随机过程第六章
- 格式:pdf
- 大小:282.75 KB
- 文档页数:51
随机过程的基本概念1.概率论1.1 条件概率设A 、是两个事件,当B ()0>B P 时()()()B P AB P B A P =|称为在事件发生的条件下事件的条件概率。
B A 可以推广到任意有限多个事件的场合。
设n A A A ,,,21L 为任意个事件,则有n ()()()()()12121312121|||−=n n n A A A A P A A A P A A P A P A A A P L L L1.2 事件的独立性对于任意两个事件A 与,若B ()()()B P A P AB P =则称事件A 与是相互独立的。
B 一般地,设个事件n n A A A ,,,21L 相互独立,则有()()()()n n A P A P A P A A A P L L 2121=设n A A A ,,,21L 是样本空间Ω的一个完备事件组,且()0>i A P ()n i ,,2,1L =,则对于在样本空间上定义的任一随机事件的概率,可计算如下ΩB ()()()∑==ni i i A B P A P B P 1|上式称为全概率公式。
设n A A A ,,,21L 是样本空间Ω的一个完备事件组,且()0>i A P ()n i ,,2,1L =,则对于在样本空间上定义的任一随机事件,,有ΩB ()0>B P ()()()()()∑==n k k k i i i A P A B P A P A B P B A P 1|||()n i ,,2,1L =上述公式称为贝叶斯公式。
意义:在实际工作中可能碰到这样一类问题,已知某个试验结果是由多个原因B i A 造成的,如果人们通过试验观察到这个结果,希望利B用来探讨每个原因B i A 导致这个结果的可能性有多大,即求后验概率()B A P i |。
与后验概率()B A P i |相对应,求解()B A P i |时所需的已知条件()i A P 被称为先验概率,它是根据以往数据分析所得的。
湖南大学本科课程《随机过程》第6章习题及参考答案主讲教师:何松华 教授1. 给定实数x 和一个平稳随机过程()X t ,定义理想门限系统的特性为1()()0()X t xY t X t x≤⎧=⎨>⎩ 试证:(1) [()]()X E Y t F x =;(2) ()](,,)Y X R F x x ττ=证:(1) ()Y t 在任意时刻为只有两种取值1,0的随机变量,则[()]1{()1}0{()0}{()1}{()}(,)() ()X X E Y t P Y t P Y t P Y t P X t x F x t F x =⨯=+⨯====≤==根据平稳性(2)根据相关函数定义,有()][()()]11{()1,()1}01{()0,()1} 10{()1,()0}00{()0,()0}{()1,()1}{(),()}(,;,)(,;) ()Y X X R E Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P Y t Y t P X t x X t x F x x t t F x x ττττττττττ=+=⨯⨯+==+⨯⨯+==+⨯⨯+==+⨯⨯+===+===+≤≤=+=根据平稳性2.设平方律检波器的传输特性为2y x =,在检波器输入端加入一窄带高斯随机过程()X t ,其概率密度函数为22()()}2X Xx a f x σ-=- 在检波器后联接一个理想低通滤波器,求低通滤波器输出过程的一维概率密度和均值;当0a =时结果有何变化。
解:根据题意,()X t 为非零均值的中频窄带随机过程,可以表示为:00()()cos()()sin()C S X t a A t t A t t ωω=+-其中()C A t 、()S A t 为零均值窄带随机过程的同向分量以及正交分量,都服从均值为0、方差为2X σ的正态分布,且在同一时刻互不相关,则检波器输出信号22002222200000()[()cos()()sin()]1111()()2()cos()()cos(2)()cos(2)2222 2()sin()()()sin(2)C S C S C C S S C S X t a A t t A t t a A t A t aA t t A t t A t t aA t t A t A t t ωωωωωωω=+-=++++--- 通过理想低通滤波后,滤波器输出信号为2221()[()()]2C S Z t a A t A t =++由于随机变量()C A t 、()S A t 为互不相关(正态分布情况与独立等价)的正态随机变量,则22122()()()C S XXA t A t Z t σσ=+服从自由度为2的卡方分布,即11121/22/211221()22(2/2)z z Z z ef z e ---==Γ 221()()2X Z t Z t a σ=+,2122[()]()[()]XZ t a Z t h Z t σ-==,根据随机变量函数的概率密度关系,()Z t 的一维概率密度分布函数为22122()1()[()] ()X z a Z Z Xdh z f z f h z e z a dz σσ--==≥2222222211[()]{[()()]}[]22C S X X X E Z t E a A t A t a a σσσ=++=++=+当0a =时,221() (0)X zZ Xf z e z σσ-=≥,2[()]X E Z t σ=。
第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间;(2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =为相互独立的随机变量序列,则 (1){,1,2,}i Y i =是否为Markov 链?(2)令1nn ii X Y ==∑,问{,1,2,}iX i =是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================因此,{,1,2,}n Y n =是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++为1n U -的函数,记为1112(),n n n nf U X U U U --=+++为n U 的函数,记为().n n f U 由于12,,,,n U U U 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑因此{,1,2,}n X n =是马尔可夫链.3 设,1,2,i X i =是相互独立的随机变量,且使得(),0,1,i j P X j a j ===,如果max{,1,2,,1}n i X X i n >=-,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值. (1)证明,{,1,2,}n R n =是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P tn i i ===++=⎩⎨⎧≤>ij i j a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j i j iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
第三章 习 题1.甲乙两人进行某种比赛,设每局比赛中甲胜的概率为p ,乙胜的概率为q ,平局的概率为r ,其中,,0,1p q r p q r ≤++=,设每局比赛后,胜者得1分,负者得1-分,平局不记分,当两个人中有一个人得到2分时比赛结束,以n X 表示比赛至第n 局时甲获得的分数,则{,1}n X n ≥是一齐冯马尔可夫链.(1)写出状态空间; (2)求一步转移概率矩阵;(3)求在甲获得1分的情况下,再赛2局甲胜的概率. 解(1){,0}n X n ≥的状态空间为{2,1,0,1,2}S =--(2){,0}n X n ≥的一步转移概率矩阵为1000000000001q rp q r p q r p ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦P (3)因为两步转移概率矩阵为22(2)22222210000202220200001q rq r pq pr p q rq r pqpr p q qr pq r p pr ⎡⎤⎢⎥++⎢⎥⎢⎥==+⎢⎥++⎢⎥⎢⎥⎣⎦P P所以在甲获得1分的情况下,再赛2局甲胜的概率为(2)12(1)p p pr p r =+=+2.设{,1,2,}i Y i =L 为相互独立的随机变量序列,则(1){,1,2,}i Y i =L 是否为Markov 链? (2)令1nn ii X Y ==∑,问{,1,2,}iX i =L 是否为Markov 链?解(1)由于11221112211122111221111221(,,,,) (,,,)(,,,)()()()()()()(,,,)n n n n n n n n n n n P Y i Y i Y i Y j P Y j Y i Y i Y i P Y i Y i Y i P Y i P Y i P Y i P Y j P Y j P Y j Y i P Y i Y i Y i ------=========================L L L L L因此,{,1,2,}n Y n =L 是马尔可夫链.(2)取1111()f U X U ==,当11U i =时,212X U U =+是2U 的函数,记为22().f U 依次类推,1121n n X U U U --=+++L 为1n U -的函数,记为1112(),n n n n f U X U U U --=+++L 为n U 的函数,记为().n n f U 由于12,,,,n U U U L L 相互独立,则其相应的函数1122(),(),,(),n n f U f U f U L L 也相互独立,从而122111221111112211 (,,,)(,,,)(,,,)()()nn n i n i n n n n n n P X j X i X i X i P Y j X i X i X i P X Y j X i X i X i P Y j i P X j X i --=---==========+======-===∑L L L因此{,1,2,}n X n =L 是马尔可夫链.3 设,1,2,i X i =L 是相互独立的随机变量,且使得(),0,1,i j P X j a j ===L ,如果max{,1,2,,1}n i X X i n >=-L ,其中0X =-∞,就称在时刻n 产生了一个记录.若在时刻n 产生了一个记录,就称n X 为记录值,以n R 表示第n 个记录值.(1)证明,{,1,2,}n R n =L 是Markov 链,并求其转移概率;(2)以i T 表示第i 个与第1i +记录之间的时间,问{,1,2,}n T n =L 是否是Markov 链,若是,则计算其转移概率.证明:(a )根据题意有:k n k n n X R X R X R ===,....,2121,……满足........21k n n n X X X << 且........121k n n n <<<故},...,|{11111i R i R i R z R P k k k k k ====--+}...|{111i i i j z R P k k k >>>>==-+ }|{1k k i j z R P >==+}|{1k k k i R z R P ===+ 故}1,{≥i R i 是一个马尔可夫链且⎩⎨⎧≤>======++i j ij a i X z X P i R z R P j k n n k k k k k ,0,}|{}|{11 (由于i X 的独立性)(b )记i T 为第i 个记录与第1i +个记录之间的时间,i T 是相互独立的随机变量,因为{}i P T t =}1...,2,1,,|{k 1-=<=====+++t k i X i X R z X R P i i i n n i t n i 且}{1z X R P t n i i ===++=⎩⎨⎧≤>i j ij a j ,0,(由于i X 的独立性)故{i T ,1≥i }是一个马尔可夫链 令(,),1i i i Z R T i =≥ 则{}111,,,i i i P Z Z Z Z +-…{}111111(,)(,),(,),,(,)i i i i i i P R t R t R t R t ++--=…{}1111112111111211(,)(,),(,),,(,),(,)i i i t t i t t i t t i t t P X t X t X t X t X t +-+++++++-++=…+?+?+… {}111111(,)(,)i i t t i t t i P X t X t ++++++=…+?+ {}111111(,)(,)i i t t i t t i P X z t X i t ++++++===…+?+,0,j j ij iα>⎧=⎨≤⎩ 故}{,(),1i i R T i ≥是一个马尔可夫链。
1、修理一个机器所需要的时间T 是均值为1/2(小时)的指数随机变量 (a )问修理时间超过1/2小时的概率是多少?(b )已知修理持续时间超过12小时,问修理时间至少需要12.5小时的概率是多少?2、考察一个由两个办事员经营的邮局。
假设当甲进入邮局的时候,他发现乙正在接受一个办事员的服务,丙正在接受另一个办事员的服务。
甲被告知,只要乙或丙中的一个离开,他的服务就可以立刻开始。
如果一个办事员用在一个顾客上的时间是以均值为1/λ指数地分布的,那么在这3个顾客中,甲是最后一个离开邮局的概率是多少?3、若X1和X2是独立的非负连续随机变量,证明:)()()(}),min(|{2112121t r t r t r t X X X X P +==<其中)(t r i 是Xi 的失效率函数。
4、某种理论假设细胞分裂的错误按速率每年2.5个的泊松过程发生,而人体在发生了196个这种错误后死亡。
假设该理论成立,求(1)人的平均寿命(2)人在67.2岁前死亡的概率(3)人活到90岁的概率(4)人活到100岁的概率5、令{N(t),t ≥0}是速率为λ的泊松过程,以Sn 记第n 个事件发生的时间。
求(1)][4S E(2)]2)1(|[4=N S E(3)]3)1(|)2()4([=-N N N E6、事件按速率为每小时λ=24的泊松过程发生。
(1)在下午8:00到9:00没有事件发生的概率是多少?(2)从正午开始,到第四个事件发生的期望时间是多少?(3)在下午6:00到8:00有两个或两个以上事件发生的概率是多少?7、顾客按速率为λ的泊松过程进入银行。
假设两个顾客在第一小时内到达。
下面的概率分别是多少?(1)两个顾客都在前20分钟内到达(2)至少一个顾客在前20分钟内到达8、某人负责订阅杂志,设前来订阅的顾客是一天内平均达到率为8的泊松过程,他们分别以概率1/2、1/3和1/6订阅1季、2季和3季的杂志,其选择是相互独立的。
第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=kpx F )(连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()(2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数(两个随机变量Y X ,):DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关。
独立⇒不相关⇔0=ρ4.特征函数)()(itXeE t g = 离散 ∑=k itx p et g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,kk k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 kn k k n q p C k X P -==)( np EX = n p qDX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 22)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X)}()(21exp{||)2(1),,,(121221a x B a x B x x x f T nn ---=-π),,,(21n a a a a =,),,,(21n x x x x =,n n ij b B ⨯=)(正定协方差阵二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程。
第六章 高斯(Gauss )过程(六)维纳过程(布朗运动)1. 维纳过程的定义设质点每经过t ∆时间,随机地以概率2/1=p 向右移动0>∆x 距离,以概率2/1=q 向左移动0>∆x 距离,且每次移动是相互独立的。
记:−=次质点向左移动第次质点向右移动第i i X i ,1,1若)(t X 表示在t 时刻质点所处的位置,则有:)()(][21tt XX X x t X ∆+++∆=L显然有:1}{}{,0}{2===i i i X E X D X E故有:∆∆==t t t t X D t X E 2)()}({,0)}({假设t c x ∆=∆,其中c 为常数,它由物理意义确定。
0>令∆0→t ,即研究连续的游动,则有:0)}({=t X Et c t t t c t t x t X D t t t 220200lim )(lim )}({lim = ∆∆=∆∆=→∆→∆→∆ 另一方面,任取两个时刻210t t <<,令:∆= ∆=t t n t t n 2211,则有:)()(1211n X X X x t X +++∆=L)()(2212n X X X x t X +++∆=L)()()(21112n n X X x t X t X ++∆=−+L由于(与)121n X X X +++L )(211n n X X +++L )(是相互独立的,因此与相互独立。
即随机过程)(1t X )()12t X −(t X t X 是一独立增量过程。
由此)(t X 可以看作由许多微小的相互独立的随机变量)(1−)(−i t i X t X 组成之和。
由中心极限定理,当∆0→t 时,我们有:)(0200lim x x t c xX P t t i i t Φ=≤−∆∑ ∆=→∆ 即有:∫∞−→∆−=Φ=≤xt du u x x t c t X P }2exp{21)()(lim 220π故当∆0→t 时,)(t X 趋向于正态分布,即0→∆t 时,),0(~)(2t c N t X 由此,我们引入维纳过程(Wienner Process )的定义:定义:若一随机过程{}0);(≥t t W 满足: (1))(t W 是独立增量过程;(2)∀; ),0(~)()(,0,2t c N s W t s W t s −+>(3))(t W 是关于t 的连续函数;则称{}0);(≥t t W 是布朗运动或维纳过程(Wienner Process )。