∞+==-+----=10)()()()])(()[(n G n r nr r nf b a x f r n c b r b a )( (4.2-1)问题归结为在)(r f .a.b.c 已知时,求n 使)(n G 最大。
通常需求量r 的取值和购进量n 都相当大,将r 视为连续变量,这时)(r f 转化为概率密度函数)(r p ,这样(4.2-1)式变为:∑∑∞+==-+----=10)()()()])(()[(n G n r nr r np b a x p r n c b r b a )( (4.2-2)计算⎰-----=nr nP b a dr r P c b n nP b a dn dG0)()()()()()(⎰+∞-+n drr P b a )()(⎰⎰+∞-+--=n ndrr P b a dr r P c b 0)()()()(,令 0=dn dG得: c b ba dr r P dr r P nn--=⎰⎰∞+)()(0(4.2-3) 使报童日平均收入达到最大购进量n 应满足(4.2-3) ,因为⎰+∞=01)(dr r P 所以(4.2-3)式可变为cb ba dr r P dr r P n n--=-⎰⎰00)(1)(即有⎰--=nc a ba dr r P 0)( (4.2-4)根据需求量的概率密度P(r)的图形(如图4.3)很容易从(4.2-4)式确定购进图4.3在图中,用21,P P 分别表示曲线)(r P 下的两块面积,则(4.2-3)式又可记作:cb b a p p --=21 所以(4.2-3)式表明:购进的份数n 应该使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱a -b 与退回一份赔的钱b -c 之比。
报童诀窍一、问题:报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。
即报童售出一份报纸赚a-b ,退回一份赔b-c 。
报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。
试为报童筹划一下每天购进报纸的数量,以获得最大收入。
二、模型分析:购进量由需求量确定,需求量是随机的。
假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为 r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。
三、模型建立:假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n, ,所以报童每天的收入也是随机的。
那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。
从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。
记报童每天购进n 份报纸的平均收入为G(n),如果这天的需求量r<=n,则售出r 份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。
需求量为r 的概率是f(r),则()()()()[]()()()∑∑=∞+=-+----=n r n r r nf b a r f r n c b r b a n G 01问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。
四、模型求解:购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)()()()()[]()()()⎰⎰∞-+----=n ndr r np b a dr r p r n c b r b a n G 0计算()()()()⎰---=ndrr p c b n np b a dndG 0()()()()dr r p b a n np b a n ⎰∞-+--令0=dndG 得dndG ()()()()()()dr r p b a dr r p c b n np c a n n⎰⎰∞-+---=02得到()()cb b a drr p dr r p nn --=⎰⎰∞n 应满足上式。
报 童 问 题 模 型【问题的提出]】报童每天清晨以b 元从报社购进报纸,然后以零售价a 出售,晚上将没有卖出的报纸以退回价c 元退回给报社,其中a>b>c.问:报童应该如何确定报纸的每天的购进量,才能使利润最大?【问题的分析】根据需求量确定购进量.需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律。
已知售出一份赚 a-b ;退回一份赔 b-c 。
【做出假设】假设报童的销售范围内每天报纸的需求量为r 份的概率是),2,1,0)(( =r r f .每天购进量为n 份,因为需求量r 是随机的,r 可以小于n ,等于n 或大于n ,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.【模型的建立]】记报童每天购进n 份报纸时的平均收入为G(n),如果这天的需求量r ≤n ,则他售出r 份,退回n-r 份;如果这天的需求量r>n ,则n 份将全部售出.考虑到需求量为r 的概率是)(r f ,所以∑∑+==-+----=∞1n 0)()()()])(()[()(G n r r r nf b a r f r n c b r b a n (1))(r f ,a ,b ,c 已知时,求n 使G(n)最大.【模型求解】通常需求量r 的取值和购进量n 都相当大,将r 视为连续变量更便于分析和计算,这时概率)(r f 转化为概率密度函数)(r p ,(1)式变成dr r np b a dr r p r n c b r b a n G n n ⎰⎰-+----=0∞)()()()])(()[()(计算:由以下公式:))(,()())(,()(d ),(d d ),(F )()()()(x x f x x x f x y y x f xF dyy x f x x x x x ϕϕψψψϕψϕ'-'+==⎰⎰以及dy y x f dy y x f A A ⎰⎰∞∞→=00),(lim ),(得:)()()()()()()()(d dG 10n np b a dr r p b a n np b a dr r p c b nn n ---+-+--=⎰⎰∞+即:r r p c b r r p b a n n d )()(d )()(dndG 10⎰⎰∞+---= 令0=dndG .得到 c b b a drr p dr r p n n--=⎰⎰∞+10)()( (2) 根据需求量的概率密度)(r p 的图形很容易从(2)式确定购进量n .在图2中用1P ,2P 分别表示曲线)(r p 下的两块面积,则(3)式可记作cb b a P P --=21 因为当购进n 份报纸时,⎰=ndr r p P 01)(是需求量r 不超过n 的概率:⎰∞+=12)(n dr r p P 是需求量r 超过n 的概率。
§2 报 童 问 题 模 型[问题的提出] 报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回.设报纸每份的购进价为b ,零售价为a ,退回价为c ,应该自然地假设为a >b>c .这就是说,报童售出一份报纸赚a -b ,退回一份赔b-c .报童每天如果购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱.请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入.[问题的分析及假设] 众所周知,应该根据需求量确定购进量.需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,即在他的销售范围内每天报纸的需求量为r 份的概率是),2,1,0)(( r r f .有了)(r f 和a ,b ,c ,就可以建立关于购进量的优化模型了.假设每天购进量为n 份,因为需求量r 是随机的,r 可以小于n ,等于n 或大于n ,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.从概率论大数定律的观点看,这相当于报童每天收入的期望值,以下简称平均收入.[模型的建立及求解] 记报童每天购进n 份报纸时的平均收入为G(n),如果这天的需求量r ≤n ,则他售出r 份,退回n-r 份;如果这天的需求量r>n ,则n 份将全部售出.考虑到需求量为r 的概率是)(r f ,所以问题归结为在)(r f ,a ,b ,c 已知时,求n 使G(n)最大.通常需求量r 的取值和购进量n 都相当大,将r 视为连续变量更便于分析和计算,这时概率)(r f 转化为概率密度函数)(r p ,(1)式变成计算令0 dndG .得到使报童日平均收入达到最大的购进量n 应满足(3)式.因为01)(dr r p ,所以(3)式又可表为根据需求量的概率密度)(r p 的图形很容易从(3)式确定购进量n .在图2中用1P ,2P 分别表示曲线)(r p 下的两块面积,则(3)式可记作因为当购进n 份报纸时, n dr r p P 01)(是需求量r 不超过n 的概率,即卖不完的概率:n dr r p P )(2是需求量r 超过n 的概率,即卖完的概率,所以(3)式表明,购进的份数 应该使卖不完和卖完的概率之比,恰好等于卖出一份赚的钱a-b 与退回一份赔b-c 之比.显然,当报童与报社签订的合同使报童每份赚钱和赔钱之比越大时,报童购进的份数就应该越多.。
报童数学建模 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】报童诀窍一、问题: 报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份的购进价为b ,零售价为a ,退回价为c ,假设a>b>c 。
即报童售出一份报纸赚a-b ,退回一份赔b-c 。
报童每天购进报纸太多,卖不完会赔钱;购进太少,不够卖会少挣钱。
试为报童筹划一下每天购进报纸的数量,以获得最大收入。
二、模型分析:购进量由需求量确定,需求量是随机的。
假定报童已通过自己的经验或其他渠道掌握了需求量的随机规律,即在他的销受范围内每天报纸的需求量为r 份的概率是f(r)(r=0,1,2…)有了f(r),a 和b,c 就可以建立关于购进量的优化模型。
三、模型建立:假设每天购进量是n 份,需求量是随机的,r 可以小于,等于或大于n,,所以报童每天的收入也是随机的。
那么,作为优化模型的目标函数,不能取每天的收入,而取长期卖报(月,年)的日平均收入。
从概率论大数定律的观点看,这相当于报童每天收入的期望值,简称平均收入。
记报童每天购进n 份报纸的平均收入为G(n),如果这天的需求量r<=n,则售出r份,退回n-r 份;如果需求量人r>n,则r 份将全部售出。
需求量为r 的概率是f(r),则问题归结为在()c b a r f ,,,已知时,求n 是G(n)最大。
四、模型求解:购进量n 都相当大,将r 视为连续变量便于分析和计算,这时概率f(r)转化为概率密度函数p(r)计算令0=dn dG 得dn dG ()()()()()()dr r p b a dr r p c b n np c a n n ⎰⎰∞-+---=02 得到()()c b b a dr r p dr r p n n--=⎰⎰∞0 n 应满足上式。
()10=⎰∞dr r p 使报童日平均收入达到最大的购进量为()ca b a dr r p n --=⎰0 根据需求量的概率密度p(r)的图形可以确定购进量n 在图中用p1,p2分别表示曲线p(r)下的两块面积,则cb b a P P --=21 O nr因为当购进n 份报纸时,()dr r p P n ⎰=01是需求量r 不超过n 的概率; ()dr r p P n ⎰∞=2是需求量r 超过n 的概率,既卖完的概率,所以上式表明,购进的份数n 应使卖不完与卖完的概率之比,恰好等于卖出一份赚的钱a-b 与退回一份赔的钱b-c 之比。
§ 2报童问题模型[问题的提出]报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回.设报纸每份的购进价为b,零售价为a,退回价为c,应该自然地假设为a>b>c.这就是说,报童售出一份报纸赚a-b,退回一份赔b-c •报童每天如果购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱•请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入.[问题的分析及假设]众所周知,应该根据需求量确定购进量•需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,即在他的销售范围内每天报纸的需求量为r份的概率是f(r)(r 0,1,2, ) •有了f(r)和a , b, c, 就可以建立关于购进量的优化模型了.假设每天购进量为n份,因为需求量r是随机的,r可以小于n,等于n或大于n,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.从概率论大数定律的观点看,这相当于报童每天收入的期望值,以下简称平均收入.[模型的建立及求解]记报童每天购进n份报纸时的平均收入为G(n),如果这天的需求量r < n,则他售出r份,退回n-r份;如果这天的需求量r>n ,则n份将全部售出.考虑到需求量为r的概率是f(r),所以问题归结为在f (r) , a, b, c已知时,求n使G(n)最大.通常需求量r的取值和购进量n都相当大,将r视为连续变量更便于分析和计算,这时概率f (r)转化为概率密度函数p(r), (1)式变成计算第163页^ = (a-b)npM-f <b-c)p(r)dr—(a -6) + (a - b) p( r)dr J H令dG 0.得到 dnI p{r)dr Joa-bI />(r Jdr 由 C J n使报童日平均收入达到最大的购进量n 应满足(3)式.因为° p(r)dr 1,所以(3)式又可表为 />(r)dr - a - a c 根据需求量的概率密度 p(r)的图形很容易从(3)式确定购进量 n .在图2中用R , P 2分别表示曲线p(r)下的两块面积,则(3)式可记作Pi _ a ~ b P tb - cn 因为当购进n 份报纸时,p 1 o p(r )dr 是需求量r 不超过 n 的概率,即卖不完的概率:P 2p(r)dr 是需求量r 超过n 的概率,即卖完n 的概率,所以(3)式表明,购进的份数 应该使卖不完和卖完的概率之比,恰好等于卖出一份赚的钱 a-b 与退回一份赔 b-c 之比.显然,当报童与报社签订的合同使报童每份赚钱和赔钱 之比越大时,报童购进的份数就应该越多第164页=-(b - c) />( r)dr +J 0 (4)。
报童模型关于报童卖报的问题摘要报童模型在1956年⾸次被提出来以后,就成为学术界的关注焦点,有着⼤量的学者或经济领域的⼈⼠对它进⾏研究和分析,由于报童模型问题中涉及到很多不确定因素的影响,⼈们为了研究和确定这些因素在模型中的量化,通过很多不同的计算⽅法和理论⽅法来使这些⾮量化的因素最⼤化的量化表达,使之趋近于理性决策,但是⼜不是完全能够明确和量化的,这些就是报童模型中的有限理性。
报童模型中关于有限理性涉及到的问题与⽅法到如今已将发展到很多⽅⾯,在随机因素⽅⾯⾸先就是不确定环境下的随机需求,还有库存管理,供应链协调等,在做有限理性决策的时候,⼈们尽量通过具体的推算⽅法来做出最优化决策,虽然不是完全理性决策,但是确实使利润接近最⼤化的有限理性决策。
本论⽂讨论的是报童卖报问题,报童卖报问题实际上就是通过分析,找出⼏种可能的⽅案,通过求解,找出⼀个最优的⽅案来订报,使得报童赢利取得最⼤期望值或报童损失的最⼩期望值的临界值,也就是使报童获得的利益最⼤。
本⽂⾸先建⽴了最⼤期望值和最⼩期望值的模型,然后分别⽤连续的⽅法和离散的⽅法求解,最后得出结论。
尽管报童赢利最⼤期望值和损失最⼩期望值是不相同的,但是确定最佳订购量的条件是相同的。
关键词:报童模型、概率统计、概率分布建模、离散引⾔在报童模型中,有限理性决策主要⾯对的随机性因素是需求和时间,报童模型是典型的单价段,随机需求模型,主旨是寻找产品的最佳订货量,来最⼤化期望收益或最⼩化期望损失。
本⽂⾸先通过理论回顾解释出什么是报童模型中的有限理性,然后罗列了部分在报童模型中有限理性问题上进⾏研究的部分⽂献成果。
再得出有报童模型有限理性的发展。
⼀、问题重述报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回。
设报纸每份进购价为b,零售价为a,退回价为c,⾃然地假设a>b>c.也就是说,报童售出⼀份报纸赚a-b,退回⼀份赔b-c,。
试为报童筹划⼀下每天购进报纸的数量,使得收⼊最⼤,那么报童每天要购进多少份报纸?⼆、模型分析如果每天购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱。
§2 报童问题模型
[问题的提出] 报童每天清晨从报社购进报纸零售,晚上将没有卖掉的报纸退回.设报纸每份的购进价为b,零售价为a,退回价为c,应该自然地假设为a>b>c.这就是说,报童售出一份报纸赚a-b,退回一份赔b-c.报童每天如果购进的报纸太少,不够卖的,会少赚钱;如果购进太多,卖不完,将要赔钱.请你为报童筹划一下,他应如何确定每天购进报纸的数量,以获得最大的收入.
[问题的分析及假设] 众所周知,应该根据需求量确定购进量.需求量是随机的,假定报童已经通过自己的经验或其它的渠道掌握了需求量的随机规律,即在他的销售范围内每天报纸的需求量为r份的概率是)
f.有了)
(r
r
f和a,b,c,
,2,1,0
)(
r
(
就可以建立关于购进量的优化模型了.
假设每天购进量为n份,因为需求量r是随机的,r可以小于n,等于n或大于n,致使报童每天的收入也是随机的,所以作为优化模型的目标函数,不能是报童每天的收入,而应该是他长期(几个月,一年)卖报的日平均收入.从概率论大数定律的观点看,这相当于报童每天收入的期望值,以下简称平均收入.
[模型的建立及求解] 记报童每天购进n份报纸时的平均收入为G(n),如果这天的需求量r≤n,则他售出r份,退回n-r份;如果这天的需求量r>n,则n份将全部售出.考虑到需求量为r的概率是)
f,所以
(r
问题归结为在)
f,a,b,c已知时,求n使G(n)最大.
(r
通常需求量r的取值和购进量n都相当大,将r视为连续变量更便于分析和计算,这时概率)
f转化为概率密度函数)
(r
(r
p,(1)式变成
计算
令0=dn dG
.得到
使报童日平均收入达到最大的购进量n 应满足(3)式.因为⎰∞
=01)(dr r p ,所以(3)式又可表为
根据需求量的概率密度)(r p 的图形很容易从(3)式确定购进量n .在图2中用1P ,2P 分别表示曲线)(r p 下的两块面积,则(3)式可记作
因为当购进n 份报纸时,⎰=n dr r p P 01)(是需
求量r 不超过n 的概率,即卖不完的概率:
⎰∞=n dr r p P )(2是需求量r 超过n 的概率,即卖完
的概率,所以(3)式表明,购进的份数 应该使卖
不完和卖完的概率之比,恰好等于卖出一份赚的钱
a-b 与退回一份赔b-c 之比.显然,当报童与报社签订的合同使报童每份赚钱和赔钱之比越大时,报童购进的份数就应该越多.。