12用数轴上的点表示有理数
- 格式:ppt
- 大小:1.15 MB
- 文档页数:29
%第二章有理数及其运算1 有理数题型一具有相反意义的量及表示方法1.下列选项中,具有相反意义的量是()A.胜2局与负3局 B.6个老师与6个学生C.盈利3万元与支出3万元 D.向东行30米与向北行30米`2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.如果向东走5米记为+5米,那么向西走3米记为()A.﹣3米B.﹣5米C.+3米D.+5米3.某商场经理对今年上半年每月的利润作了如下记录:月盈利分别是33万元、32万元、万元、54万元,3、4月份亏损分别是万元和万元.试用正、负数表示各月的利润,并算出该商场上半年的总利润.|题型二几何图形的构成4.在﹣3,0,1,﹣2这四个数中,是负数的有()个.A.1 B.2 C.3 D.05.在下列各说法中,正确的是()A.数0的意义就是没有 B.一个有理数,不是整数就是分数C.一个有理数不是正有理数就是负有理数 D.正数和负数统称为有理数6.在﹣,2,0,,﹣9这五个数中,负有理数的个数为个;整数的个数为个.:7下列各数中,既不是整数也不是负数的是()A.B.5 C.﹣1 D.08.课堂上老师要求就数“0”发表自己的意见,四位同学共说了下列四句话:①0是整数,但不是自然数;②0既不是正数,也不是负数;③0不是整数,是自然数;④0没有实际意义.其中正确的个数是()A.4 B.3 C.2 D.19.(1)统称整数,(2)统称分数,(3)统称有理数.10..下列各数,哪些是整数,哪些是分数哪些是正数,哪些是负数1,﹣,,﹣789,325,0,﹣20,,1 .,11.五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+,﹣4,+,﹣,+.这五袋白糖共超过多少千克总重量是多少千克]题型三数的集合12.把下列各数填入相应的大括号内:﹣,2,0,﹣,﹣3,+27,﹣15%,﹣1正数集合{ }负数集合{ }整数集合{ }分数集合{ }非负数集合{ }—1 有理数-提升1.小青乘飞机取旅游,从放置在座位后背的一份杂志上看到这样的一张表格:飞机距离地面高度h(千米)012~3……飞机舱外面的温度t(℃)82﹣4﹣10……)此时飞机舱外部的温度显示为﹣22℃,地面此时温度为8℃,请你帮小青算算,他所乘坐的飞机此时距离地面()千米.A.8 B.7 C.6 D.52.下列说法正确的是()A.有理数分为正数和负数B.﹣a一定表示负数C.正整数,正分数,负整数,负分数统称为有理数D.有理数包括整数和分数3.给出下列各数:+10,﹣2,0,﹣,5,﹣1,,﹣2016,,,其中,是负数的有()【A.2个B.3个C.4个D.5个4.小明和小红以旗杆为起点,小明向东走15米记作+15米,小红向西走3米记作﹣3米,小明和小红相距()米.A.18米B.19米C.20米5.﹣,0,2008,,10%,﹣23,,﹣,3,上述数中,整数有,负分数有.6.下列数﹣11、5%、﹣、、、0、﹣、﹣π、2014中,负有理数有个,负分数有个,整数有个.7.邻居张大爷上星期五买进某公司股票,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一;三四五二﹣每股涨跌+2 +﹣1。
有理数知识点归纳1.(重点)(1)正数:大于零的数;(2)负数:小于零的数(在正数前面加上负号“—”的数);注意:①0既不是正数也不是负数,它是正负数的分界点;②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数;③字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a 是正数;当a表示0时,-a仍是0。
④正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
例:1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+13,0,—3.1415,200,—754200,π2、零下15℃,表示为_________,比O℃低4℃的温度是_________.3、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为__ _____地,最低处为____ ___地.4、“甲比乙大-3岁”表示的意义是______________________.2.有理数的概念⑴正整数、0、负整数统称为整数;⑵正分数和负分数统称为分数;⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数;②有限小数和无限循环小数都可化成分数,都是有理数;③-a不一定是负数,+a也不一定是正数;3.有理数的分类⑴按有理数的定义分类 ⑵按性质符号来分 正整数 正整数 整数 0 正有理数负整数 正分数有理数 有理数 0 (0不能忽视)正分数 负整数分数 负有理数负分数 负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑤0是整数不是分数。
例:1、下列有理数-7,10.1,-16,89,0,-0.67,315中,哪些是整数,哪些是分数,哪些是负数?2、把下列各数填入它所属于的集合的圈内:15, -91, -5, 152, 813 , 0.1, -5.32, -80, 123.52正整数集合 负整数集合正分数集合 负分数集合4. 规定了原点,正方向,单位长度的直线叫做数轴。
有理数应用题及答案【篇一:初一有理数练习题及答案一】t>一、选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元(a)1.1?104 (b)1.1?105 (c)11.4?103 (d)11.3?103 2、大于–3.5,小于2.5的整数共有()个。
(a)6 (b)5 (c)4 (d)33、已知数a,b在数轴上对应的点在原点两侧,并且到原点的位置相等;数x,y是互为倒数,那么2|a?b|?2xy的值等于()(a)2(b)–2(c)1(d)–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数()(a)同号,且均为负数(b)异号,且正数的绝对值比负数的绝对值大(c)同号,且均为正数(d)异号,且负数的绝对值比正数的绝对值大 5、在下列说法中,正确的个数是()⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数a、1b、2c、3d、46、如果一个数的相反数比它本身大,那么这个数为() a、正数 c、整数b、负数d、不等于零的有理数7、下列说法正确的是()a、几个有理数相乘,当因数有奇数个时,积为负;b、几个有理数相乘,当正因数有奇数个时,积为负; c、几个有理数相乘,当负因数有奇数个时,积为负; d、几个有理数相乘,当积为负数时,负因数有奇数个; 8、在有理数中,绝对值等于它本身的数有()a.1个b.2个c. 3个d.无穷多个9、下列计算正确的是()a.-22=-4b.-(-2)2=4c.(-3)2=6d.(-1)3=1 10、如果a0,那么a和它的相反数的差的绝对值等于() a.a b.0 c.-a d.-2a 二、填空题:(每题2分,共42分) 1、??2?64。
2、小明与小刚规定了一种新运算*:若a、b是有理数,则a*b =3a?2b。
《有理数》导学案一、学习目标1、理解有理数的概念,能区分正有理数、零和负有理数。
2、掌握有理数的分类方法,会对给定的数进行分类。
3、理解数轴的概念,能正确画出数轴,能用数轴上的点表示有理数。
4、理解相反数和绝对值的概念,会求一个数的相反数和绝对值。
二、学习重难点1、重点(1)有理数的概念及其分类。
(2)数轴的概念及应用。
(3)相反数和绝对值的概念及计算。
2、难点(1)对负数概念的理解。
(2)绝对值的性质及其应用。
三、知识梳理(一)有理数的概念整数和分数统称为有理数。
整数包括正整数、零和负整数。
例如:5、0、-3 等。
分数包括正分数和负分数。
例如:1/2、-3/4 等。
(二)有理数的分类1、按定义分类:有理数分为整数和分数。
整数分为正整数、零和负整数。
分数分为正分数和负分数。
2、按性质分类:有理数分为正有理数、零和负有理数。
正有理数分为正整数和正分数。
负有理数分为负整数和负分数。
(三)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三要素:原点、正方向、单位长度。
3、数轴上的点与有理数的关系:数轴上的点与有理数一一对应,即任何一个有理数都可以用数轴上的一个点来表示;反之,数轴上的任意一个点都表示一个有理数。
(四)相反数1、定义:只有符号不同的两个数叫做互为相反数。
例如:5 和-5 互为相反数,0 的相反数是 0。
2、性质:(1)互为相反数的两个数的和为 0。
(2)在数轴上,互为相反数的两个数位于原点的两侧,且到原点的距离相等。
(五)绝对值1、定义:一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。
2、性质:(1)正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
即:当 a>0 时,|a| = a;当 a = 0 时,|a| = 0;当 a<0 时,|a| = a。
(2)绝对值具有非负性,即|a|≥0。
四、典型例题例 1:把下列各数分别填入相应的集合里:+5,-314,0,-7,12/13,-20%,-001,21,-98,314159正数集合:{________________}负数集合:{________________}整数集合:{________________}分数集合:{________________}解:正数集合:{+5,12/13,21,314159}负数集合:{-314,-7,-20%,-001,-98}整数集合:{+5,0,-7,21,-98}分数集合:{-314,12/13,-20%,-001,314159}例 2:画出数轴,并用数轴上的点表示下列各数:-3,2,0,-15,5/2解:先画出数轴,然后在数轴上找到对应的点。
第2章《有理数》考点归纳知识梳理重难点分类解析考点1相反意义的量【考点解读】中考中对于相反意义的量的考查主要涉及用正负数表示相反意义的量,解此类题的关键是要深刻理解正数、负数的意义.例1一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m分析:若向右运动4 m记作+4 m,则向左运动4 m记作-4 m.答案:A【规律·技法】解题时要抓住以下几点:①记住区分相反意义的量;②记住相反意义的量的表示方法.【反馈练习】1.某财务科为保密起见采取新的记账方式,以5万元为1个记数单位,并记100万元为0,少于100万元记为负,多于100万元记为正.例如:95万元记为-1,105万元记为1.依此类推,75万元应记为( )A. -3B. -4C. -5D. -6 点拨:每多5万元记为+1,每少5万元记为-1.2. (2017·苏州期末)一个物体做左右方向的运动,规定向右运动5m 记作+5m ,那么向左运 动5m 记作( )A. -5mB.5mC.10mD. -10 m 点拨:若向右为正,则向左为负. 考点2 数轴【考点解读】中考中对于数轴的考查主要涉及数轴的认识以及数形结合的思想.用数轴上的点来表示有理数,这是运用了数形结合的思想.利用数轴这一工具,加强数形结合的训练可沟通知识间的联系.例2 如图,四个有理数在数轴上的对应点分别为,,,M P N Q ,若点,M N 表示的有理数互 为相反数,则图中表示绝对值最小的数的点是( )A.点MB.点NC.点ND.点Q 分析:因为点,M N 表示的有理数互为相反数,所以原点的位置在线段MN 的中点,所以表示绝对值最小的数的点是点P . 答案:C【规律·技法】解答与数轴有关的问题时要抓住以下几点:①记住数轴上的点与有理数的对应关系;②相反数、点与点之间的距离在数轴上的表示方法;③数轴常常与相反数、距离、绝对值结合考查. 【反馈练习】3.有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0a b +<B. 0a b -<C. 0ab >D. 0a b -> 点拨:先判断,a b 的正负和大小关系.4. (2017·苏州期末)有理数,a b 在数轴上的位置如图所示,则下列各式正确的是( )A. 0ab >B. b a <C. 0b a <<D. 0a b +>点拨:先判断,a b的正负和大小关系.考点3绝对值、相反数、倒数【考点解读】中考中对于绝对值、相反数、倒数的考查主要涉及概念的理解,因此掌握基本概念是解题关键.例3(1)(2017·盐城)-2的绝对值是( )A. 2B. -2C. 12D.12-(2)-3的相反数是,-3的绝对值是.(3) 23的倒数是.分析:根据相反数、绝对值、倒数的定义解答.符号不同、绝对值相同的两个数互为相反数,0的相反数是0;正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;乘积为1的两个数互为倒数.答案:(1) A (2) 3 3 (3) 3 2【规律·技法】(1)正确理解相反数的概念是关健;(2)数a的绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身;②当a是负数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零;(3)应熟练掌握倒数的定义,需要注意的是负数的倒数还是负数,正数的倒数还是正数,0没有倒数.【反馈练习】5.23-的相反数是( )A.23- B.23C.32- D.32点拨:符号相反、绝对值相同的两个数互为相反数.6.若a与1互为相反数,则1a+等于( )A.-1B. 0C.1D.2点拨:互为相反数的两个数的和为0.考点4有理数大小的比较【考点解读】比较有理数大小的基本方法:①绝对值法:两个正数,绝对值大的正数大;两个负数,绝对值大的负数小;②数轴法:在数轴上表示的两个有理数,右边的点表示的数总比左边的点表示的数大.例4 (1) (2017·扬州)下列各数中,比-2小的数是()A.-3B.-1C. 0D. 1(2)下列各式中,计算结果最大的是( )A. 25 X 132-152B. 16 X 172-182C. 9 X 212-132D. 4X312-122分析:(1)比-2小的数是负数,且绝对值大于2,故只有选项A符合.(2) 25X132-152=(5X13)2-152=4 000 ;16X172-182=(4X17)2-182=4 300;9X212-132=(3X21)2-132=3 800;4X312-122=(2X31)2-122=3700.因为4300>4000>3800>3700,所以计算结果最大的式子是16X172-182. 答案:(1) A (2) B【规律·技法】解答有关有理数大小的比较问题时要抓住以下几点:①比较有理数的大小时,正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小;②比较两个有理数的大小有以下五种情况:正数与正数、正数与负数、0与正数、0与负数、负数与负数的比较. 【反馈练习】7. (2017·扬州期末)在-2,0,1,-4这四个数中,最小的数是()A. -4B. 0C. 1D. -2 点拨:负数小于0,正数大于0;两个负数,绝对值大的负数小.8. (2017·泰州期中)在数轴上把下列各数表示出来,并用“<”号连接各数: 2112.5,1,(2),(1),222----+--.点拨:先把需要化简计算的式子计算出结果,再来画数轴. 考点5 有理数的混合运算 【考点解读】 解答有关有理数运算的问题时要抓住以下几点:(1)符号的判断;(2)运算顺序的选择;(3)运算律的使用.有理数的运算在中考中一般不单独命题,常常与以后学习的实数结合命题考查.例5 (1)计算: 42201721(3)2(1)-÷---⨯-;(2)计算: 1133()33-⨯÷⨯-; (3)若2a ba b a+*=,则(42)(1)**-= . 分析:(1)先算乘方,再算乘除,最后算加减;(2)先将除法运算转化为乘法运算,再根据有理数乘法法则计算;(3)根据新定义计算. 4224224+⨯*==,22(1)(42)(1)2(1)02+⨯-**-=*-==. 解答:(1) 42201721(3)2(1)1682220-÷---⨯-=-÷+=-+=. (2) 111111()33()3()333339-⨯÷⨯-=-⨯⨯⨯-=. (3) 0【规律·技法】有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的. 【反馈练习】9. (2017·徐州期末)计算: 2018142(3)-+-+⨯-.点拨:注意运算顺序和符号. 10.计算: 517()(24)8612--+⨯-.点拨:运用乘法分配律计算.考点6 科学记数法【考点解读】 解答有关科学记数法的问题时要抓住以下几点:①对于大于10的数,在科学记数法的表示形式10na ⨯中,110a ≤<,n 为正整数;②小数点移动的位数与指数的关系;③理解近似数的意义. 例6 据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42 X 10n ,则n 的值是( )A. 4B. 5C. 6D. 7 分析:对于大于10的数,科学记数法的表示形式为10na ⨯,其中110a ≤<,n 为正整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.确定10na ⨯(110a ≤<,n 为整数)中n 的值时,由于9 420 000是七位数,所以可以确定n =7-1=6. 答案:C【规律·技法】用科学记数法表示大于10的数时,确定a 与n 的值是关健.其中110a ≤<,n等于原数的整数位数减1. 【反馈练习】11. (2017·庐州)“五一”期间,某市共接待海内外游客约567 000人次,将567 000用科学 记数法表示为( )A. 567 X 103B. 56.7 X 104C. 5.67 X 105D. 0.567 X 106 点拨: 110a ≤<.12. (2017·宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮— “泰欧”轮,其中45万吨用科学记数法表示为( )A. 0.45 X 106吨B. 4.5 X 105吨C. 45 X 104吨D. 4.5 X 1 04吨 点拨:单位要统一,万吨化为吨. 易错题辨析例1 给出下列各数: ①0.363 663 666 3…(每两个3之间依次多一个6);②2.121 121 112;③355113;④3π-.其中为无理数的是 .(填序号) 错误解答:①③④ 错因分析:把355113化成小数后,误以为是无限不循环小数,其实是循环小数. 正确解答:①④易错辨析:识别无理数时,要抓住其“无限不循环”的定义.本题若忽视无理数是无限小数,就会误认为有限小数2.121 121 112是无理数;若在把分数355113化成小数时,除了几位后,没有继续除下去,会错误的判断它不是循环小数,错误地认为它是无理数.实质上,所有的分数都是有理数,不是无理数. 易错点2 忽视分类讨论例2 在数轴上,点A 表示的数是-3,那么与点A 相距5个单位长度的点表示的数是多少? 它与132-相比较,大小关系如何? 错误解答:与点A 相距5个单位长度的点表不的数是-3+5=2,它与132-的大小关系为1322-<. 错因分析:考虑问题不全面.正确解答:如图,在数轴上,与点A 相距5个单位长度的点有,B C 两个.由点,B C 在数轴上的位置可知它们所表示的数分别为-8,2.在数轴上找到表示132-的点,观察点,B C 与表示132-的点在数轴上的位置,容易发现它们与132-之间的大小关系为13132,822>--<-. 易错辨析:一般地,在数轴上与某点相距一定单位长度的点有两个,分别位于该点的左、右两侧,不要遗漏.易错点3 乘法的分配律对除法不适用例3 计算:11(15)()53-÷- 错误解答:原式=11(15)(15)75453053-÷--÷=-+=-.错因分析:除法没有分配律. 正确解答:原式=215225(15)()(15)()1522-÷-=-⨯-=. 易错辨析:有的同学会错误地认为除法也有分配律,其实除法没有分配律.易错点4 幂的底数识别不清例4 计算:(1) 4(2)-= , 42-= ; (2) 32()3= , 323= .错误解答:(1)-16 -16 (2)827 827错因分析:负数的偶次幂的运算结果是正数,计算分数的幂时,注意分子、分母应分别乘方.在323中,注意是2的3次方,而不是23的3次方.(1) 4(2)-表示4个-2相乘,即它是底数为-2,指数为4的幂,所以4(2)-=16;42-表示42的相反数,即-2不是底数,所以42-=-16.(2)因为32()3表示3个23相乘,即它是底数为23,指数为3的幂,所以322228()333327=⨯⨯=.因为323表示3个2相乘的积与3的商,所以23不是底数,所以322228333⨯⨯==. 正确解答:(1) 16 -16 (2)827 83易错辨析:在进行幂的运算时,首先要区分底数和指数,然后根据幂的意义计算,得出正确结果.易错点5 混合运算顺序不清例5 计算: 23272(2)()83-÷⨯-. 错误解答:原式=2784()4(1)4827÷⨯-=÷-=-. 错因分析:易知328()327-=-,勿将“278”与“827-”结合运算,导致出错.实际上,本题中只有乘、除运算,故应从左往右按步计算. 正确解答:原式=278882564()4()8272727729÷⨯-=⨯⨯-=-. 易错辨析:乘、除是同级运算,应遵循从左往右的计算顺序.【反馈练习】1. (2016·宜昌)给出下列各数:1.414,1.732 050 8…,13-,0,其中为无理数的是( ) A. 1.414 B. 1.732 050 8… C . 13- D. 0 点拨:无理数即为无限不循环小数.2.已知数轴上有,A B 两点,点A 与原点的距离为2, ,A B 两点间的距离为1,则满足条件的 点B 所表示的数为 . 点拨:注意分类讨论.3.计算:(1) 23(2)(1)4-⨯-; (2) 22439-÷;(3) 2225(3)[()](6)439-⨯-+---÷; (4) 2017231(1)[2(1)(3)]6--⨯⨯---;点拨:注意有理数混合运算的顺序. 4.阅读下面的材料,并完成下列问题.计算: 12112()()3031065-÷-+-. 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷-÷-=1111203512-+-+=16.解法二:原式=12112()[()()]3036105-÷+-+=151()()3062-÷-=1330-⨯ 110-.解法三:原式的倒数=21121()()3106530-+-÷- =2112()(30)31065-+-⨯- =203512-+-+ =10-.综上所述,原式=110-(1)上述三种解法得出的结果不同,肯定有错误的解法,解法 是错误的; (2)在正确的解法中,解法 最简便; (3)利用最简便的解法计算: 11322()()4261437-÷-+-.点拨:可以转化为先求原式的倒数. 探究与应用探究1 复杂的有理数混合运算 例1 计算:(1) 86[47(18.751)2]0.461525--÷⨯÷; (2) 32017201723(0.2)(50)(1)()35-⨯-+-⨯-. 点拨:按照有理数的运算法则进行计算即可. 解答:(1)原式=31556100[47(181)]482546--⨯⨯⨯=751556100[47()]482546--⨯⨯=13556100(47)82546-⨯⨯=4610020546⨯=(2)原式=20172017153()(50)()()12535-⨯-+-⨯-=2017253[()()]535+-⨯-=27155+=.规律·提示在有理数的混合运算过程中,要善于观察与思考,在正常运算较繁琐时,要根据算式的特点,灵活选择正确而简洁的解法(如运算律的运用等).对于复杂运算,更要保持不急不躁的态度,切不可跳步,欲速则不达. 【举一反三】 1.计算:(1) 222353()34()8()3532-⨯-÷-⨯+⨯-;(2) 321116(0.5)[2(3)]0.52338---÷⨯-----.探究2 错位相减法巧算例2 求23201712222S =++++⋅⋅⋅+的值.点拨:观察和式,不难发现:后面一个数是它前面一个数的2倍.为此,在和式两边同乘一个常数2后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为23201712222S =++++⋅⋅⋅+①, 所以2342018222222S =++++⋅⋅⋅+②,所以②-①,得201821S =-.规律·提示:当一和式乘一个恰当的常数后,得到的新和式与原和式中绝大部分数相同时,应用错位相减法可以简化计算. 【举一反三】2.求23201613333++++⋅⋅⋅+的值.例3 求232017111112222S =++++⋅⋅⋅+的值. 点拨:观察和式,不难发现:后面一个数是它前面一个数的12.那么类似例2,在和式两边同乘一个常数12后,再与原和式两边分别相减(这里的相减是错位相减),可使计算简便. 解答:因为232017111112222S =++++⋅⋅⋅+①,所以2342018111111222222S =++++⋅⋅⋅+②.①-②,得201811122S =-,所以2017122S =-.规律·提示应用错位相减法时,一定要选择一个合适的常数. 【举一反三】 3.计算: 11112481024+++⋅⋅⋅+.探究3 拆项分解法巧算例4 计算: 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+. 点拨:因为(1)1232n n n ++++⋅⋅⋅+=,所以11222(1)123(1)12n n n n n n n ===-++++⋅⋅⋅+++,所以 111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+可转化为 222222123341001001+-+-+⋅⋅⋅+-+.进一步通过加法的结合律计算,得22121001+-+,至此问题解决. 解答:原式=22222229912123341001001101101+-+-+⋅⋅⋅+-=-=+. 规律·提示(1)12342n n n +++++⋅⋅⋅+=. 这是初中数学计算中的一条重要公式. 再进一步拆分,得1111111,()(1)1()n n n n n n m m n n m=-=-++++.也可以类推三个及三个以上的数的积的拆项. 【举一反三】 4.求111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯的值.探究4 整体换元法巧算例5 计算: 7737121738(172711)(1385)271739172739+-÷+-. 点拨: 73472437761716,2726,1110272717173939===,通过观察可以发现,这3个数分别是第2个括号内3个数的2倍.解答:令1217381385172739A =+-. 因为77373424761727111626102271739271739A +-=+-=, 所以原式=22A A ÷=. 规律·提示把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫做换元法.换元法是常用的解题方法,它能化复杂为简单,明确题目的结构特征,丰富解题思路.【举一反三】5.已知33331231514400+++⋅⋅⋅+=,求333324630+++⋅⋅⋅+的值.探究5 配对、分组巧算例6 计算:11212312341235859()()()()23344455556060606060++++++++++⋅⋅⋅++++⋅⋅⋅++. 点拨:观察每个括号内式子的特点,依特征求解;也可用一个符号表示所求的式子,将式子进行整体变形,寻找内在关系,简化运算.解答:解法一:原式=(0.529.5)590.51 1.5229.58852+⨯++++⋅⋅⋅+==. 解法二:原式=0.51 1.5229.5++++⋅⋅⋅+=(0.51 1.5229.5)(1229)++++⋅⋅⋅++++⋅⋅⋅+ (0.529.5)30(129)2988522+⨯+⨯=+= 解法三:设原式之和为S ,对每个括号内的各项都交换位置再相加,显然其和不变, 即121321432159585721()()()()23344455556060606060S =++++++++++⋅⋅⋅++++⋅⋅⋅++. 将原序和倒序相加,其相应两项之和为1,则有 (159)59212345930592S +⨯=++++⋅⋅⋅+==⨯, 所以1559885S =⨯=.规律·提示计算时需要观察规律,本例三种解法分别从三个角度着眼:解法一是配成59个“对子”;解法二是分组计算; 解法三是倒序与正序的综合运用.上述三种解法在计算中的运用都十分广泛.【举一反三】6.计算:(1234)(5678)(9101112)(2013201420152016)+--++--++--+⋅⋅⋅++--.参考答知识梳理负数 分数 不循环 正方向 单位长度 距离 本身 相反数0 绝对值1 异号 相反数 正 负 不等于0 倒数 相同 幂 正整数重难点分类解析【反馈练习】1.C2.A3.B4.C5.B6.B7.A8. 2112 2.5(1)1(2)22-<--<+-<<--9.原式=―310.原式=511.C 12.B易错题辨析1.B2. 3或1或―1或―33. (1) 原式=1;(2) 原式=38-;(3) 原式=―20;(4) 原式= 356-;4.(1)一 (2) 三(3)原式=114-探究与应用【举一反三】1.(1) 原式=7279;(2) 原式=―3.895.2.23201613333++++⋅⋅⋅+= 201713-12(). 3.11112481024+++⋅⋅⋅+= 102310244.111113355720152017+++⋅⋅⋅+⨯⨯⨯⨯= 10082017. 5. 333324630+++⋅⋅⋅+=115200.6. 原式=―2016。
有理数与数轴上点的关系
有理数和数轴上的点不是一一对应。
原因如下:
数轴上包括了有理数和无理数,所以有理数与数轴不是一一对应。
正确:实数(有理数和无理数的总称)与数轴上的点一一对应。
有理数为整数(正整数、0、负整数)和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。
无理数,也称为无限不循环小数,不能写作两整数之比。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
数轴的作用
1、数轴能形象地表示数,横向数轴上的点和实数成一一对应,即每一个实数都可以用数轴上的一个点来表示。
2、比较实数大小,以0为中心,右边的数比左边的数大。
3、虚数也可以用垂直于横向数轴且同一原点的纵向数轴表示,这样就与横向数轴构成了复数平面。
4、用两根互相垂直且有同一原点的数轴可以构成平面直角坐标系;用三根互相垂直且有同一原点的数轴可以构成空间直角坐标系,以确定物体的位置。
数轴具有数的完备性,不仅能够表示有理数和无理数,还能够表示虚数,同时还可以建立坐标系,构成了一个比较严密的数的系统。
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数有理数数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0) 在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作|a|。
正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0;比较两个负数的大小:绝对值大的反而小。
比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
绝对值的性质:①对任何有理数a ,都有|a|≥0。
②若|a|=0,则|a|=0,反之亦然。
③若|a|=b ,则a=±b ;④对任何有理数a,都有|a|=|-a|越来越大相反数1.下列各组数,互为相反数的是()A.3和13B.3和-3 C.3和13- D.-3和13-2. -35的相反数是()A.-35 B.35 C.53 D.-533.已知a是有理数,给出下列判断:(1)a是正数;(2)-a是负数;(3)a与-a必然有一个负数;(4)a与-a互为相反数.其中正确的个数是()A.1 B.2 C.3 D.44.-(-13)是____的相反数.5.化简:- [+(-75)]=_____.6.若a-5和-7互为相反数,则a的值为____.7.已知-m=-8,-n=0,求mn的值.8.写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.4,-12,23,-4.5,0,-3.9.如图1-2.3-1,图中数轴的单位长度为1.(1)如果点B,E表示的数互为相反数,那么点D表示的数是多少?(2)如果点C,E表示的数互为相反数,那么点D表示的数的相反数是多少?10.化简下列各数,并解答问题.①-(-2);②+(-15);③- [-(-4)];④-[-(+3.5)];⑤-{-[-(-5)]};⑥-{-[-(+5)]}.问:(1)当+5前面有2 017个负号时,化简后结果是多少?(2)当-5前面有2 018个负号时,化简后结果是多少?你能总结出什么规律?绝对值1.下列说法正确的是()A.有理数的绝对值一定是正数B.如果两个数的绝对值相等,那么这两个数相等C.如果一个数是正数,那么这个数的绝对值是它本身D.如果一个数的绝对值是它本身,那么这个数是正数2.一个数的绝对值是最小的正整数,则该数是()A.0 B.-1 C.1 D.1或-13.下列数-3,1,-2,0,最小的数是()A.-3 B.0 C.-2 D.14.12007-的相反数的绝对值是________.5.67- _______78-.(填“>”“<”或“=”) 6.若|a-1|+|b-2|=0,则a+b=_____.7.若|x|=3,|y|=5,且0<x<y,求x+y的值.8.a,b,c的大小关系如图1-2.4-1,则a b b c c aa b b c c a----+---的值是()A.-1 B.1 C.-3 D.39.观察下列每对数在数轴上的对应点之间的距离:4与-2,3与5,-2与-6,-4与3,并回答下列各题:(1)如图,在数轴上,A,B两点分别表示的数为a,b,则这两点间的距离AB=_______.(2)若数轴上的点A表示的数为x,点B表示的数为-1,则A与B两点间的距离可以表示为_______.(3)结合数轴探求|x-2|+|x+6|的最小值是_______.10.国际乒联规定在正式比赛中采用大球,对大球的直径有严格的规定.现有6个乒乓球,测量它们的直径,超过标准的毫米数记为正数,不足的记为负数,检测结果如下:A.-0.15 mm B.+0.05 mm C.+0.18 mm D.-0.05 mm E.-0.13 mm F.-0.21 mm你认为应选哪一个乒乓球用于比赛呢?为什么?相反数知识点一:相反数1-5的相反数是()A.-5 B.5 C.- D.2.如图所示,下面四个点表示的数互为相反数的是()A.点A和点DB.点B和点CC.点A和点CD.点B和点D拓展点一:多重符号的化简1.化简下列各数:-(+19),+(-0.32),+(+8),-(-6).拓展点二:相反数与数轴的综合应用2.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点AB.点BC.点CD.点D3.如图,数轴上A,B两点表示的数互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是.1.4的相反数是() A.4 B.-4 C. D.-2.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()3.计算:-(-1)=() A.±1 B.-2 C.-1 D.14如果a与-3互为相反数,那么a等于()A.3 B.-3 C. D.-5.下列各组数中,互为相反数的是()A.3和 B.3和-3 C.3和- D.-3和-6.数a的相反数是()A.-a B. C.- D.a7.如图,在单位长度为1的数轴上,点A,B表示的两个数互为相反数,那么点A表示的数是()A.2B.-2C.3D.-38.如图所示,数轴上点A所表示的数的相反数是.9-(-13)是的相反数.10.在数轴上画出表示下列各数以及它们的相反数的点:-4,0.5,3.11.若a-5和-7互为相反数,求a的值.12.如图,图中数轴的单位长度为1.(1)如果点B,E表示的数互为相反数,那么点D表示的数是多少?(2)如果点C,E表示的数互为相反数,那么点D表示的数的相反数是什么13.化简下列各式的符号,并回答问题:(1)-(-2); (2)+; (3)-[-(-4)]; (4)-[-(+3.5)]; (5)-{-[-(-5)]}; (6)-{-[-(+5)]}. 问:①当+5前面有2 016个负号时,化简后结果是多少?②当-5前面有2 017个负号时,化简后结果是多少?你能总结出什么规律?14.已知A 为数轴上的一点,先将点A 向右移动7个单位长度,再向左移动4个单位长度,得到点B ,若A ,B 两点表示的数恰好互为相反数,求点A 表示的数.知识点一:绝对值1.如果一个有理数的绝对值等于它本身,那么这个数一定是( ) A.负数 B.负数或零 C.正数或零 D.正数2.绝对值是10的有理数是( )A.10 B.-10 C.±10 D.以上都对知识点二:有理数的大小比较3.下列各式中,正确的是( )A.-|16|>0 B.|0.2|>|-0.2| C.->- D.|-6|<04.如图,数轴上A ,B 两点分别对应实数a ,b ,则a ,b的大小关系为5.比较下列有理数的大小: (1)-( )-20; (2)-( )-.拓展点一:字母表示的数的绝对值1.若|a|=|b|,则a ,b 的关系是( ) A.a=b B.a=-b C.a=b 或a=-b D.a=0且b=0拓展点二:利用绝对值解决实际问题2.某汽车配件厂生产一批圆形的橡胶垫,从中抽取6件进行检验,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作负数,检查结果如下:用绝对值的知识说明哪个零件的质量最好?1.-5的绝对值是() A. B.5 C.- D.-52.|-2|=() A.2 B.-2 C.±2 D.3.已知点M,N,P,Q在数轴上的位置如图所示,则其中表示的数的绝对值最大的点是()A.MB.NC.PD.Q4.一个数的绝对值是5,则这个数是()A.±5 B.5 C.-5 D.255.数轴上点A,B表示的数分别是5,-3,则它们之间的距离可以表示为()A.-3+5B.-3-5C.|-3+5|D.|-3-5|6.点A,B在数轴上的位置如图所示,其表示的数分别是a和b.有以下结论:①b-a<0;②a+b>0;③|a|<|b|;④>0.其中正确的是()A.①②B.③④C.①③D.②④7.若x为实数,则|x|-x的值一定是()A.正数 B.非正数 C.非负数 D.负数8.已知|a+2|=0,则a=. 9.|-0.3|的相反数等于.10.计算:(1)|-5|+|-10|-|-9|;(2)|-3|×|-6|-|-7|×|+2|.11.若|a|=5,|b|=1,求a和b的值.12如图,若A是实数a在数轴上对应的点,则对于a,-a,1的大小关系表示正确的是()A.a<1<-aB.a<-a<1C.1<-a<aD.-a<a<113有理数a,b,c在数轴上对应的点分别为A,B,C,其位置如图所示.试化简|a|+|b|+|c|.。
有理数的46个知识点总结一、有理数的概念。
1. 有理数的定义。
- 有理数是整数(正整数、0、负整数)和分数的统称。
例如,5是正整数属于有理数,-3是负整数属于有理数,(1)/(2)是分数属于有理数。
2. 有理数的分类。
- 按定义分类:有理数可分为整数和分数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数,如0.25(有限小数),0.3̇(无限循环小数)。
- 按正负性分类:有理数可分为正有理数、0、负有理数。
正有理数包括正整数和正分数,负有理数包括负整数和负分数。
3. 有理数与无理数的区别。
- 无理数是无限不循环小数,如π、√(2)等,而有理数是整数或分数。
有理数可以表示为两个整数之比,无理数则不能。
二、有理数的数轴表示。
4. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
原点表示0,原点右边表示正数,原点左边表示负数。
5. 有理数在数轴上的表示。
- 每一个有理数都可以用数轴上的一个点来表示。
例如,3在原点右边3个单位长度处, -2在原点左边2个单位长度处。
6. 数轴上点的移动规律。
- 向右移动为加,向左移动为减。
如点A表示2,向右移动3个单位长度后表示2 + 3=5;向左移动4个单位长度后表示2-4 = - 2。
三、相反数。
7. 相反数的定义。
- 绝对值相等,符号相反的两个数互为相反数。
例如,3和 - 3互为相反数,0的相反数是0。
8. 相反数的性质。
- 互为相反数的两个数相加为0,即a+(-a)=0。
如5+( - 5)=0。
- 在数轴上,互为相反数的两个数位于原点两侧,且到原点的距离相等。
四、绝对值。
9. 绝对值的定义。
- 一个数在数轴上所对应点到原点的距离叫做这个数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
例如,|3| = 3,| - 2|=2,|0| = 0。
10. 绝对值的性质。
- | a|≥slant0,即绝对值是非负的。
- 若| a|=| b|,则a = b或a=-b。
有理数的概念知识梳理有理数的概念一、目标认知学习目标:了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量;掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小;掌握一个数的绝对值的求法和性质,进一步学习使用数轴,借助数轴理解绝对值的几何意义;重点:有理数的概念及其分类,相反数的概念及求法,绝对值的概念及求法,数轴的概念及应用;有理数比较大小难点:绝对值的概念及求法,尤其是用字母表示的时候的意义;运用数轴理解绝对值的几何意义;有理数比较大小的方法的掌握;二、知识要点梳理知识点一:负数的引入要点诠释:正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6℃和零下6℃等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数;用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;知识点二:正数和负数的概念要点诠释:1 像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大;2 像-3、-1.5、、-584等在正数前面加“-”读作负号的数,叫做负数;负数比0小;3 零既不是正数也不是负数,零是正数和负数的分界;注意:1为了强调,正数前面有时也可以加上“+”读作正号,例如:3、1.5、也可以写作+3、+1.5、+ ;2对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数;例如:-a一定是负数吗答案是不一定;因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了此时-a是正数;知识点三:有理数的有关概念要点诠释:1、有理数:整数和分数统称为有理数;注:1有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数;但是本节中的分数不包括分母是1的分数;2因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数;3“0”即不是正数,也不是负数,但“0”是整数;2、整数包括正整数、零、负整数;例如:1、2、3、0、-1、-2、-3等等;3、分数包括正分数和负分数,例如:、、0.6、-、-、-0.6等等;知识点四:有理数的分类要点诠释:1、按整数、分数的关系分类:2、按正数、负数与0的关系分类:注:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数也叫做自然数,负整数和0统称为非正整数;如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a 0表明a是非负数;a 0表明a是非正数;知识点五:数轴的概念要点诠释:规定了原点、正方向和单位长度的直线叫做数轴数轴的定义包含三层含义:1数轴是一条直线,可以向两端无限延伸;2数轴有三要素——原点、正方向、单位长度,三者缺一不可;3原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的通常取向右为正方向;知识点六:数轴的画法要点诠释:1、画一条直线一般画成水平的直线;2、在直线上选取一点为原点,并用这点表示零在原点下面标上“0”;3、确定正方向一般规定向右为正,用箭头表示出来;4、选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3……;从原点向左,每隔一个单位长度取一点,依次表示为-1,-2,-3……注:1原点的位置、单位长度的大小可根据实际情况适当选取;2确定单位长度时,根据实际情况,有时也可以每隔两个或更多的单位长度取一点,从原点向右,依次表示为2,4,6,……;从原点向左,依次表示为-2,-4,-6,……;知识点七:数轴上的点与有理数的关系所有的有理数都可以用数轴上的点表示出来,反过来,不能说数轴上所有的点都表示有理数;要点诠释:正有理数可以用原点右边的点表示,负有理数可以用原点左边的点表示,零用原点表示;知识点八:利用数轴比较有理数的大小要点诠释:在数轴上表示的两个数,右边的数总比左边的数大;正数都大于0;负数都小于0;正数大于一切负数;知识点九:相反数的概念1、相反数的几何定义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数,叫做互为相反数;2、相反数的代数定义:只有符号不同的两个数除了符号不同以外完全相同,我们说其中一个是另一个的相反数,0的相反数是0;要点诠释:1“只”字是说仅仅是符号不同,其它部分完全相同;2相反数是数,不是量;3相反数是成对出现的;知识点十:相反数的表示方法要点诠释:一般地,数a的相反数是-a;这里a表示任意的一个数,可以是正数、负数、或者0;知识点十一:多重符号的化简把多重符号化成单一符号,如果是正号,则可以省略不写,实际上,多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正,如-{---4}=4 ;若“-”个数为奇数个时,化简结果为负,如-{+--4}=-4 ;要点诠释:1、在一个数的前面添上一个“+”号,仍然与原数相同,如+5=5,+-5=-5;2、在一个数的前面添上一个“-”号,就成为原数的相反数;如--3就是-3的相反数,因此,--3=3;知识点十二:绝对值的概念要点诠释:1、绝对值的几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作“ ”2、绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;即知识点十三:两个负数大小的比较要点诠释:因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数的左边,所以,两个负数,绝对值大的反而小;比较两个负数大小的方法是:一、先分别求出这两个负数的绝对值;二、比较这两个绝对值的大小;三、根据“两个负数,绝对值大的反而小”做出正确的判断;知识点十四:有理数大小的比较法则要点诠释:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小;三、规律方法指导有理数与小学所学的数,主要区别在于负数;有理数可以用数轴上的点来表示,任何一个有理数都能在数轴上找到表示它的位置,而是唯一确定的点;数轴上的点可以表示三类数;在数轴上表示零的点称做原点,以这个点为界,正有理数正整数、正分数用原点右边的点来表示;负有理数负整数、负分数用原点左边的点来表示,这就说明,数轴是有方向的;由于数轴规定了方向,因而在数轴上排列着的数就是有顺序的;从左到右一个数比一个数大;即数轴上表示的数,右边的总比左边的大;在数轴上,原点左、右两边距离原点等远的点所表示的有理数,它们只有符号不同,这样的一对数称为互为相反数;如果数轴上的点只考虑它到原点的距离,而不考虑它的正、负方向的数,则表示这个有理数的绝对值;经典例题透析类型一:有理数分类的问题例1:请把下列各数填入它所属于的集合的大括号里;1, 0.0708, -700, -3.88, 0,3.14159265, , .正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …}负分数集合:{ …}分数集合:{ …}思路点拨:这种关于有理数的分类问题,关键是要掌握各种数的概念;小学时所学的自然数就是正整数和零,进入中学,出现了负整数,而整数的范围就扩大到了正整数、零和负整数;有限小数和无限循环小数都可以写成分数的形式,因此,它们都是分数;解析:正整数:1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265, ;负分数:-3.88, ;分数:0.0708,3.14159265, ,-3.88,总结升华:有理数包括整数和分数,分数包含有限小数和无限循环小数,但须注意的是,不是所有的小数都是分数,比如π等;所以,我们也不能说小学学过的所有数都是有理数,还有一部分数不是有理数,那么这部分数我们将在今后学习研究;举一反三:变式1在数-100, 70.8, -7, π, -3.8, 0, , , 中,不是分数的是___________________;不是小数的是_____________;不是有理数的是______________;变式2下列四种说法,正确的是 .A所有的正数都是整数B不是正数的数一定是负数C正有理数包括整数和分数 D0不是最小的有理数类型二:正负数的概念例2:若把向北走7km记为-7km,则+10km表示的含义是A.向北走10kmB.向西走10kmC.向东走10kmD.向南走10km思路点拨:“正”和“负”相对,-7km表示向北走7km,则+10km表示向南走10 km.答案:D总结升华:在一对具有相反意义的量中,若先规定一个为正,则另一个就用负表示;若先规定一个为负,则另一个就用正表示;举一反三:变式1如果收入300元记作+300元,那么支出500元用___________ 表示,0元表示__________ . 2若购进50本书,用-50本表示,则盈利30元如何表示类型三:与数轴相关的问题例3: 数轴上有一点到原点的距离是5.5,那么这个点表示的数是 _________.思路点拨:到原点的距离等于5.5 的点既可以在原点左边,也可以在原点右边,因此这样的点有两个;解析:5.5或-5.5总结升华:与数轴相关的问题还有数轴的画法以及借助数轴来比较有理数的大小;例4:如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为 _________.思路点拨:数轴上的点表示的数右边的比左边的大;因此,被污染的部分的数大于-1.3,小于2.6,再考虑这一范围内的整数即可;解析:-1,0,1,2总结升华:利用数轴解决问题是数形结合数学思想的的一个重要应用,要能由“形”看出“量”的一些关系;举一反三:变式1实数在数轴上表示如图所示,则下列结论错误的是A. B. C. D.变式2一个点从数轴的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,则终点表示的数是______.变式3数轴上点A对应的数为-3,那么与A相距1个长度的点B所对应的数是_________.类型四:与相反数相关的问题例5:1 的相反数是_________,-3与_________互为相反数2 的相反数是________, 的相反数是________,的相反数是________.30的相反数是_________.4已知那么的相反数是________.已知 ,则a的相反数是________.思路点拨:1代数意义:只有符号不同的两个数互为相反数,特别地,O的相反数是0.相反数必须成对出现,不能单独存在.例如+5和-5互为相反数,或者说+5是-5的相反数,-5是+5的相反数,而单独的一个数不能说是相反数.另外,定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.例如+3与-3互为相反数,而+3与-2虽然符号不同,但它们不是相反数.2几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.3求任意一个数的相反数,只要在这个数的前面添上“一”号即可.一般地,数a的相反数是-a;这里以a表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意-a 不一定是负数.注意:当a>O时,-a<0正数的相反数是负数;当a=O时,-a=O0的相反数是0;当a<0时, a>O 负数的相反数是正数.4互为相反数的两个数的和为零,即若a与b互为相反数,则a+b=0,反之,若a+b=O,则a与b 互为相反数.5多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号,既“奇负偶正”其中“奇偶”是指正数前面的“-”号的个数的奇偶数,“负正”是指化简的最后结果的符号.解析:1 ,3; 2m,--m+1,-m+1; 3 0 4 -9, 9总结升华:求相反数时,要紧紧抓住“只有符号不同”这一条件,即“符号不同而数字相同”的两个数;举一反三:变式11 一个数的相反数的倒数是-4,这个数是__________.2 如果与-3互为相反数,那么等于A. 3B. -3C.D.类型五:与绝对值相关的问题例6:的绝对值是________.思路点拨:1取绝对值也是一种运算,这个运算符号是“ ”,求一个数的绝对值,就是根据性质去掉绝对值符号.2绝对值具有非负性,取绝对值的结果总是正数或0.3任何一个有理数都是由两部分组成:符号和它的绝对值,如:-5,符号是负号,绝对值是5.解析:总结升华:绝对值符号具有括号的功能,根据绝对值的意义去掉绝对值符号即可举一反三:变式1已知∣x∣=4,∣y∣=6,求代数式∣x+y∣的值.有理数的概念课后练习一、选择题:1.若一个数的绝对值大于零,这个数一定是A正数 B任意有理数 C非零数 D负数2.在有理数中,下面说法正确的是A有最小的数 B有最大的数C没有最小的数,也没有最大的数 D以上答案都不对3.下面四句话中错误的是A负分数一定是负有理数 B分数中除正分数就是负分数Ca的相反数是-a D有理数中除了正数就是负数4.下列说法正确的是A带有“-”的数是负数 B任何数的绝对值都是正C任何负数都小于它的相反数D一个数的相反数一定是负数5.一个数的绝对值一定是A正数B负数C非正数D非负数6.有理数a,b,c在数轴上的位置如图,下列结论错误的是Ac<b<a Ba-b>0Cb<0,c<0 Dc>b7、下列说法中,正确的是A、一个数不是正数就是负数;B、正有理数和负有理数组成全体有理数;C、零是最小的有理数;D、零既不是正数,也不是负数,但零是整数8、下列说法中,正确的是A、非负有理数就是正有理数;B、零表示没有,不是有理数;C、正整数和负整数统称为整数;D、整数和分数统称为有理数9、下面两个数互为相反数的是A、12和0.2 B、13和-0.333 C、-2.75和324 D、9和--910、一个数的绝对值大于它本身,那么这个数是A、正有理数B、负有理数C、零D、不可能11、a是一个有理数,那么-aA、负数;B、正数;C、零;D、以上都可能;12、已知数轴上表示-2和-101的两个点分别为A,B,那么A,B两点间的距离等于A99 B100 C102 D10313、数轴上原点及左边的点表示的数是A、负数;B、正数;C、非负数;D、非正数;14、“互为相反数”是指A、一个正数,一个负数;B、一个数前面添加上“-”号所得的数;C、数轴上原点两旁的两个点所表示的两个数;D、只有符号不同的两个数,且0的相反数是0;15、如果a+b=0,那么一定有A、a=0且b=0 ;B、a=0或b=0 ;C、a、b异号;D、a、b互为相反数;16、以下四个推理中,正确的是A、如果|a|=|b|,那么a=b;B、如果|a|=b, 那么a=b;C、如果a=-b,那么|a|=|b|;D、如果|a|=b,那么a=-b;二.填空题:1.-2.5的相反数是______________,绝对值是______________;2.最小的正整数是____________,最大的负整数是____________,绝对值最小的数是____________;3.在有理数-3,0, , ,3.1416,--7, , 中,属于负数集的是________,属于正分数集的是______________,属于整数集的是______________4.|-7|=______________, | |=π;5.化简---2002= ____________,--3.14=____________, __________;6.a的相反数是-11,那么______________;若3是x的相反数,那么x=______________, 3×-x=__________;7.相反数大于-4的正整数是__________,绝对值不大于2的整数是__________8.一个数的绝对值与它的相反数相等,这个数为__________,一个数的相反数大于它的本身, 这个数为__________;9.若两个数的绝对值相等,这两个数可能是__________;10.若一个数的相反数不小于零,那么这个数为__________;10.若|-m|=--0.3,那么m=__________;11.在数轴上点B表示数-3,那么与B点相距4个单位长度的点表示的数是__________;12、仪表的指针顺时针方向旋转90°记作-90°,那么逆时针旋转180°应记作 .13、说明下面一段话的意义:汽车先前进+50米,再前进-30米,即 ;14、数轴上表示互为相反数的两个点之间的距离是6,则这两个数为__________15、简化下列各数的符号:1--5= 3---4=16、L市在冬季的某一天最高温度为4℃,最低温度为-1℃,这天温差是℃.17、如果|x|=3.5,那么x= ;如果|-x|=|-2 1|,那么x= 18、数轴上离开原点2个单位长度的点表示的数是____________19、绝对值最小的有理数是________;绝对值等于3的数是______;绝对值等于本身的数是_______;绝对值等于相反数的数是___________数;20、绝对值不大于3的非负整数有21、观察下面一列数,根据规律写出横线上的数,-11;21;-31;41;;;……;第2006个数是 ;三.解答题:1.把下列各数填在相应的大括号内:10,-0.082,-30 1/2,3.14,-2,0,-98,-3 1/2 –21/8,1,3/5整数集合: { }分数集合: { }正分数集合:{ }负分数集合:{ }非负数集合:{ }非正数集合:{ }2.把下列各数表示在数轴上,并比较他们5的大小;-3 , 1/2,0.,3,. -2.53、1写出绝对值大于3而小于8的所有有理数;4、计算:1|-15|-|-6| 2|0.24|+|-5.06|5已知|a|=3,|b|=2,求|a+b|的值;6、比较大小:114-15-;22(3--113-;3+-4.21 (4)3 --7.求下列各数的相反数和绝对值1102 20 314-43248.一个病人每天下午要测量一次血压,下表是该病人星期一至星期五血压变化情况,该病人上个星期日的血压为160单位,血压的变化与前一天比较:请算出星期五该病人的血压9、出租车司机小李某天下午运营全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,这天下午他的行车里程单位:千米如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+61将最后一名乘客送到目的地时,小李距下午出车时的出发点多远2若汽车耗油量为3升/千米,这天下午小李共耗油多少升。