工程中的数学问题
- 格式:ppt
- 大小:1.47 MB
- 文档页数:13
四年级数学工程问题练习题1. 小明家的花园中有一条水沟,长度为15米。
小明想要将水沟分成3段,第一段比第二段长2米,第二段比第三段长3米。
请问每段水沟的长度是多少?2. 小红家的鸟巢里有一些小鸟蛋,其中有红色蛋和蓝色蛋两种颜色,红色蛋的数量是蓝色蛋的3倍。
如果小红数过了红色蛋,发现有15个,那么整个鸟巢里共有多少个蛋?3. 小明家附近有一座桥,桥的长度是40米。
小明想从桥头跳到桥尾,他每次跳的距离是3米,最多能跳多少次?4. 小华家餐厅里有一些桌子和椅子,总共有24条腿。
如果每张桌子上有4条腿,每把椅子上有3条腿,那么餐厅里共有多少张桌子和多少把椅子?5. 小李家的小狗跑步,每分钟跑4米。
如果小狗一共跑了100米,那么他用了多少分钟?6. 小明家里有一些苹果和橙子,总共有40个水果,苹果的数量是橙子的3倍。
如果小明将其中一半的水果给了小红,那么小红得到了多少个苹果?7. 小华家有一些玻璃球,每天会掉落5个。
如果小华家有15个玻璃球,那么这些玻璃球能掉落几天?8. 小明要将一箱书放到书架上,一本书重500克。
如果小明共计有20本书,那么这一箱书的总重量是多少千克?9. 小红家种了一些花,每朵花上有5片花瓣。
如果小红一共有15朵花,那么她的花园里共有多少片花瓣?10. 小华家有一些鱼和鸟。
如果小华家共有45只脚,而每条鱼和每只鸟分别有2条腿和4条腿,那么小华家共有几条鱼和几只鸟?以上是四年级数学工程问题练习题,请同学们根据题目进行计算并给出答案。
希望这些问题能帮助大家巩固和提高数学能力,加油!。
六年级数学工程问题(附例题答案)本文介绍了工程问题中的基本数量关系,即工作总量=工作效率×工作时间。
举例说明了如何计算两人合作完成一件工作需要的时间。
为了计算方便,可以把工作量设为整体1或整数化,也可以从比例角度出发或列方程等。
接下来给出了一个例题:甲做9天可以完成一件工作,乙做6天可以完成,现在甲先做了3天,问乙需要做几天才能完成全部工作。
根据基本数量关系,甲的工效为1/9,乙的工效为1/6,甲三天做了1/3的工作,余下的工作量为2/3,乙需要的时间为2/3÷1/6=4天。
第七讲工程问题例2.一个工程,甲队单独做24天完成,乙队单独做30天完成,甲、乙两队合做8天后,余下的由丙队做,又做了6天才完成。
这个工程由丙队单独做需几天完成?解析:先计算甲、乙两队合作完成这个工程所需的时间:1-(1/24+1/30)×8=2/56÷2/5=15天。
因此,丙队单独做这个工程需要15+6=21天完成。
例3.某工程先由甲单独做63天,再由乙单独做28天即可完成,若由甲乙两人合作,需48天完成。
现在甲先单独做42天,然后由乙来单独完成,那么还需要多少天?解析:根据已知条件,可以得出甲的工效为(1-28/48)/35=1/84,乙的工效为1/48-1/84=1/112.因此,甲先单独做42天后,剩下的工程量为1-42*1/84=1/2,需要乙再完成1/2,所需时间为(1/2)÷(1/112)=56天。
另一种方法是设甲每天完成工程的百分比为x,乙每天完成工程的百分比为y,则63x+28y=148(x+y)=1,解得x=1/84,y=1/112.因此,甲先单独做42天后,剩下的工程量为1/2,需要乙再完成1/2,所需时间为(1-42*1/84)/(1/112)=56天。
例4.一项工程,甲乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的甲乙单独做这项工程各需要多少天?解析:设甲单独做需要X天,乙单独做需要Y天,则有4*(1/X + 1/Y)+5/Y=1,同时有1/X -1/Y=1/30.解得X=10,Y=15,因此甲单独做需10天,乙单独做需15天。
关于工程施工的数学题目1. 一辆工程车以60公里/小时的速度向东行驶,另一辆工程车以40公里/小时的速度向西行驶,如果它们相距500公里,那么它们相遇需要多长时间?2. 一座高楼的地基深度为30米,施工方需要在地基中挖掘一个10米宽、20米长、深度为5米的基坑,那么挖掘这个基坑需要多少方的土方量?3. 一辆起重机起重1000吨的货物,起重机的满载能力为2000吨,如果货物的重心位于离起重机25米的位置,那么起重机需要多大的力来平衡货物?4. 一根长20米的钢筋,施工方需要将其切割成10米和6米两段,那么切割后的剩余废料有多少米?5. 一根钢材的密度为7850公斤/立方米,长度为10米,如果其横截面积为0.02平方米,那么这根钢材的质量是多少?6. 一辆发电机每小时发电60千瓦时的电能,如果工地需要每天使用120千瓦时的电能,那么这台发电机需要连续发电多少小时?7. 一辆装有40方混凝土的混凝土搅拌车,混凝土搅拌机每分钟搅拌能力为0.5方,如果混凝土搅拌机全程以最大产能搅拌,那么需要多长时间才能将这40方混凝土搅拌完成?8. 一箱螺丝钉共有3000个,每个螺丝钉的直径为5毫米,如果施工方需要使用2500个螺丝钉,那么这些螺丝钉的总长度是多少?9. 一辆泵车起重能力为10吨,混凝土的密度为2400公斤/立方米,如果需要将25立方米的混凝土泵送到高楼的顶端,那么泵车需向上施加多大力来完成任务?10. 一家工程公司需借贷300万元资金来完成一个工程项目,如果银行的年利率为5%,那么工程公司每年需要支付多少利息?以上的数学题目都是和工程施工相关的实际问题,通过这些题目的解答,工程师和施工人员可以更好地理解和应用数学知识来解决工程领域中的实际问题。
同时,这些题目也能够帮助学生在学习数学的过程中,更加直观地理解数学知识的应用场景,提高数学学习的兴趣和学习成绩。
工程问题六年级数学应用题公式题目 1一项工程,甲单独做 10 天完成,乙单独做 15 天完成。
甲乙合作几天完成?公式:工作时间 = 工作总量÷工作效率之和工作总量看作“1”,甲的工作效率为 1÷10 = 1/10,乙的工作效率为 1÷15 = 1/15合作时间:1÷(1/10 + 1/15) = 6(天)题目 2一件工作,甲独做要 20 小时完成,乙独做要 30 小时完成。
两人合作 4 小时后,剩下的由乙单独完成,还需要多少小时?公式:工作总量 = 工作时间×工作效率甲的工作效率为 1÷20 = 1/20,乙的工作效率为 1÷30 = 1/30两人合作 4 小时完成的工作量:(1/20 + 1/30)×4 = 2/3剩下的工作量:1 - 2/3 = 1/3乙单独完成剩下的需要的时间:1/3÷1/30 = 10(小时)题目 3一项工程,甲队单独做 8 天完成,乙队单独做 10 天完成。
两队合作 2 天后,剩下的工程由乙队单独做,还要几天完成?公式:工作总量 = 工作时间×工作效率甲队的工作效率为 1÷8 = 1/8,乙队的工作效率为 1÷10 = 1/10两队合作 2 天完成的工作量:(1/8 + 1/10)×2 = 9/20剩下的工作量:1 - 9/20 = 11/20乙队单独完成剩下的需要的时间:11/20÷1/10 = 5.5(天)题目 4一项工程,甲单独做 12 天完成,乙单独做 18 天完成。
甲先做 4 天后,余下的工程由乙单独完成,乙还要做多少天?公式:工作总量 = 工作时间×工作效率甲的工作效率为 1÷12 = 1/12,乙的工作效率为 1÷18 = 1/18甲做 4 天完成的工作量:1/12×4 = 1/3剩下的工作量:1 - 1/3 = 2/3乙单独完成剩下的需要的时间:2/3÷1/18 = 12(天)题目 5修一条路,甲队单独修 15 天完成,乙队单独修 20 天完成。
工程问题数学解题方法分析及例题答案【含义】工程问题主要研究工作量、工作效率和工作时间三者之间的关系。
这类问题在条件中,常常不给出工作量的详细数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。
【数量关系】解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。
工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作时间=总工作量÷(甲工作效率+乙工作效率)
【解题思路和方法】变通后可以利用上述数量关系的公式。
例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?
答:两队合做需要6天完成。
例2 一批零件,甲独做6小时完成,乙独做8小时完成。
现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?
答:这批零件共有168个。
例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。
现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?
答:还需要5小时才能完成。
例4 一个水池,底部装有一个常开的排水管,上部装有假设干个同样粗细的进水管。
当翻开4个进水管时,需要5小时才能注满
水池;当翻开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要翻开多少个进水管?
答:至少需要9个进水管。
六年级数学工程问题类型一、工程问题基础题型。
1. 一项工程,甲单独做8天完成,乙单独做10天完成。
- 甲每天完成这项工程的几分之几?- 解析:把这项工程看作单位“1”,甲单独做8天完成,根据工作效率 = 工作总量÷工作时间,甲每天完成1÷8=(1)/(8)。
- 乙每天完成这项工程的几分之几?- 解析:同理,乙单独做10天完成,乙每天完成1÷10 = (1)/(10)。
- 甲乙合作每天完成这项工程的几分之几?- 解析:甲每天完成(1)/(8),乙每天完成(1)/(10),甲乙合作每天完成(1)/(8)+(1)/(10)=(5 + 4)/(40)=(9)/(40)。
- 甲乙合作多少天可以完成这项工程?- 解析:根据工作时间=工作总量÷工作效率,甲乙合作完成需要1÷(9)/(40)=(40)/(9)(天)。
2. 修一条路,甲队单独修12天完成,乙队每天修30米,如果两队合修,6天完成全长的(2)/(3)。
- 这条路全长多少米?- 解析:甲队单独修12天完成,甲队每天修全长的1÷12=(1)/(12)。
两队合修6天完成全长的(2)/(3),则两队合作一天完成(2)/(3)÷6=(2)/(3)×(1)/(6)=(1)/(9)。
那么乙队每天修全长的(1)/(9)-(1)/(12)=(4 - 3)/(36)=(1)/(36)。
因为乙队每天修30米,所以全长为30÷(1)/(36)=30×36 = 1080米。
3. 一项工程,甲单独做20天完成,乙单独做30天完成。
甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了16天。
乙请假多少天?- 解析:甲单独做20天完成,甲每天完成(1)/(20),甲做了16天,完成的工作量为(1)/(20)×16=(4)/(5)。
那么乙完成的工作量为1-(4)/(5)=(1)/(5)。
六年级数学工程问题应用题
六年级数学工程问题应用题是指涉及到工程项目、工作量、工作时间和效率等问题的数学应用题。
这些问题通常涉及到现实生活中的各种工程项目,如修建桥梁、道路、建筑物等,需要运用数学知识和技能来解决。
以下是3道六年级数学工程问题应用题的示例:
1.修建一条高速公路需要两个工程队来完成。
甲队单独完成需要30天,乙队
单独完成需要20天。
如果两队合作,需要多少天才能完成?
2.一个水池需要清理,甲工人单独完成需要10小时,乙工人单独完成需要8
小时。
如果甲、乙两人一起工作,他们需要多少小时才能完成清理工作?
3.一个打字员需要完成一篇文稿的录入工作。
如果他单独工作,每小时可以
录入500字。
如果他有一个助手协助他,他们两人一起工作每小时可以录入900字。
他们一起工作,需要多少小时才能完成这篇文稿的录入?
这些问题都涉及到工作效率、工作量和时间的关系,需要学生运用比例和分数等数学知识来解决。
通过解决这些问题,学生可以更好地理解工程项目的运作原理和数学知识的实际应用。
总结来说,六年级数学工程问题应用题是指涉及到工程项目、工作量、工作时间和效率等问题的数学应用题。
这些问题涉及到现实生活中的各种工程项目,需要运用数学知识和技能来解决,能够帮助学生更好地理解工程项目的运作原理和数学知识的实际应用。
1.一件工作,甲独做要12小时完成,乙独做要10小时完成,甲、乙合作多少小时完成2.一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半3.一件工作,甲、乙合做12天完成,已知甲、乙工作效率的比是1:3;两人单独做各要多少天4.有一件工程,甲独做20天可以完成这件工程的1/9,乙独做9天可以完成这件工程的1/10,甲、乙两人合做,需要几天可以完成这件工程的一半5.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成;三人合做几小时可以完成工作的一半的一半6.有一批书,小明9天可装订3/4,小丽20天可装订5/6;小明和小丽两个人合作几天可以装完7.打扫多功能教室,甲组同学13小时可以打扫完,乙组同学14小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室8某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几名工人加工甲种零件.9.一个水池有甲、乙两个进水管,单开甲管,1/6小时能注满水池;单开乙管,1/7小时能注满水池;如果甲、乙两管同时开启,多少时间水池还有1/4尚未注水10.一个蓄水池装了一根进水管和三根放水速度一样的出水管;单开一根进水管20分钟可注满空池,单开一根出水管,45分钟可以放完满池的水;现有2/3池水,如果四管齐开,多少分钟后池水还剩下2/511.植树节期间,两所学校共植树棵,其中海石中学植树的数量比励东中学的倍少棵,求两校各植树多少棵.12.将一批工业最新动态信息输入管理储存网络,甲单独做需要6小时,乙单独做需要4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作13.将一批工业最新动态信息输入管理储存网络,甲单独做需要6h,乙单独做需要4h,甲先做30min,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作14.一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天15.防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水16.某一家服装厂接受一批校服订货任务,按计划天数进行生产,如果每天平均生产20套,就比订货任务少生产100套,如果每天平均生产23套,就可超过订货任务20套,问这批服装订货任务是多少套原计划多少天完成17.问题:山中有古寺,不知道住着多少僧人,只知道用餐时,他们三个人合用一只碗吃饭,四个人合用一只碗喝汤,不多不少共用了224只碗.这个寺内一共有多少名僧人18.某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.问小组成员共有多少名他们计划做多少个“中国结”19.油桶制造厂的某车间主要负责生产制造油桶用的的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套20.用白铁皮做罐头盒,每张铁皮可制盒身16个,或盒底43个,一个盒身与两个盒底配成一套罐头盒;现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒21.一件工程,甲、乙、丙单独做各需10天、12天、15天才能完成,现在计划开工7天完成,乙、丙先合做3天后,乙队因事离去,由甲队代替,在各队工作效率都不变的情况下,能否按计划完成此工程22.整理一批图书,如果由一个人单独做要花60小时;现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作;假设每个人的工作效率相同,那么先安排整理的人员有多少人23.某生态食品加工厂收购了一批质量为10000kg的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000kg,求粗加工的该种山货质量.24.一条山洞长500米,甲、乙两个工程队,从两头同时施工,甲队每天钻15米,20天后甲、乙两队会合,则乙队每天钻山洞多少米25.汶川大地震发生后,各地人民纷纷捐款捐物支援灾区,我省某企业向灾区捐助价值94万元的A、B两种帐篷共600顶,已知A种帐篷每顶1700元,B种帐篷每顶1300元,问捐A种帐篷多少顶,B神帐篷多少顶26.某人完成一份文稿的打字工作,现已完成,还剩30页,求这份文稿的总页数;27.某人承做一批零件,原计划每天做40个,可按期完成任务,由于改进工艺,工作效率提高了20%,结果不但提前了16天完成,而且超额完成了32件,求原来预定几天完成原计划共做多少零件28.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知两个大齿轮与三个小齿轮配成一套,问应该如何安排工人才能使生产的产品刚好配套29.初一4班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,初一4班乒乓球小组共有多少人7分30.甲队原有工人68人,乙队原有工人44人,现又有42名工人调入这两队,为了使乙队的人数是甲队人数的,应调往甲乙两队各多少人7分31.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶。
一元一次方程工程问题典型例题一元一次方程是初中阶段数学中的基础知识,也是实际生活中常见的数学工具之一。
在工程问题中,一元一次方程的应用更是广泛,从简单的线性关系到复杂的工程计算,都离不开一元一次方程的运用。
下面我们就来看几个典型的一元一次方程工程问题例题。
例题一:水池灌溉问题某个农场的水池里有3000立方米的水,水泵每小时可以抽出200立方米的水。
如果每小时用40立方米的水灌溉田地,问多长时间,水池里的水会被抽空?解析:设时间为t小时,根据题意可以列出一元一次方程:3000 - 200t = 40t化简得:3000 = 240tt = 3000 / 240t = 12.5答案是12.5小时,水池里的水会被抽空。
例题二:汽车行驶问题某辆汽车以每小时60公里的速度行驶,已行驶2小时后,又以每小时75公里的速度行驶,问多长时间行程达到315公里?解析:设时间为t小时,根据题意可以列出一元一次方程:60 * 2 + 75t = 315化简得:120 + 75t = 31575t = 315 - 12075t = 195t = 195 / 75t = 2.6答案是2.6小时,行程达到315公里。
例题三:混合物问题有两种价值分别为20元/公斤和15元/公斤的两种茶叶共混合了40公斤,使得混合后的茶叶总价值为16.5元/公斤,问两种茶叶各混合了多少公斤?解析:设第一种茶叶混合了x公斤,第二种混合了(40-x)公斤,根据题意可以列出一元一次方程:20x + 15(40-x) = 16.5 * 40化简得:20x + 600 - 15x = 6605x = 60x = 12答案是第一种茶叶混合了12公斤,第二种茶叶混合了28公斤。
通过以上三个典型的一元一次方程工程问题例题,我们可以看到在实际生活中,一元一次方程的应用是非常广泛的。
通过掌握一元一次方程的解题方法,我们可以更好地解决工程和日常生活中的各种实际问题。
希望大家能够在学习中牢固掌握这一知识,为以后的应用打下坚实的基础。