初中数学竞赛专题《换元法》
- 格式:doc
- 大小:141.50 KB
- 文档页数:4
初中数学什么是换元法换元法是一种在初中数学中常用的解题方法,特别适用于一些复杂的方程或不等式的求解过程。
通过引入一个新的未知数或进行一定的代换,可以将原问题转化为更简单的形式,从而更容易求解。
下面我将为您详细介绍换元法的定义、原理以及应用方法。
一、换元法的定义换元法是指通过引入一个新的未知数或进行一定的代换,将原问题转化为更简单的形式,从而更容易求解的解题方法。
通过将问题中的变量进行替换,可以改变问题的形式,使其更易于处理。
换元法在解方程、求不等式的最值、证明等问题中都有广泛的应用。
二、换元法的原理换元法的原理是通过引入一个新的未知数或进行一定的代换,将原问题转化为更简单的形式。
新的未知数或代换的选择通常是根据问题的特点和需要来确定的。
通过合理的选择,可以使问题的形式更简单,从而更容易求解。
三、换元法的应用方法换元法的应用方法可以根据具体问题的不同而有所变化。
下面我将分别介绍在解方程、求不等式的最值以及证明中的换元法应用方法。
1. 解方程:a. 对于一元一次方程,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于方程2x + 3 = 7,可以引入新的未知数y = 2x + 3,转化为y = 7,进而求得x的值。
b. 对于一元二次方程,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于方程x^2 + 3x + 2 = 0,可以引入新的未知数y = x + 1,转化为y^2 + 2 = 0,进而求得x的值。
2. 求不等式的最值:a. 对于一元一次不等式,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于不等式2x + 3 > 5,可以引入新的未知数y = 2x + 3,转化为y > 5,进而求得x的取值范围。
b. 对于一元二次不等式,可以通过引入新的未知数或进行代换,将其转化为更简单的形式。
例如,对于不等式x^2 - 4x + 3 > 0,可以引入新的未知数y = x - 2,转化为y^2 - 1 > 0,进而求得x的取值范围。
换元法在数学竞赛中的若干运用摘要:在中学数学竞赛中,换元法作为一种重要的解题方法,有着能够将数学问题化繁为简,化难为易的作用。
本文论述换元法在中学数学竞赛中的若干种运用,主要从自身换元、局部换元、整体换元、常值换元、均值换元、参数换元、比值换元及其功能分类等八个方面来论述.关键词:换元法、数学竞赛Abstract前言从往年的竞赛试题看,初中竞赛和高中竞赛题需要用到换元法来求解的问题是相当多的。
在计算题、解高次方程、解无理方程、求函数解析式、不等式的证明、数列等题型中经常能过发挥重要的作用。
通过换元法可以达到化高次为低次,化分式为整式,化无理式为有理式,化超越式为代数式的转化。
这里我仅结合数学竞赛中常出现的一些题型来谈一谈它在数学竞赛中的一些运用.1.换元法的定义及其相关概念1.1换元法的定义所谓换元法(substitution method; substitution; changing yuan)是一种设辅助元素,把题中一个(些)字母的表达式用另外的一个字母(些)字母的表达式来代替,从而达到把要求解的问题简单化,建立已知和未知的联系的方法.在解决数学竞赛试题时,有时我们直接按原始的方法去解决问题会显得比较繁琐和困难,或者原问题所给已知条件不易得出最后结果,或者所给问题不好下手,那么这时如果我们能够引人新的“元”代替旧的“元”,使得建立在“新元”基础上的条件和问题得到了化繁为简、化难为易,容易得出最后的正确结果。
这就是换元法之所在.1.2换元法的基本思想化繁为简、化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式、化不熟悉为熟悉.1.3换元法的一般步骤①构造新元②解答③求出原解转化代价代换2.换元法的分类及典例分析2.1从结构上划分2.1.1自身换元法在数学竞赛中,我们经常会遇到一些很繁杂的计算题,如果按照原始的方法去计算,如果按照原始的方法去计算,将会使计算过程变的复杂难解,甚至不能得到最后的正确结果,这时我们常会用到“自身换元法”。
第3讲换元法和待定系数法典型例题一.换元法【例1】分解因式:63-+x x2827【例2】分解因式:44222-+++-()()()a b a b a b【例3】分解因式:4444(4)++-a a【例4】分解因式:44+++-y y(1)(3)272+++-+y y y(1)(3)4(35)【例5】分解因式:33【例6】 分解因式:2222(48)3(48)2x x x x x x ++++++【例7】 证明:四个连续整数的的乘积加1是整数的平方.【例8】 分解因式:(1)(1)(3)(5)9x x x x -+++-【例9】 分解因式:22(76)(6)56x x x x -+--+.【例10】 分解因式:42199819991998x x x -+-【例11】 分解因式:24(5)(6)(10)(12)3x x x x x ++++-【例12】 分解因式:()()()()()()()b c a c a b a b c a a b c a b c b a b c b c a +-+-+-+-++-++-+-+()()c b c a a b c +--+.【例13】 分解因式:2(3)(1)(5)20x x x +-+-.【例14】 分解因式:4322212()x x x x x +++++.【例15】 分解因式:22222(21)(44)(21)x y x y xy x y x +-+----+.【例16】 分解因式:2(1)(2)(2)xy x y x y xy -++-+-.【例17】 证明:对任意自然数n ,都存在一个自然数m ,使得1mn +是一个合数.【例18】化简:2323234 (1)1x x x xx x x x+++-++++.【例19】将199551-分解成三个整数之积,且每一个因数都大于1005.二.待定系数法【例20】分解因式:43223x x x x++-+【例21】分解因式:432x x--【例22】 分解因式:432266x x x x -+-+【例23】 分解因式:432615x x x x -+-+.【例24】 421x x -+能否分解因式?【例25】 分解因式:2422(1)1a a a a ++-+.【例26】 若226541122x xy y x y m ---++可分解为两个一次式的积,求m 的值并将多项式分解因式.【例27】 已知4326134x x x kx -+++是一个完全平方式,求常数k 的值.【例28】 已知32x bx cx d +++的系数均为整数,若bd cd +为奇数.求证:此多项式不能分解为两个整系数的多项式之积.【例29】 已知关于x ,y 的二次六项式226372x axy y x y +----能分解为一次式2x by c ++与2dx ey +-的积,求a b c d e ++++的值.【例30】 已知关于y 的五次三项式554y my n -+有二次因式2()y a -(其中a ,n 均不为零).求证:(1)n a m =;(2)54m n =.【例31】 将分式251126x x x -+-分解成部分分式.思维飞跃【例32】 设3434a b -≤-≤,5917a b ≤+≤,求7a b +的最小值和最大值。
初三换元法例题一、题目:计算下列等式的值1. 17a + 8b - 3c,其中a = 2,b = 5,c = 3。
2. 4x + 2y - 5z,其中x = 3,y = 7,z = 2。
1. 代入a = 2,b = 5,c = 3,得:17(2) + 8(5) - 3(3)= 34 + 40 - 9所以,17a + 8b - 3c 的值为74。
2. 代入x = 3,y = 7,z = 2,得:4(3) + 2(7) - 5(2)= 12 + 14 - 10所以,4x + 2y - 5z 的值为16。
二、题目:写出下列等式的换元表达式。
1. 5a + 3b - 2c,a = x + 1,b = 2y,c = z - 3。
2. 2x + 4y - 3z,x = a - 1,y = b + 2,z = c + 3。
1. 代入a = x + 1,b = 2y,c = z - 3,得:5(x + 1) + 3(2y) - 2(z - 3)= 5x + 5 + 6y - 2z + 6= 5x + 6y - 2z + 11所以,换元后的表达式为 5x + 6y - 2z + 11。
2. 代入x = a - 1,y = b + 2,z = c + 3,得:2(a - 1) + 4(b + 2) - 3(c + 3)= 2a - 2 + 4b + 8 - 3c - 9= 2a + 4b - 3c - 3所以,换元后的表达式为 2a + 4b - 3c - 3。
三、题目:用换元法解下列问题。
1. 有一个长方形,长是x + 3,宽是x - 2,求其周长和面积。
2. 小明的体重是a - 10kg,小明增加了b kg,现在的体重是多少?1. 周长 = 2(长 + 宽) = 2(x + 3 + x - 2) = 4x + 2面积 = 长× 宽 = (x + 3)(x - 2) = x^2 + x - 6所以,长方形的周长为4x + 2,面积为x^2 + x - 6。
备战2020中考数学解题方法专题研究专题4 换元法专题【方法简介】解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用。
换元法又称变量替换法, 是我们解题常用的方法之一。
利用换元法, 可以化繁为简, 化难为易, 从而找到解题的捷径。
【真题演练】1. 若(x2+y2﹣2)2=9,则x2+y2的值为()A.1 B.﹣1 C.5 D.5或﹣1【解析】:设t=x2+y2(t≥0),由原方程得:(t﹣2)2=9,解得t﹣2=±3,解得t=5或t=﹣1(舍去).故选:C.2. 用“整体法”求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A.x1=1,x2=3 B.x1=﹣2,x2=3 C.x1=﹣3,x2=﹣1 D.x1=﹣2,x2=﹣1【解析】:(2x+5)2﹣4(2x+5)+3=0,设2x+5=y,则原方程变形为y2﹣4y+3=0,解得:y1=1,y2=3,当y=1时,2x+5=1,解得:x=﹣2,当y=3时,2x+5=3,解得:x=﹣1,即原方程的解为x1=﹣2,x2=﹣1,故选:D.3. 若实数a,b满足(2a+2b)(2a+2b﹣2)﹣8=0,则a+b=.【解析】设a+b=x,则由原方程,得2x(2x﹣2)﹣8=0,整理,得4x2﹣4x﹣8=0,即x2﹣x﹣2=0,分解得:(x+1)(x﹣2)=0,解得:x1=﹣1,x2=2.则a+b的值是﹣1或2.故答案是:﹣1或2.4. 阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.【解析】:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.【名词释义】概念:换元法是数学中一个非常重要而且应用十分广泛的解题方法。
初中数学竞赛专题选讲换元法一、内容提要1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法.2. 换元的目的是化繁为简,化难为易,沟通已知和未知的联系.例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换.3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验.4. 解二元对称方程组,常用二元基本对称式代换.5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等.例如:一元四次的倒数方程ax 4+bx 3+cx 2+bx+a=0.两边都除以x 2,得a(x 2+21x )+b(x+x 1)+c=0.设x+x 1=y, 那么x 2+21x= y 2-2,原方程可化为ay 2+by+c -2=0.对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1.原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0.ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程.形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是:与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数.两边都除以x 2, 可化为a(x 2+21x)-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x=y 2+2,原方程可化为 ay 2-by+c+2=0.二、例题例1. 解方程1112---++x x x =x.解:设11-++x x =y, 那么y 2=2x+212-x .原方程化为: y -21y 2=0 . 解得 y=0;或y=2.当y=0时, 11-++x x =0 (无解) 当y=2时,11-++x x =2,解得,x=45. 检验(略). 例2. 解方程:x 4+(x -4)4=626.解:(用平均值24-+x x 代换,可化为双二次方程.) 设 y= x -2 ,则x=y+2.原方程化为 (y+2)4+(y -2)4=626.[((y+2)2-(y -2)2)2+2(y+2)2(y -2)2-626=0整理,得 y 4+24y 2-297=0. (这是关于y 的双二次方程).(y 2+33)(y 2-9)=0. 当y 2+33=0时, 无实根 ;当y 2-9=0时, y=±3.即x -2=±3, ∴x=5;或x=-1. 例3. 解方程:2x 4+3x 3-16x 2+3x+2=0 .解:∵这是个倒数方程,且知x ≠0,两边除以x 2,并整理 得2(x 2+21x )+3(x+x 1)-16=0.设x+x 1=y, 则x 2+21x=y 2-2.原方程化为 2y 2+3y -20=0. 解得 y=-4;或y=25. 由y=-4得 x=-2+3;或x=-2-3. 由y=2.5得 x=2;或x=21. 例4 解方程组⎪⎩⎪⎨⎧=+++++=+++++01012124012522222y x y xy x y x y xy x 解:(这个方程组的两个方程都是二元对称方程,可用基本对称式代换.)设x+y=u, xy=v. 原方程组化为:⎪⎩⎪⎨⎧=+++=+++01021201222v u u v u u . 解得⎩⎨⎧-==374v u ; 或⎪⎪⎩⎪⎪⎨⎧=-=91132v u . 即⎩⎨⎧-==+374xy y x ; 或⎪⎪⎩⎪⎪⎨⎧=-=+91132xy y x . 解得:⎪⎪⎩⎪⎪⎨⎧--=+-=33213321y x ;或⎪⎪⎩⎪⎪⎨⎧+-=--=33213321y x ;或⎪⎩⎪⎨⎧-=+=412412y x ;或⎪⎩⎪⎨⎧+=-=412412y x .三、练习解下列方程和方程组:(1到15题):1. =++++)7(27x x x x 35-2x.2. (16x 2-9)2+(16x 2-9)(9x 2-16)+(9x 2-16)2=(25x 2-25)2.3. (2x+7)4+(2x+3)4=32 .4. (2x 2-x -6)4+(2x 2-x -8)4=16. 5. (2115-+x )4+(2315-+x )4=16.6.x x x x 112+++=223. 7. 2x 4-3x 3-x 2-3x+2=0. 8. ⎪⎩⎪⎨⎧=++=+++19182222xy y x y x y x 9. ⎪⎩⎪⎨⎧=+=+160311122y x y x .10.563964467222+-=+-+--x x x x x x . 11. (6x+7)2(3x+4)(x=1)=6.12. ⎪⎩⎪⎨⎧=+=-++13511y x y x . 13. ⎪⎩⎪⎨⎧=+=+1025y x x y y x .14. ⎪⎩⎪⎨⎧=+-+=-+++01823312y xy y y x y x . 15x xx x =-+-111. 16. 分解因式: ①(x+y -2xy)(x+y -2)+(1-xy)2; ②a 4+b 4+(a+b)4.17. 已知:a+2=b -2=c ×2=d ÷2, 且a+b+c+d=1989.则a=___,b= ____,c=_____,d=____ (1989年泉州市初二数学双基赛题) 18. [a ]表示不大于a 的最大整数,如[2]=1,[-2]=-2,那么 方程 [3x+1]=2x -21的所有根的和是_____.(1987年全国初中数学联赛题)练习题参考答案1. 2212292. ±43±343. -254. 2,-23,4651±5.3231-32211, 6. 1 7.21,2 8.⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==727272722332y x y x y x y x 9. ⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==555555555555412124y x y x y x y x 10. 7,-1 11.-32,-3512.⎩⎨⎧==⎩⎨⎧==10358y x y x 13.⎩⎨⎧==⎩⎨⎧==8228y x y x 14. ⎪⎩⎪⎨⎧+=-=⎪⎩⎪⎨⎧-=+=⎩⎨⎧-==⎩⎨⎧==1031041031041513y x y x y x y x 15. x=251± 16.①设x+y=a,xy=b ②设a 2+b 2=x,ab=y 17.设原式=k, k=442 18. –2可设2x -21=t, x=21t+41代入[3x+1]。
知识点拨【知识提要】1. 方程中变量的换元;2. 三角换元;3. 特殊换元。
【基本题型】1. 解超过二次的方程,或解某些特殊的根式方程;2. 证明某些不等式,或者某些量的取值范围;3. 求某些难以直接求出来表达式的值。
【解题技巧】1. 遇到可以整体代入的时候,可以考虑换元;2. 解特殊的高次方程的时候,可以考虑换元;3. 有时候甚至可以联想三角函数。
快乐热身【热身】已知若有23y x =+成立,则有恒等式2223x x ay by c ++=++成立。
求abc 的值。
【解析】分析 直接用待定系数法会很繁琐。
有没有简单一些的方法呢?解 因为23y x =+,所以32y x -=。
所以,22239232424y y y x x y -⎛⎫++=+=-+ ⎪⎝⎭。
因此,119942432abc ⎛⎫=⨯-⨯=- ⎪⎝⎭。
第五讲 换元法热身完了,我们开始今天的课程吧!例题精讲【例 1】 求1111111...++++(无穷多个)的值。
【解析】 分析 连分数化简为分数从最底下开始,但是这个是无限的,应该怎么办呢?解 设原式x =,则11x x=+,也就是说210x x --=。
解得12x +=(负根舍去)。
说明 无限连分数和无限小数一样,都是极限。
关于极限的概念,以后会学到。
【例 2】 解关于x 的一元四次方程:43210x ax bx ax ++-+=。
【解析】 分析 因为方程次数高,所以应当设法降次。
解 观察方程的系数,具有对称的特点,所以应当使用换元法。
显然0x =不是原方程的解,所以除以2x 后得到:2210a x ax b x x ++-+=。
设1y x x=-,则有220y ay b +++=。
248a b ∆=--。
⑴若0∆>,则方程的解为1y =2y =。
代回1y x x =-得到1,2x =,3,4x =。
⑵若0∆=,则方程的解为1,22a y =-,于是有1,34a x -+=,2,44a x -=。
初中数学换元法典型例题哎呀,数学这玩意儿,有时候真让人抓狂,尤其是换元法。
别紧张,今天咱就轻松聊聊这个话题,保证让你觉得数学其实也可以很有趣。
你想啊,换元法就像是一个魔法,能把复杂的数学题变得简单明了。
想象一下,原本复杂的方程,就像是一道拗口的菜,你一换材料,哎呀,立马变成了你爱吃的那种,简单又好下咽。
举个例子,想象一下,有个方程,咱们称它为“老大难”。
这时候,你要先看看,里面有没有什么可以换的部分,像是找到了那颗隐蔽的珍珠。
比如说,有个方程是x² +3x + 2 = 0。
这个方程里,你可能会觉得 x 这个家伙太难伺候,没关系,咱们可以用 y代替它,换成y² + 3y + 2 = 0,嘿嘿,突然间感觉简单多了,不是吗?再说,换元法可不是随便换换就完事。
你得选好合适的“替身”,有时候就像找对象,得找个合适的,才能事半功倍。
比如,咱们可以把 x 设为 y 1,结果一代入,方程变成了y² + 1 = 0。
哎呀,这一下直接变成了平方和,清清爽爽!你看,原本麻烦的事情,经过一番巧妙的“换元”,就轻松化解了。
再想象一下,换元法就像换了一条新路。
原本走那条蜿蜒曲折的小路,结果一不小心,咱们找到了条宽敞的马路。
比如说,咱们再来个例子,方程是x³ 3x + 2 = 0。
先把x 设成 y 1,结果你会发现,方程变得清晰了,像是在雾霭中突然看到蓝天。
只要稍微动动脑筋,神奇的事情就会发生。
换元法的魅力在于它的灵活性。
咱们可以用不同的元,像是变魔术似的,把复杂的变得简单。
就像变脸,今天是这个角色,明天换个身份,瞬间让人耳目一新。
比如把 x 设为 2y,结果一代入,你会发现,方程的结构也悄悄变了。
这种变化就像人生,今天你是学生,明天可能就是个专家,一步一个脚印,最终达成你的目标。
在解题过程中,换元法更像是一位耐心的老师,教你如何寻找解决问题的钥匙。
每当遇到棘手的题目,不妨停下来,先用换元法想一想,可能会有意想不到的收获。
因式分解的方法二——换元法参考答案知识要点:换元法是数学中的一种重要方法,在解题和证明中常常起到桥梁作用。
用换元法分解因式,是把题目中的某一部分或某几部分看成一个整体,设为一个或几个新的变元,从而使代数式的结果简单化,便于分解。
A 卷一、填空题1、分解因式:()()_______________122122=-++++x x x x .2、分解因式:()()()()_______________157531=+++++x x x x .3、(重庆市竞赛题)分解因式:()____________________199911999199922=---x x .4、(第12届“五羊杯”初二试题)分解因式:()()()_____________22333=-----y x y x . 5、(“TI 杯”初中竞赛题)若142=++y xy x ,282=++x xy y ,则y x +的值为 .二、选择题6、当1=-y x 时,42233433y xy y x y x xy x ++---的值为( )A 、1-B 、0C 、2D 、17、(武汉市选拔赛)若133=-x x ,则199973129234+--+x x x x 的值等于( )A 、1999B 、2001C 、2003D 、20058、要使()()()()m x x x x +--+-8431为完全平方式,则m 为( )A 、12B 、24C 、196D 、200B 卷一、填空题9、化简:()()()_______________111120022=++++++++x x x x x x x .11、(2005年第16届“希望杯”初二年级竞赛题)在有理数范围内分解因式: ()()()()________________________________________63212=+++++x x x x x二、解答题12、分解因式:(2)()13322132222-+-+-x x x x 解原式()()13211132222---+-=x x x x令y x x =-322,则原式()11112--+=y y y y 92-=()9-=y y()()9323222---=x x x x ()()()32332+--=x x x x(3)()()()91729522---+a a a (湖北省黄冈市竞赛题)解原式()()()()91723352---++=a a a a()()[]()()[]91723352---++=a a a a()()9121215222-----=a a a a 令y a a =-22,则原式()()912115---=y y224362+-=y y()()828--=y y()()8228222----=a a a a()()()827242--+-=a a a a (4)()()42424101314x x x x x ++++-(第13届“五羊杯”竞赛题)解:设y x =+14,则原式()()4221034x x y x y ++-=44221012x x y x y +--=4222x y x y --=()()222x y x y +-=()()1122424+++-=x x x x()()[]2222211x x x -+-=()()()1112222-+++-=x x x x x (5)()()()2121231-+-⎪⎭⎫ ⎝⎛++-+++y x y x xy xy xy (天津市竞赛题) 解:设a y x =+,b xy =,则 原式()()()2121231--⎪⎭⎫ ⎝⎛+-+++=a a b b b ()2212a b b -++=()()a b a b -+++=11()()y x xy y x xy --++++=11()()()()1111--++=y x y x (6)()()()3331252332y x y x y x ---+-(第13届“五羊杯”竞赛题) 解原式()()()[]33352332y x y x y x ---+-= ()()()()[]33323322332y x y x y x y x -+---+-= 设a y x =-32,b y x =-23,则原式()333b a b a +-+= ()b a ab +-=3()()()y x y x y x 5523323----=()()()y x y x y x 233215----=C 卷一、解答题13、(安徽省竞赛试题)证明:12000199919981997+⨯⨯⨯是一个整数的平方,并求出这个整数。
初中数学竞赛专题选讲
换元法
一、内容提要
1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法.
2. 换元的目的是化繁为简,化难为易,沟通已知和未知的联系.
例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换.
3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验.
4. 解二元对称方程组,常用二元基本对称式代换.
5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等. 例如:一元四次的倒数方程ax 4+bx 3+cx 2+bx+a=0.
两边都除以x 2,得a(x 2+
21x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0.
对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1.
原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0.
ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程.
形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是:
与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数.
两边都除以x 2, 可化为a(x 2+21x
)-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x
=y 2+2, 原方程可化为 ay 2-by+c+2=0.
二、例题
例1. 解方程1112---+
+x x x =x. 解:设11-++x x =y, 那么y 2=2x+212-x .
原方程化为: y -2
1y 2=0 . 解得 y=0;或y=2.
当y=0时,
11-++x x =0 (无解) 当y=2时, 11-++x x =2,
解得,x=4
5. 检验(略).
例2. 解方程:x 4+(x -4)4=626.
解:(用平均值2
4-+x x 代换,可化为双二次方程.) 设 y= x -2 ,则x=y+2.
原方程化为 (y+2)4+(y -2)4=626.
[((y+2)2-(y -2)2)2+2(y+2)2(y -2)2-626=0
整理,得 y 4+24y 2-297=0. (这是关于y 的双二次方程).
(y 2+33)(y 2-9)=0.
当y 2+33=0时, 无实根 ;
当y 2-9=0时, y=±3.
即x -2=±3,
∴x=5;或x=-1.
例3. 解方程:2x 4+3x 3-16x 2+3x+2=0 .
解:∵这是个倒数方程,且知x ≠0,
两边除以x 2,并整理 得2(x 2+
2
1x )+3(x+x 1)-16=0. 设x+x 1=y, 则x 2+21x =y 2-2. 原方程化为 2y 2+3y -20=0.
解得 y=-4;或y=2
5. 由y=-4得 x=-2+3;或x=-2-3.
由y=2.5得 x=2;或x=2
1. 例4 解方程组⎪⎩⎪⎨⎧=+++++=+++++0
1012124012522222y x y xy x y x y xy x 解:(这个方程组的两个方程都是二元对称方程,可用基本对称式代换.) 设x+y=u, xy=v. 原方程组化为:
⎪⎩⎪⎨⎧=+++=+++010********
v u u v u u . 解得⎩⎨⎧-==374v u ; 或⎪⎪⎩⎪⎪⎨⎧=-=91132v u . 即⎩⎨⎧-==+374xy y x ; 或⎪⎪⎩
⎪⎪⎨⎧=-=+91132xy y x . 解得:⎪⎪⎩⎪⎪⎨⎧--=+-=33213321y x ;或⎪⎪⎩
⎪⎪⎨⎧+-=--=33213321y x ;或⎪⎩⎪⎨⎧-=+=412412y x ;或⎪⎩⎪⎨⎧+=-=412412y x .
三、练习
解下列方程和方程组:(1到15题): 1. =++++)7(27x x x x 35-2x.
2. (16x 2-9)2+(16x 2-9)(9x 2-16)+(9x 2-16)2=(25x 2-25)2.
3. (2x+7)4+(2x+3)4=32 .
4. (2x 2-x -6)4+(2x 2-x -8)4=16.
5. (2115-+x )4+(2315-+x )4=1
6.
6. x x x x 11
2+++=223. 7. 2x 4-3x 3-x 2-3x+2=0. 8. ⎪⎩⎪⎨⎧=++=+++19182222xy y x y x y x 9. ⎪⎩
⎪⎨⎧=+=+160311122y x y x . 10. 5
63964467222+-=+-+--x x x x x x . 11. (6x+7)2(3x+4)(x=1)=6.
12. ⎪⎩⎪⎨⎧=+=-++13511y x y x . 13. ⎪⎩
⎪⎨⎧=+=+1025y x x y y x . 14. ⎪⎩⎪⎨⎧=+-+=-+++01823312y xy y y x y x . 15
x x
x x =-+-111. 16. 分解因式: ①(x+y -2xy)(x+y -2)+(1-xy)2; ②a 4+b 4+(a+b)4 .
17. 已知:a+2=b -2=c ×2=d ÷2, 且a+b+c+d=1989.
则a=___,b= ____,c=_____,d=____ (1989年泉州市初二数学双基赛题)
18. [a ]表示不大于a 的最大整数,如[2]=1,[-2]=-2,
那么 方程 [3x+1]=2x -
2
1 的所有根的和是_____.(1987年全国初中数学联赛题)
练习题参考答案 1. 2
2
1229
2. ±
43±3
4 3. -2
5 4. 2,-
23,4651± 5.32
31-32211, 6. 1 7.2
1,2 8.⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==7
27272722332y x y x y x y x 9. ⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧--=+-=⎩⎨⎧==⎩⎨⎧==55
5555555555412124y x y x y x y x 10. 7,-1
11.-32,-3
5 12.⎩⎨⎧==⎩⎨⎧==10
358y x y x 13.⎩⎨⎧==⎩⎨
⎧==8228y x y x 14. ⎪⎩⎪⎨⎧+=-=⎪⎩⎪⎨⎧-=+=⎩⎨⎧-==⎩⎨⎧==10
31041031041513y x y x y x y x 15. x=2
51± 16.①设x+y=a,xy=b ②设a 2+b 2=x,ab=y
17.设原式=k, k=442
18. –2可设2x -21=t, x=21t+41代入[3x+1]。