1
S=2absin
6+ 2
,所以
4
3+ 3
C= 2 .
若选③bcos A+acos B= 3+1,
所以 acos B=1,即
2
2
a =6+c -2
所以
2 + 2 -6
a·
=1,所以
2
2
6c· =6+c2-2
2
1
S= bcsin
2
3+ 3
A=
.
2
a2=6+2c-c2.又因为
3c,所以 6+2c-c2=6+c2-2 3c,解得 c= 3+1.
A+acos B= 3+1
这三个条件中任选一个,补充在下面问题中,并解决相应问题.
已知在锐角三角形 ABC 中,角 A,B,C 的对边分别为 a,b,c,△ABC 的面积为 S,
若 4S=b2+c2-a2,b= 6,且
,求△ABC 的面积 S 的大小.
解 因为 4S=b +c -a ,cos
2
2
2
2
2
2
时,角 A 为锐角(直角、钝角).
3.三个等价关系
在△ABC中,a>b⇔sin A>sin B⇔A>B.
2 + 2 - 2
A= 2 .当 b2+c2-a2>0(=0,<0)
关键能力 学案突破
考点1
三角函数与三角变换的综合
【例 1】 已知函数 f(x)=4sin
π
xcos(x- )3
=2sin
π
2x-3
.